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Abstract

Dynamic programming is an important algorithm design technique. It is used for problems
whose solutions involve recursively solving subproblems that share subsubproblems. While a
straightforward recursive program solves common subsubproblems repeatedly, a dynamic pro-
gramming algorithm solves every subsubproblem just once, saves the result, and reuses it when
the subsubproblem is encountered again. This can reduce the time complexity from exponential
to polynomial. This paper describes a systematic method for transforming programs written
as straightforward recursions into programs that use dynamic programming. The method ex-
tends the original program to cache all possibly computed values, incrementalizes the extended
program with respect to an input increment to use and maintain all cached results, prunes
out cached results that are not used in the incremental computation, and uses the resulting
incremental program to form an optimized new program. Incrementalization statically exploits
semantics of both control structures and data structures and maintains as invariants equalities
characterizing cached results. It provides the basis of a general method for achieving drastic
program speedups. Compared with previous methods that perform memoization or tabulation,
the method based on incrementalization is more powerful and systematic. It has been imple-
mented in a prototype system CACHET and applied to numerous problems and succeeded on
all of them.

1 Introduction

Dynamic programming is an important technique for designing efficient algorithms [2, 15, 52]. It
is used for problems whose solutions involve recursively solving subproblems that share subsub-
problems. While a straightforward recursive program solves common subsubproblems repeatedly, a
dynamic programming algorithm solves every subsubproblem just once, saves the result in a table,
and reuses the result when the subsubproblem is encountered again. This can reduce the time
complexity from exponential to polynomial. The technique is generally applicable to all problems
that can be solved efficiently by memoizing results of subproblems [4, 5].

Given a straightforward recursion, there are two traditional ways to achieve the effect of dynamic

programming [15]: memoization [40] and tabulation [5].

*This work is supported in part by ONR under grants N00014-99-1-0132 and N00014-99-1-0358 and by NSF under
grants CCR-9711253 and CCR-9876058. This article is a revised and extended version of a paper that appeared in
Proceedings of the 8th European Symposium on Programming, Amsterdam, The Netherlands, March 1999. Authors’

address: Computer Science Department, State University of New York at Stony Brook, Stony Brook, NY 11794.
Phone: 631-632-{8463,1627}. Email: {liu,stoller }@cs.sunysb.edu.



Memoization uses a mechanism that is separate from the original program to save the result of
each function call or reduction as the program executes [1, 19, 20, 25, 27, 28, 40, 41, 45, 49, 51]. The
idea is to keep a separate table of solutions to subproblems, modify recursive calls to first look up in
the table, and then, if the subproblem has been computed, use the saved result, otherwise, compute
it and save the result in the table. This method has two advantages. First, the original recursive
program needs virtually no change. The underlying interpretation mechanism takes care of table
filling and lookup. Second, only values needed by the original program are actually computed,
which is optimal in a sense. Memoization has two disadvantages. First, the mechanism for table
filling and lookup has an interpretive overhead. Second, no general strategy for table management
is efficient for all problems.

Tabulation statically determines what shape of table is needed to store the values of all possibly
needed subcomputations, introduces appropriate data structures for the table, and computes the
table entries in a bottom-up fashion so that the solution to a superproblem is computed using
available solutions to subproblems [5, 11, 12, 13, 14, 24, 45, 46, 47, 48]. This overcomes both disad-
vantages of memoization. First, table filling and lookup are compiled into the resulting program, so
no separate mechanism is needed for the execution. Second, strategies for table filling and lookup
can be specialized to be efficient for particular problems. However, tabulation has two drawbacks.
First, it usually requires a thorough understanding of the problem and a complete manual rewrite
of the program [15]. Second, to statically ensure that all values possibly needed are computed
and stored, a table that is larger than necessary is often used; it may also include solutions to
subproblems not actually needed in the original computation.

This paper presents a powerful method that statically analyzes and transforms straightforward
recursive programs to efficiently cache and use the results of needed subproblems at appropriate
program points in appropriate data structures. The method has three steps: (1) extend the original
program to cache all possibly computed values, (2) incrementalize the extended program, with
respect to an input increment, to use and maintain all cached results, (3) prune out cached results
that are not used in the incremental computation, and use the resulting incremental program
to form an optimized program. The method overcomes both drawbacks of tabulation. First, it
consists of static program analyses and transformations that are general and systematic. Second,
it stores only values that are necessary for the optimization; it also shows exactly when and where
subproblems not in the original computation have to be included.

Our method is based on a number of static analyses and transformations studied previously
by others [6, 9, 21, 42, 47, 55, 56, 62] and ourselves [30, 37, 38, 39] and improves them. Each
of the caching, incrementalization, and pruning steps is simple, automatable, and efficient and
has been implemented in a prototype system, CACHET. The system has been used in optimizing
many programs written as straightforward recursions, including all dynamic programming problems
found in [2, 15, 52|, most in semi-automatic mode and some in fully automatic mode. Performance
measurements confirm drastic asymptotic speedups.

The rest of the paper is organized as follows. Section 2 formulates the problem. Sections 3, 4,



and 5 describe the three steps. Section 6 summarizes and discuses related issues. Section 7 presents
the experimentation and performance measurements. Section 8 compares with related work and

concludes.

2 Formulating the problem

Straightforward solutions to many combinatorics and optimization problems can be written as
simple recursions [52, 15]. For example, the matrix-chain multiplication problem [15, pages 302-
314] computes the minimum number of scalar multiplications needed by any parenthesization in
multiplying a chain of n matrices, where matrix ¢ has dimensions p;_1 X p;. This can be computed
as m(1,n), where m(i, j) computes the minimum number of scalar multiplications for multiplying
matrices ¢ through j and can be defined as: for i < 7,
mii ) =1 O ifi=j
’ minigksjfl{m(i, k) + m(k' + l,j) + pi—1 * P *pj} otherwise

The longest-common-subsequence problem [15, pages 314-320] computes the length c¢(n,m) of the

longest common subsequence of two sequences (z1, T2, ..., Zn) and (Y1, Y2, .-, Ym), where ¢(i,j) can
be defined as: for 7,5 > 0,

0 ifi=0orj=0
(i, j)=1Q c(i—1,7—-1)+1 ifi#A0and j #0 and z; = y;
max(c(i, 7 —1),c(i — 1,7)) otherwise
Both of these examples are literally copied from the textbook by Cormen, Leiserson, and Rivest [15].
These recursive functions can be written straightforwardly in the following first-order, call-by-
value functional programming language. A program is a function fy defined by a set of mutually
recursive functions of the form

f(vla "'7Un) = €

where an expression e is given by the grammar

eun=v variable
cley...,en) constructor application
plet, ..., en) primitive function application

|

|

| fler,...,en) function application

| if e; then e; else es  conditional expression
|

let v =e€; in e» binding expression

We include arrays as variables and use them for indexed access such as x; and p; above. For
convenience, we allow global variables, i.e., variables that do not change across function calls, to
be implicit parameters to functions; such variables can be identified easily for our language even
if they are given as explicit parameters. For a conditional expression whose condition depends on
a global variable, we assume that both branches may be executed without divergence or run-time
errors regardless of the value of the condition, which holds for the large class of combinatorics and
optimization problems we handle.



Figure 1 gives programs for the examples above. Invariants about an input are not part of a
program but are written explicitly to be used by the transformations. Clearly,  and y are implicit
parameters to ¢, and p is an implicit parameter to m and msub. Condition z[i] = y[j] in ¢ depends
on global variables z and y. These examples do not use data constructors, but our previous papers

contain a number of examples that use them [37, 38, 39] and our method handles them.

(3, 7) where 4,7 >0

£ ifi=0 Vj=0then0
else if z[i] = y[j] then c(i—1,j-1) +1
else max(c(i,j —1),c(i — 1, 7))

m(i, j) where 7 < j msub(i, J, k) where i < k<j—1
£ ifi=jthen0 2 let s = m(i, k) + m(k-+, j) + pli—1] * p[k] * p[j] in
else msub(%, j, 1) if k+1=j then s

else min(s, msub(i,j,k + 1))

Figure 1: Example programs.

These straightforward programs repeatedly solve common subproblems and take exponential
time. For example, m(i,j) computes m(i, k) for all k£ from ¢ to j — 1 and computes m(k, j) for all
k from i+ 1 to j. We transform them into dynamic programming algorithms that perform efficient
caching and take polynomial time.

We use an asymptotic cost model for measuring time complexity. Assuming that all primitive
functions take constant time, we need to consider only values of function applications as candidates
for caching. Caching takes extra space, which reflects the well-known trade-off between time and
space. Our primary goal is to improve the asymptotic running time of the program. Our secondary
goal is to save space by caching only values useful for achieving the primary goal.

Caching requires appropriate data structures. In Step 1, we cache all possibly computed results
in a recursive tree following the structure of recursive calls. Each node of the tree is a tuple that
bundles recursive subtrees with the return value of the current call. We use <> to denote a tuple,
and we use selectors 1st, 2nd, 3rd, etc. to select the first, second, third, etc. elements of a tuple.

In Step 2, cached values are used and maintained in efficiently computing function calls on
slightly incremented inputs. We use an infix operation @ to denote an input increment operation,
also called an input change (or update) operation. It combines a previous input z = (x1,...,Z,)
and an increment parameter y = (y1,...,Yn) to form an incremented input z’' = (z},...,2}) =
z @ y, where each z} is some function of z;’s and y;’s. An input increment operation we use
for program optimization always has a corresponding decrement operation prev such that for all
z, y, and 7', if z' = z ® y then = = prev(z’). Note that y might or might not be used. For
example, an input increment operation to function m in Figure 1 could be (#, 1)) = (z1,z9 + 1)
or (z},zh) = (z1 — 1,z3), and the corresponding decrement operations are (z1,z9) = (z},zh — 1)
and (z1,z9) = (2} + 1,24), respectively. An input increment to a function that takes a list could

be 2’ = cons(y, x), and the corresponding decrement operation is z = cdr(z').



In Step 3, cached values that are not used for an incremental computation are pruned away,
yielding functions that cache, use, and maintain only useful values. Finally, the resulting incre-
mental program is used to form an optimized program. The optimized program computes in an
incremental fashion with step @, caching and reusing results of subcomputations as needed, and
thus avoids repeatedly solving common subproblems.

For a function f in an original program, f denotes the function that caches all possibly computed
values of f, and f denotes the pruned function that caches only useful values. We use z to denote
an un-incremented input and use r, 7, and 7 to denote the return values of f(z), f(z), and f(z),
respectively. For any function f, we use f’ to denote the incremental function that computes f(z'),
where ' = z @ y, using cached results about z such as f(z). So, f’ may take parameter z’, as well

as extra parameters each corresponding to a cached result. Figure 2 summarizes the notation.

| Function || Return Value | Denoted as || Incremental Function |
f original value r f
f all possibly computed values 7 f
f useful values 7 f '

Figure 2: Notation.

3 Step 1: Caching all possibly computed values

Consider a function fy defined by a set of recursive functions. Program f may use global variables,
such as z and y in function c¢(4,5). A possibly computed value is the value of a function call that
is computed for some but not necessarily all values of the global variables. For example, function
¢(i,7) computes the value of ¢(i —1,5 —1) only when z[i] = y[j]. Such values occur exactly in
branches of conditional expressions whose conditions depend on any global variable.

We construct a program fy that caches all possibly computed values in fy. For example, we
extend c(7, j) to always compute the value of ¢(i —1, j —1) regardless of whether z[i| = y[j]. We first
apply a simple hoisting transformation to lift function calls out of conditional expressions whose
conditions depend on global variables. We then apply an ezxtension transformation to cache all

intermediate results, i.e., values of all function calls, in the return value.

3.1 Hoisting transformation

Hoisting transformation Hst identifies conditional expressions whose condition depends on any
global variable and then applies the transformation
Hst[if e1 then e, else es] = let vy = ez in
let v3 = e3 in

if e; then vs else v3

For example, the hoisting transformation leaves m and msub unchanged and transforms ¢ into



c(i,j) 2 ifi=0 Vj=0then0
elselet u; =c(i —1,j—1)+1in
let u» = max(c(4,5 —1),¢( —1,5)) in
if z[i] = y[j] then u; else us

Hst simply lifts up the entire subexpressions in the two branches, not just the function calls
in them. Administrative simplification performed at the end of the extension transformation will
unwind bindings for computations that are used at most once in subsequent computations; thus
computations other than function calls will be put down into the appropriate branches then. Hst
is simple and efficient. The resulting program has essentially the same size as the original program,
so Hst does not increase the running time of the extension transformation or the running times of
the later incrementalization and pruning.

If we apply the hoisting transformation on arbitrary conditional expressions, the resulting pro-
gram may run slower, become non-terminating, or have errors introduced, since the transformed
program may perform certain computations not performed in some branches of the original pro-
gram. By applying the hoisting transformation only on conditional expressions whose conditions
depend on global variables, our assumption in Section 2 eliminates the last two problems. The first

problem is discussed in Section 6.

3.2 Extension transformation

For each hoisted function definition f(v1,...,v,) £ e, we construct a function definition
fv1,...,v,) 2 Ext[e]

where &rte], defined in [38], extends an expression e to return a nested tuple that contains the
values of all function calls made in computing e, i.e., it examines subexpressions of e in applicative
order, introduces bindings that name the results of function calls, builds up tuples of these values
together with the values of the original subexpressions, and passes these values from subcomputa-
tions to enclosing computations. The first component of a tuple corresponds to an original return
value. Next, administrative simplifications clean up the resulting program. This yields a program
fo that embeds values of all possibly computed function calls in its return value. For the hoisted
programs m and c, the extension transformation produces the following functions:

A

if i =j then <0 >
else msub(i, j, i)

m(i, j)

msub(i, j, k) £ let vy = m(i, k) in
let v2 =m(k+1,7) in
let s = 1st(v1) + 1st(v2) + p[i —1] * p[k] * p[4] in
if k+1=j then < s,vi,v2 >
else let v = msub(i, j, k + 1) in
< min(s, 1st(v)),v1, v2,v >
L2 §ifi{=0Vj=0then <0>
elselet v1 =¢(i —1,j —1) in
let v =¢(,5—1) in
let v3 =¢(: —1,j) in
if z[i] = y[j] then < 1st(v1)+ 1,v1,v2,v3 >
else < max(1st(v2),1st(vs)),v1,v2,v3 >

e(i, 5)



We have m(i, j) = 1st(m(s,j)) and c(i,5) = 1st(¢(i, 7).

4 Step 2: Static incrementalization

The essence of our method is to transform a program to use and maintain cached values efficiently as
the computation proceeds. This is done by incrementalizing fo with respect to an input increment
operation @, i.e., we transform fy(z @y) to use the cached value of fo(z) rather than compute from
scratch.

An input increment operation @ describes a minimal update to the input parameters. We first
describe a general method for determining @. We then give a method, called static incremental-
ization, that constructs an incremental version f’ for each function f in the extended program and

allows an incremental function to have multiple parameters that represent cached values.

4.1 Determining input increment operation

An input increment reflects how a computation proceeds. In general, a function may have multi-
ple ways of proceeding, depending on the particular computations involved. There is no general
method for identifying all of them or the most appropriate ones. Here we propose a method that
can systematically identify a general class of them. The idea is to use a minimal input change
that is in the opposite direction of change compared to arguments of recursive calls. Using the
opposite direction of change yields an increment; using a minimal change allows maximum reuse,
i.e., maximum incrementality.

Consider a recursively defined function fy. Formulas for the possible arguments of recursive calls
to fo in computing fo(z) can be determined statically. For example, for function c(%, j), recursive
calls to ¢ have the set of possible arguments S, = {(¢ —1,7—1), (1,5 —1), (i—1, j)}, and for function
m(i, j), recursive calls to m have the set of possible arguments S,,, = {(i, k), (k+1,5) |7 < k < j—1}.
The latter is simplified from S, = {(a,c), (c+1,b) |a < c < b—1,a =14,b = j} where a,b, c are fresh
variables that correspond to 4, j, k in msub; the equalities are based on arguments of the function
calls involved (in this case calls to msub); the inequalities are obtained from inequalities on these
arguments (in the where-clause of msub). The simplification here, as well as the manipulations
below, can be done automatically using Omega [50], a system for manipulating linear constraints
over integer variables, Presburger formulas, and integer tuple relations and sets.

Represent the arguments of recursive calls so that the differences between them and z are
explicit. For function ¢, S, is already in this form, and for function m, S, is rewritten as {(i,7 —
D,(i+1,j5)|1 <1< j—1i}. Then, extract minimal differences that cover all of these recursive
calls. The partial ordering on differences is: a difference involving fewer parameters is smaller; a
difference in one parameter with smaller magnitude is smaller; other differences are incomparable.
A set of differences covers a recursive call if the argument to the call can be obtained by repeated
application of the given differences. So, we first compute the set of minimal differences and then

remove from it each element that is covered by the remaining elements. For function ¢, we obtain



{(i,7 — 1),(i — 1,5)}, and for function m, we obtain {(i,j — 1),(i + 1,5)}. Elements of this set
represent decrement operations prev. Finally, take the opposite of each decrement operation to
obtain an increment operation @, introducing a parameter y if needed (e.g., for increments that
use data constructions). For function ¢, we obtain (i, + 1) and (i + 1, j), and for function m, we
obtain (7,7 + 1) and (i — 1,7). Although finding input increment operations is theoretically hard
in general (and a decrement operation might not have an inverse, in which case our algorithm does
not apply), it is usually straightforward.

Typically, a function that involves repeatedly solving common subproblems contains multiple
recursive calls to itself. If there are multiple input increment operations, then any one may be
used to incrementalize the program and then form an optimized program; the rest may be used
to further incrementalize the resulting optimized program, if it still involves repeatedly solving
common subproblems. For example, for program ¢, either (7,7 + 1) or (i + 1, ) leads to a final
optimized program that takes polynomial time; the resulting program does not contain multiple
recursive calls that solve common subproblems. For program m, either (i —1, j) or (i, 7+ 1) leads to
an optimized program that is an exponential factor faster, but the program still contains multiple
recursive calls that solve common subproblems and takes exponential time; incrementalizing that
program again under the other increment operation leads to a final optimized program that takes
polynomial time. In other words, both (i — 1,7) and (7,7 + 1) need to be used, and they may be

used in either order.

4.2 Static incrementalization

Given a program f; and an input increment operation @, incrementalization symbolically trans-
forms fo(z') for ' = z @y to replace subcomputations with retrievals of their values from the value
7 of fo(x). This exploits equality reasoning, based on control and data structures of the program
and properties of primitive operations. The resulting program f( uses 7 or parts of 7 as additional
arguments, called cache arguments, and satisfies: if fo(x) = 7 and fo(z') = 7, then f(z',7) = 7.1

The idea is to establish the strongest invariants we can, especially those about cache arguments,
for each function at all calls of it and maximize the usage of the invariants. At the end, unused
candidate cache arguments are eliminated. Reducing running time corresponds to maximizing uses
of invariants; reducing space corresponds to maintaining weakest invariants that suffice for all uses.
It is important that the methods for establishing and using invariants are not only powerful but also
systematic so that they are automatable. The algorithm is described below. Its use is illustrated
afterwards using the running examples.

The algorithm starts with transforming fo(z') for 2’ = x @ y and fo(z) = 7 and first uses the
decrement operation to establish an invariant about function arguments. More precisely, it starts
with transforming fo(z') with invariant fo(prev(z')) = 7, where 7 is a candidate cache argument. Tt

may use other invariants about z’ if given. Invariants given or formed from the enclosing conditions

'Tn previous papers, we defined fg slightly differently: if fo(z) = 7 and fo(x @ y) = 7, then fo (x,y,7) = 7. This
difference is insubstantial since when incrementalization is used for program optimization, as we do here, both z and
y (if it is used) can be obtained from z'.



and bindings are called context. The algorithm transforms function applications recursively. There

are four cases at a function application f(e,...,e}).

(i) If f (€, ..., €},) specializes, by definition of f, under its context to a base case, i.e., an expression

with no recursive calls, then replace it with the specialized expression.

Example. For function application f(e) with definition f(z) £ if x < 0 then 0 else g(z) and

context e = 0, we specialize f(e) to 0.

(ii) Otherwise, if f(e],...,e},) equals a retrieval from a cache argument based on an invariant

about the cache argument that holds at f(el,...,e],), then replace it with the retrieval.

Example. If invariant f(e) = 2nd(7) holds at function application f(e), then we replace f(e)
with 2nd(7).

(iii) Otherwise, if an incremental version f’ of f has been introduced, then replace f(e},...,e},)

with a call to f' if the invariants associated with f’ can be maintained; if some invariants
cannot be maintained, then eliminate them and retransform from where f’ was introduced.
Maintaining invariants includes maintaining both the invariants about a cache argument,
which have the form of a function application equaling a retrieval from a cache argument,

and the other usual invariants.

Example. After introducing f¢(z',7) to compute fo(z') with invariant fo(prev(z')) = 7, we
replace fo(e) by fd (e, 3rd(7)) if we have fo(prev(e)) = 3rd(7).

Example. After introducing f'(z,71,72) to compute f(z) with invariants f(z — 1) = rq,
f(z —2) =1y, and z > 0, if we encounter a function application f(e) at which f(e —1) = ;1
holds for some e,; but neither f(e —2) = epo for any ero nor e > 0 can be inferred, then
we retransform from where f’ was introduced and introduce f'(z,r;) with only invariant
flz—1)=r.

(iv) Otherwise, introduce an incremental version f’ of f and replace f(e},...,el,) with a call to f’,

as described below.

In general, the replacement in case (i) is also done, repeatedly, if the specialized expression con-
tains only recursive calls whose arguments are closer to, and will equal after a bounded number
of such replacements, arguments for base cases or arguments for which retrievals can be done.
Since a bounded number of invariants are used at a function application, as described below, the
retransformation in case (iii) happens at most a bounded number of times, so the algorithm always
terminates; in the worst case, no invariants can be maintained and used, and f’ is the same as f.
Since f is just one function in the given program; the final program that uses f’ after Step 3 might
or might not be faster than the original program. There is no way to tell in general which is the
case, but for the class of dynamic programming problems we consider, it can be conservatively
determined that the original programs always contain repeated recursive calls and thus take ex-
ponential time, and the final programs proceed in nested linear fashion and thus take polynomial

time.



Case (iv). To introduce an incremental version f’ of f at f(el,...,e}), we (iv.1) determine can-

didate invariants associated with f’ based on the invariants that hold at f(e],...,e},) and (iv.2)

obtain a definition of f’ based on the definition of f and the candidate invariants. Finally, we (iv.3)

replace f(el,...,el,) with a call to f’.

e

(iv.1) To determine candidate invariants associated with f’, let Inv be the set of invariants
about a cache argument or in the context that hold at f(e],...,el,). Invariants about a cache
argument are of the form g;(e;1, ..., €in;) = €ri, where e,; is either a candidate cache argument in
the enclosing environment or a selector applied to such an argument. Invariants in the context are
of a form given, e.g., i < j for m(i,7), or of the form e = true, e = false, or v = e obtained from
enclosing conditions or bindings. For simplicity, we assume that all bound variables are renamed
so that they are distinct.

Example. As an example for Step (iv.1), consider function application msub(i’, j',4'), and assume
that invariants about a cache argument, msub(i', j' —1,7') = 7 and m(¢', ;' —1) = 7, and invariants
in the context, i’ < j', ' # j', and 7' # 7' —1, hold at the application.

We are introducing f'(z¥,...,z!,...) to compute f(z/,...,z!) for 2/ = €/,...,z

"

" where

— !
_ena

zY, ...,z are fresh variables, and the second ... in the parameters of f’ denote the cache arguments

I !

to be determined. So we deduce invariants about z¥, ..., ), based on Inv and =¥ =€, ...,z = €.

Example. For the example above, we let msub compute msub(i”, j" k") for i =4', j” = ', and
k" =4', and deduce invariants about ", 5", and k".

The deduction has four steps.

(1) Use equations €] = =¥, ...,el, = z! to try to eliminate all variables in Inv other than those in

eri’s. This can be done automatically using Omega [50].
Example. For the example above, we give the following formula to Omega:

3,5 msub(d,j —1,i)Y=r, m@,j 1) =r, i <j, i'£F, £ -1, =i =5 i=k"
and we obtain the following result:

msub(i”,j” _1’1'//) — ’F, m(ill’jll _1) — ,F, i” S j” _ 2’ kll — i”

(2) Remove resulting invariants that still use variables in Inv other than those in e,;’s.

Example. For the example above, this has no effect.

(3) Use equations relating z¥, ..., 2! to add additional forms of other invariants. This is done as
1
J
involves z7, then for each invariant i’ that can be obtained by replacing some occurrences of

follows: if 77/ = zj or z}, = 7/ is a resulting equation, and i is another resulting invariant that

"

Zj

in ¢ with =}, add 4’ to the resulting set of invariants.
Example. For the example above, this yields

—msub(i",j”—l,i”) =, —msub(i”,j"—l,k") =, m(i”,j”—l) =7, i < jH -2, k' = ’i”,
msub(k",j" —1,i") =7, msub(k”,j"—1,k") =7, mk',j"—1)=7F k' <j" -2,

10



(4) For each invariant about a cache argument, replace its right side with a fresh variable.

Example. For the above example, six fresh variables, 71 to 7g, are used to replace the right

sides of the invariants about a cache argument.

We call the resulting invariants candidate invariants; each of them either uses only variables

11

7, ...,y or is of the form g;(ef},...,ef,.) = ri, where e}, ..., e}l = use only variables x7,...,z; and

n;
and 7; is a fresh variable. They are now associated with f’, which has arguments z/, ...,z and

candidate cache arguments r;’s.

1

Given invariants Inv and equations z = e/, ...,z

= el , the set of strongest invariants about
zY, ...,z expressed using no other variables in Inv except those in e,;’s, are in general uncom-
putable. However, the deduction using Omega in (1) allows us to obtain such invariants automati-
cally when only Presburger arithmetic is involved, which is the case for all the dynamic programming
problems we consider. The removal in (2) allows us to fall back to weaker invariants in the general
cases. The additional forms in (3) allow us to, when some invariants deduced can not be maintained
at other calls to f, keep the strongest subset of invariants that can be obtained based on direct
equalities.

(iv.2) To obtain a definition of f’, first unfold f(z/,...,2]l). Then exploit control structures,

"
ing

together with other candidate invariants associated with f’. Exploiting data structures allows us

i.e., conditionals in f(zf,...,z]) and g;(ef}, ..., €}, )’s, and data structures, i.e., components in 7;’s,
to use not only a cached result as a whole but also components of it. Exploiting control structures

helps us obtain different forms of cached results under different conditions.

(1) To exploit conditionals in f(z!, ..., z}), in the unfolded expression, move function applications
into branches of the conditionals whenever possible, preserving control dependencies incurred
by the order of conditional tests and data dependencies incurred by the bindings. This
allows transformations of function applications to use as many conditions in their contexts
as possible. This is done by repeatedly applying the following transformation in applicative,

i.e., leftmost and innermost first, order to the unfolded expression:

For any expression t(e1, ..., ex)
being c(eq, ..., ex), p(e1,...,ex), f(e1,...,ex), if €1 then es else e3, or let v = e; in es:
if subexpression e; is if e;; then e;; else ¢;3
where if ¢ is a conditional, ¢ # 2,3, and
if ¢ is a binding expression, i # 2 or e;; does not depend on v,
then transform t¢(eq, ..., ex) to
if e;; then t(eq,...,€;—1, €2, €i41, ..., €) €lse t(e1,...,€i_1, €3, €11, .-, €k)-

Example. If the unfolded expression is let v = h(e) in if e; then es else ez, where e; does not

depend on v, then we transform it to if e; then let v = h(e) in eg else let v = h(e) in es.

This transformation preserves the semantics. It may increase the code size, but it does not

increase the running time of the resulting program.
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in;

1"
in;

(2) To exploit the conditionals in g;(ef;, ..., e}, )’s, first choose, among g;(el;, ..., e}, )’s that are ap-

1

plications of f, one whose arguments differ minimally from z7, ..., 2, denote it f(e!,...,ell),

and call it the corresponding previous application. If the corresponding previous applica-
tion is found, then introduce in the expression obtained from (1) conditions that appear in

f(el,...,ell), and put function applications inside both branches that follow such a condi-

tion. Again, this allows transformations of function applications to use as many conditions
in their contexts as possible and, in particular, to use different forms of cached values from
f(ef, ...,el) under different conditions. This is done by applying the following transformation

in outermost-first order to the conditionals in the expression obtained from (1):

For each branch e of a conditional that contains a function application:
let €’ be the condition of the leftmost and outermost conditional in f(ef,...,e]s) such
that the context of e does not imply e’ and does not imply —e';
if ¢’ uses only variables defined in the context of e and takes constant time to
compute, and the two branches in f(e/,...,e!") that are conditioned on €' contain
different function applications in some component
then transform e to if €’ then e else e.

Example. If a branch e of a conditional is ...h(z —1)..., the corresponding previous application
f(x — 1) by definition equals if £ —1 = 0 then <0 > else <ej,e2 >, and the context of e
does not imply whether z — 1 = 0 or not, then transform e to if z — 1 = 0 then e else e.

Exploiting conditionals in the corresponding previous application f(ef,...,elr) is a heuristic.

/.

In general, one may exploit conditionals in all g;(ef}, ..., e},

in;)’s; afterwards, conditionals whose

two branches are the same are optimized by eliminating the condition and merging the two
branches. We use this heuristic here since it simplifies the transformations and is sufficient
for all examples we have seen. The rationale is that the arguments €Y, ..., e} differ minimally

n

from z¥, ...,z so the values of f(e/,...,e

"

») under various conditions are most likely to be

reused in computing f(zf,...,z0).

(3) To exploit each component in a candidate cache argument r; where there is an invari-

1! 1
i17 +* €in;

gi(€fy - €j,.) under the context of that branch. This may yield additional invariants that

ant g;(e ) = r;, for each branch in the transformed expression from (2), specialize

are equalities between function applications and components of ;. It does not change the

resulting expression from (2).

Example. Continuing the above example, if f(z — 1) = r is an invariant at e, and if eq is
h(z — 1), then specializing f(z —1) under z — 1 # 0 yields h(z — 1) = 2nd(r). This invariant

will enable one to replace h(z — 1) in e in the else-branch with 2nd(r).

After these control structures and data structures are exploited, we perform the following transfor-
mations on the expression from (2) in applicative order: we simplify subexpressions using algebraic

properties and transform function applications recursively based on the four cases described.

(iv.3) After we finish transforming the expression for defining f’, we eliminate dead code.

12



Finally, after we obtain a definition of f’, replace the function application f(e,...,e},) with a call
to f' with arguments €/, ..., e}, and cache arguments e;,’s for the invariants used.

After an application of f, other than the initial application fo(z'), is replaced by an application
of f', if f"is not recursively defined, then we unfold the application of f’ and repeat transformations
(1) to (3) in (iv.2) on the enclosing expression that will become the body of the enclosing function.
This enables, in defining the enclosing function, more exploitation of control structures and data
structures based on the conditionals and binding expressions in the unfolded application of f’. This

may increase the code size but not the running time of the resulting program.

4.3 Longest common subsequence

Incrementalize ¢ under (i',j") = (i + 1,7). We start with &(#’,5’), with cache argument 7 and
invariant ¢(prev(i/,j')) = ¢(i’ — 1, ;') = 7; the invariants i, 5/ > 0 may also be included but do not
affect any transformation below, so for brevity, we omit them. This is case (iv), so we introduce
incremental version ¢ to compute ¢(i’,j'). Unfolding the definition of ¢ and exploiting control
structures according to (1) and (2) in (iv.2), we obtain the code below, where the annotations on
the right are explained in the two paragraphs that follow. In particular, according to (2) in (iv.2),
the false branch of ¢(i', j') is duplicated and put inside both branches of the additional condition
i —1=0 Vj =0, which is copied from the condition in the corresponding previous application
¢(i' — 1,4"); for convenience, the three function applications bound to v; through w3 are not put
inside branches that follow condition z[i'] = y[j'], since their transformations are not affected, and

simplification at the end can take them back out.
e, 7)) with invariant ¢(i' — 1,j') =7

if /=0 Vj =0then <0>

elseif / —1=0 Vj =0 then context includes: #' —1 =10
let vi =¢(i’ — 1,5/ —1) in =<0>
let vy = &(i',j' — 1) in =, j 1,6 —1,7—1)) =& (@,§ —1,<0>)
let v3 =¢c(¢' —1,7') in =<0>

if z[i'] = y[j'] then < 1lst(vi)+1,v1,v2,v3 >
else < max(1st(v2),1st(vs)),v1,v2,v3 >

else context includes: ¢’ # 0,7 —1#0,5' #0
let vi =¢(i' — 1,5 —1) in = 3rd(T)
let vy =2(i',j' — 1) in =@, j~1,8( —1,j—1)) =& (@, § —1,3rd(F))
let v3 =2(i —1,7') in =7

if z[i'] = y[j'] then < 1lst(vi)+1,v1,v2,v3 >
else < max(1st(v2),1st(vs)),v1,v2,vs >
In the second branch (lines 2-7), #/ —1 = 0 is true, since 5 = 0 would imply that the first

branch is taken. Therefore, the first and third calls fall in case (i) and specialize to <0 >. The
second call falls in case (iii) and equals a recursive call to & with arguments i’, ' —1 and cache
argument <0 >, since we have a corresponding invariant ¢(i' —1, j' —1) = <0> from specialization.
Additional simplification unwinds bindings for v; and v3, simplifies 1st(<0>)+1 to 1, and simplifies
max(1st(vg), 1st(<0>)) to 1st(va).
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In the third branch (lines 8-12), condition i —1 = 0V j' = 0 is false; under this condition,
the corresponding previous application ¢(i' —1, j') by definition of ¢ equals its second branch where
¢(i' —1,5' —1) is bound to v9, and thus the invariant ¢(i' —1, ') = 7 implies ¢(i' —1, 7' —1) = 3rd(7).
Therefore, in this third branch, the first call falls in case (ii) and equals 3rd(7). The second call
falls in case (iii) and equals a recursive call to ¢ with arguments ', j' —1 and cache argument 3rd(7)
since we have a corresponding invariant ¢(z' —1, 7/ —1) = 3rd(7). The third call falls in case (ii) and

equals 7. We obtain
2 ifi¢=0Vj =0then <0>
else if i/ —1 =0 then
let v2 =2(i,5 —1,<0>) in
if z[i'] = y[j'] then <1,<0>,v2,<0>>
else < 1st(v2),<0>,v2,<0>>
else let v; = 3rd(7) in
let vo =2'(¢,5 —1,3rd(7)) in
let v3 =7 in
if z[i'] = y[j'] then < 1lst(vi) + 1,v1,v2,v3 >
else < max(1st(vz2),1st(vs)),v1,v2,v3 >

a(,j',r)

If7=¢('—1,5"), then &(¢',5',7) = ¢(#,5'), and & takes time and space linear in j', for caching
and maintaining a linear list. It is easy to see that ¢ takes linear time, since & (i, 5/, ...) only calls
d(#,7' —1,...) recursively, and j' = 0 is a base case. It is also easy to see that ¢ takes linear space,

since each call to ¢ creates a tuple of length no more than 4.

4.4 Matrix-chain multiplication

Incrementalize m under (7',5') = (1,5 + 1). We start with m(i’, j'), with cache argument 7 and
invariants m (', 7' — 1) = 7 and i’ < j'. This is case (iv), so we introduce incremental version 7’
to compute m (i, j'). Unfolding 7, exploiting control structures according to (1) and (2) in (iv.2),
and specializing the second branch according to case (i), we obtain the code below.
m(i',j') = if i = § then <0 > (1)

else if i = j' — 1 then <p[i' —1]*p['] *p[j'],<0>,<0>>

else msub(i', j', i)
In the third branch, condition i’ = j' —1 is false; under this condition, m(3’, 5 —1) by definition of

m equals msub(i', ' —1,4'), and thus the invariant m(i’, j' —1) = 7 implies msub(’, j' —1,i') = 7.

The call msub(i',j',4') falls in case (iv). We introduce msub to compute msub(i”, 7", k") for

' =4', 3" = 4/ K" =4, with collected invariants

mSUb(ilij’ _1’i,) =T, m(ilajl -1)=r, i < jla i # jla i # jl -1 (2)
where the first two are about cache arguments; the third is given; and the last two are from the
enclosing conditionals, in concise form, rather than, e.g., (i’ = j') = false, for ease of reading. Ac-

cording to (iv.1), we express these invariants as invariants on 7", 7", k" using Omega, and introduce

fresh variables 7; for candidate cache arguments. We obtain candidate invariants associated with
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/
msub :
—msub(i",j"—l,k’") =, m(i”,j"—l) =1, "< J-II — 9, A i”,
msub(i”, j" —1,i") =73, K <5 =2,
mswb(k" " =1, k") = 7, K", " —1) = 13,
msub(k”, 5" —1,7") = rs,

3)

Arguments of msub(i”, ;" — 1,k") have a minimum difference from arguments of msub(i", j", k"),
and thus msub(i”, j" — 1,k") is the corresponding previous application according to (2) in (iv.2).

Unfolding msub(i”, j", k") and exploiting control structures according to (1) and (2) in (iv.2), we
obtain the code below, where the annotations on the right are explained in the four paragraphs that
follow. In particular, according to (1) in (iv.2), the code for v; and vy is duplicated and moved into
both branches that follow the condition £” + 1 = j”. According to (2) in (iv.2), in the else-branch,
the code for v is duplicated and put inside both branches that follow the additional condition
kK" +1 = 4" — 1, which is copied from the condition in the corresponding previous application
msub(i”, 5" — 1,k"); for convenience, the code for v; and v, is not put inside branches that follow
k" +1 = j” — 1, since their transformations are not affected, and simplification at the end can take
them back out.

msub(i”, j", k") start with invariants in (3), later with k” = 4"’ eliminated
if ¥' +1=j" then

let v; = m(i", k") in

let v =m((k" +1,5") in

let s = 1st(v1) + 1st(v2) + p[i"" —1] * p[k"] * p[5”] in

< s,v1,v2 >

else context includes: k" + 1 # 5"
let vi = m(i",k") in =< 0> or 2nd(r1), where the former uses k" = "
let vo =m(k" +1,5") in =m'(k"+1,",mk" +1,;"-1)) =m' (k" +1, ", 3rd(r1))
let s = 1st(v1) + 1st(v2) + p[¢"’" —1] * p[k”] * p[5"] in
if ¥/ +1=3;" -1 then context includes: k" +1=j" —1
let v = msub(i",j”, k" + 1) in = (4) below
< min(s, 1st(v)), v1, v2,v >
else context includes: k" +1 # 5" k" +1# ;" -1
let v = msub(i”,§”, k" + 1) in =msub (", 5" k' +1, msub(i", ;" —1, k" +1), m(i", " —1),
< min(s, 1st(v)),v1, v2,v > msub(i”, j" —1,i"))

=msub (i", 7", k" +1,4th(), 72, 73)

The first branch gets simplified away, since we have invariant k" < j” — 2.

In the else-branch, the corresponding previous application msub(i", ;" — 1,k") by definition
of msub has m(i", k") bound to v; and m(k"” + 1,5” — 1) bound to vy, and thus the invariant
msub(i”, 5" — 1,k") = 1 implies m(i", k") = 2nd(r1) and m(k" + 1,5" — 1) = 3rd(r1). The first
call m(3", k") falls in case (i), since we have invariant k" = 7", and equals < 0 >. The second call
falls in case (iii) and equals a recursive call to @’ with arguments k" + 1, and cache argument
3rd(r1), since we have a corresponding invariant m(k” + 1, j" — 1) = 3rd(r7).

In the branch where k" + 1 = 5" — 1 is true, the call to msub falls in case (i) and equals
let vi =m(i",j" —1) in let vo = m(5",5") inlet s = 1st(v1)+1st(va) +p[i"” —1]*p[k” +1]*p[j"' ] in < s,v1,v2 > (4)

which then equals < 1st(r2) + p[i"” —1] * p[k” + 1] * p[j"], 72, <0>>, because the first call equals 75,
and the second call equals < 0 >.
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In the last branch, the call to msub falls in case (iii). However, the arguments of this call do

not satisfy the invariants corresponding to k” = 4" or corresponding to those on the third and

fourth lines of the candidate invariants in (3). Specifically, the invariant corresponding to k" = 7"
is k¥ +1 = 4", which is false because the context includes k" = 4"; the others can not be maintained
because we can not infer that msub(k” +1, j" —1,k" +1), m(k" +1, 5" — 1), or msub(k" +1, 5" —1,i")
equals a retrieval from any cache argument 7 to 7. So we delete these invariants and retransform
msub. Everything remains the same except that (i, k") does not fall in case (i) any more; it falls
in case (ii) and equals 2nd(r1). We replace this last call to msub by a recursive call to msub with
arguments i, 5" k" + 1 and cache arguments 4th(ry), 72, 73 since we have corresponding invariants
msub(i’, " —1,k" + 1) = 4th(r1), m(i", 5" —1) = 75, msub(i", 5" —1,i") = r3.
We eliminate unused candidate cache argument 773, and we replace the original call msub(4', j', ')
in (1) with msub (i, j',4',7,7) according to (iv.3). We obtain
m (i',5',7) £ if i = j' then <0>
else if i/ = j' — 1 then < p[i' —1]*p[¢'] *p[5'], <0 >,<0>>
else msub (i, j',7,7,7)

msub ", 5" K, ) 2

let v1 = 2nd(r1) in

let vo =m' (K" + 1, 35", 3rd(r1)) in

let s = 1st(v1) + Lst(v2) + p[i” —1] % p[k"'] * p[§”'] in

ifE"+1= j” —1 then
let v = <1st(r2) + p[” —1] * p[k” + 1] * p["], r2,< 0 >> in
< min(s, 1st(v)), v1, v2,v >

else let v = msub’(i”,j”, k" + 1,4th(r1),72) in
< min(s, 1st(v)),v1, v2,v >

Note that for the six invariants about cache arguments, 7 to 74, in (3), 74 to 7 can not be
maintained at the recursive call and are weakened away; 73 can be maintained but is not used and
hence is eliminated; and 71 and 75 can be maintained and are used and hence are kept.

For the resulting program /', if 7 = m(:', 7" —1), then m' (¢, j',7) = m(7,5'), and M’ is an
exponential factor faster. Function ' still takes exponential time due to repeated recursive calls
to m', since each m'(i',j',...) calls m'(k', j',...) for all k£ from i’ + 1 to j' — 1. Incrementalizing
the resulting optimized program (4, j) obtained from Step 3 under (7',j') = (i —1,75) yields a

quadratic-time incremental program that involves no repeated recursive calls.

5 Step 3: Pruning unnecessary values

The first component of f((z',) is the return value of fy(z'). Components of 7 that are not useful
for computing this value need not be cached and maintained. We prune the programs f; and fd to
obtain a program fo that caches only the useful values and a program fo' that uses and maintains
only the useful values. Finally, we form an optimized program that computes fo by using the base

cases in fo and by repeatedly using the incremental version fo’ .
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5.1 Pruning

Pruning requires a dependence analysis that can precisely describe substructures of trees [38]. We
use an analysis based on regular tree grammars [31, 35]. We have designed and implemented a
simple algorithm that uses regular tree grammar based constraints to efficiently produce precise
analysis results [33, 35]. Pruning can save space and time and reduce code size.

For example, in program &, only the third component of 7 is useful. Pruning the second and
fourth components of ¢ and &, which makes the third component become the second component,
and doing a few simplifications, which transform 1s¢(¢) back to ¢ and unwind bindings for v; and
v3, we obtain ¢ and ¢ below:
£ ifi=0Vj=0then <0>
else let vy = é(¢,5 — 1) in

if z[¢] = y[j] then <c(i—1,7—1))+1,v2>
else < max(1st(v2),c(i —1,7))),v2 >

&(i 5)

é@,j,F)2 ifi=0Vj =0then <0>
else if i —1 =0 then
let v =¢&(,5' —1,<0>) in
if z[i'] = y[j'] then < 1,v2 >
else < 1st(v2),v2 >
else let vo = & (i, j' — 1,2nd(#)) in
if z[i'] = y[j'] then < 1st(2nd(?)) +1,v2 >
else < max(1st(v2),1st(?)),v2 >
It is easy to see that &, like &, also takes time and space linear in j, but each call to ¢ creates a
tuple of length no more than 2, compared to 4 for .
Pruning leaves programs m and m’ unchanged. We obtain the same programs m and m/,
respectively.
The first components of these functions remain unchanged, so we have m(i,j) = lst(m(i, j))

and c(,7) = 1st(c(1, 7)).

5.2 Forming optimized programs

We redefine functions fy and fo and use function fo' :

fo(a) & 1st(fo(x))
fo(z) £ if base_cond(z) then base_val(z) else let # = fo(prev(z)) in fd (z,7)
where base_cond is the base-case condition, and base_val is the corresponding value, both copied
from the original definition of fy obtained by pruning. This new definition of fy is called the
optimized fo. In general, there may be multiple base cases, and we just list them all; to be
conservative, we may include here all cases not containing multiple recursive calls.
For examples ¢ and m, we obtain directly

.o A N
c(i, j) = 1st(é(3, 5))
é(i,j)2ifi=0 Vj=0then < 0> elselet # =¢(i—1,5) in & (3, ,7)

(i, 5) = 1st(m(i, 5))
(i,5) =

if i =j then <0 > elselet # = m(i,j — 1) in m'(4, §,7)

33
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It is easy to see that é(4, j) takes O(ixj) time, since it only calls é(i — 1, j) recursively, and ¢ = 0 is a
base case; each call to ¢ calls &, and & takes O(j) time. Thus, for ¢(n, m), while the original program
takes O(2"™™) time, the optimized program takes O(n x m) time. For m(1,n), while the original
program takes O(n * 3") time, the optimized program takes O(n? % 2") time. Incrementalizing the
optimized program again under the increment to the other parameter allows us to obtain a final
optimized program that takes O(n?®) time; the time complexity of the final optimized program is
also easy to analyze.

The precise exponential complexities are not as easy to see, but for the purpose of our opti-

mization, it is sufficient to know that they are exponential due to repeated recursive calls.

6 Summary and discussion

To summarize, we emphasize that it is the incremental computation under step @ that determines
appropriate values to cache so as to avoid repeated subcomputations. It yields a kind of regularity,

in particular linearity, that we think is important for efficient computation.

Correctness. The transformations for caching, incrementalization, and pruning together preserve
semantics in the sense that if the original fo(x’ ) terminates with a value, then the incremental
program fd(z',7), given # = fo(prev(z')), terminates with the same value and is asymptotically
at least as fast. This is because each transformation preserves semantics except that unfolding
function definitions and eliminating unused values may make the resulting program terminate
more often. Possible problems associated with hoisting causing fo to compute values not computed
in the original program fj, are avoided as described in Section 3.1 and below. Forming optimized
programs is straightforward for all the problems we have encountered, and it is easy to see that
the resulting programs are correct, but a rigorous and general correctness argument for this needs
further research. Overall, these transformations together preserve semantics in the sense that if the
original program terminates with a value, then the optimized program terminates with the same

value.

Mechanization. Our method for dynamic programming is composed completely of static pro-
gram analyses and transformations and is systematic. It is based on a general approach for program
optimization—incrementalization—which helps it to be systematic. The analyses and transforma-
tions used for caching and pruning are fully automatic and highly efficient [35, 38]. The analyses and
transformations for incrementalization are fully automatic modulo the simplifications and equality
reasoning used for establishing and using invariants. Such simplifications and equalities needed
for all the problems we have encountered involve only Presburger arithmetic [50] and simple facts
about recursive data structures and thus can be fully automated; for the same reason, determining
input increment operations can also be fully automated. Also, as we have seen, forming optimized
programs is straightforward to automate. Characterizing the exact class of problems to which these

automated techniques apply needs further study.
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Monovariance. Although our static incrementalization allows only one incremental version for
each original function, i.e., is monovariant, it is still powerful enough to incrementalize all examples
in [37, 38, 39], including various list manipulations, matrix computations, attribute evaluation, and
graph problems. In general, while monovariant analyses and transformations are usually simpler
and more efficient, they might not be sufficiently powerful when a function is used in multiple
contexts for different roles. To overcome this potential problem, we propose to introduce a new
function for each function composition that appears in the original program. This is based on
the observation that different roles of a function are usually played in its composition with other
functions. This method does not involve creating copies of existing functions, as is usually done
but often causes code blowup and needs additional heuristics. We believe that the method based
on static incrementalization can achieve dynamic programming for all problems whose solutions
involve recursively solving subproblems that overlap, but a formal justification awaits more rigorous

study.

Space usage and data structures. In our method, only values that are necessary for the
incrementalization are stored, in appropriate data structures. For the longest-common-subsequence
example, only a linear list is needed, whereas in standard textbooks, a quadratic two-dimensional
array is used, and an additional optimization is needed to reduce it to a one-dimensional array [15].
For the matrix-chain multiplication example, our optimized program uses a list of lists that forms
a triangle shape, rather than a two-dimensional array of square shape. It is nontrivial to see
that recursive data structures give the same asymptotic speedup as arrays for some examples.
Our recent work on transforming recursion into iteration can help eliminate the linear stack space
used [36]. There are dynamic programming problems, e.g., 0-1 knapsack, for which the use of
an array, with constant-time access to elements, helps achieve desired asymptotic speedups. Such
situations become evident when doing incrementalization and can be accommodated easily, as will
be described in a future paper. Although we present the optimizations for a functional language, the

underlying principle is general and has been applied to programs that use loops and arrays [30, 34].

Auxiliary information. Some values computed in a hoisted program might not be computed by
the original program and are therefore called auziliary information [37]. Both incrementalization
and pruning produce programs that are at least as fast as the given program, but caching auxiliary
information may result in a slower program on certain inputs. We can determine statically whether
such information is cached in the final program. If so, we can use time and space analysis [32, 54, 59,
60, 61] to determine conservatively whether it is worthwhile to use and maintain such information.

The trade-off between time and space is an open problem for future study.
Additional properties. Many dynamic programming algorithms can be further improved by

exploiting additional properties, such as greedy properties [7], of the given problems. For example,

Hu and Shing [22, 23] give an O(n * logn)-time algorithm for the matrix-chain multiplication
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problem. Qur method is not aimed at discovering such properties. Nevertheless, it can help preserve
such properties once they are added. For example, for the paragraph-formatting problem [15, 18],
we can derive a quadratic-time algorithm that uses dynamic programming; if the original program
contains a simple extra conditional that follows from a kind of thinning property, our derived
dynamic programming program uses it as well and takes linear time with a factor of line width.
How to systematically discover and use such additional properties in general is a subject for future

study.

7 Implementation and experimentation results

All three steps—caching, incrementalization, and pruning—have been implemented in a prototype
system, CACHET, using the Synthesizer Generator [53]. Incrementalization as currently imple-
mented is semi-automatic [29] and is being automated [63]. Determining input increment opera-
tions and forming optimized programs are currently done manually, but both are straightforward
for all the problems we have encountered.

Figure 3 summarizes some of the examples derived, most of them semi-automatically and some
automatically. The second column shows whether more than one cache argument is needed in an
incremental program. The third column shows whether the incremental program computes values
not necessarily computed by the original program. For the last two examples, the letter “a” in
the third column shows that cached values are stored in arrays. The last two columns compare
the asymptotic running times of the original programs and the optimized programs. For Fibonacci
function, n is the input number, rather than the size of the input, and the running time is the
numbers of additions performed. The matrix-chain multiplication, optimal binary search tree, and
optimal polygon triangulation problems have similar control structures for recursive calls, which is
reflected in the running times; yet, the optimal costs for these problems are computed in different
ways, and our general method handles all of them in the same systematic manner. Paragraph

formatting 2 [18] includes a conditional that reflects a greedy property, as described in Section 6.

multiple | aux | original program’s | optimized prog’s
Examples cache ng info funnifg tgime 1iunning Fimi
Fibonacci function [45] o2™) O(n)
binomial coefficients [45] o2™) O(nxk)
longest common subsequence [15] v o(2" ™) O(n *m)
matrix-chain multiplication [15] Vv O(n *3™) 0o(n®)
string editing distance [52] o™ ™) O(n *m)
dag path sequence [6] Vv o2™) on?)
optimal polygon triangulation [15] || 1/ O(n % 3") o(n®)
optimal binary search tree [2] Vv O(n*3™) 0o(n®)
paragraph formatting [15] Vv O(n % 2™) on?)
paragraph formatting 2 N O(n *2™) O(n * width)
0-1 knapsack [15] Va | 0O(2™) O(n * weight)
context-free-grammar parsing [2] Vi Va | O(n*(2+size+1)") | O(n® * size)

Figure 3: Summary of Examples.
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To measure and compare the actual running times, we translated some of the programs into
Java. The translation is straightforward, where tuples are implemented using class Vector. Other
languages could be used, but Java is particularly good for testing whether caching additional
information could incur a significant overhead in running time on small input, since operations on
objects of the Vector class in Java are relatively expensive compared with operations on constructed
data in languages such as ML, Scheme, or C.

Figure 4 presents the running times of the straightforward programs and the optimized programs
for some examples; results for other examples are similar. Stars indicate running times longer than
48 hours. These measurements were taken for programs compiled with Sun JDK 1.0.2 and running
on a Sun Ultra 10 with 300MHz UltraSPARC-I1i CPU and 128MB main memory. One can see that

the optimized programs run much faster than the straightforward programs even on small inputs.

input binomial coefficients|| longest comm. subseq.|| matrix-chain multipl.|| paragraph formatting
size original| optim. original| optim. original| optim. original| optim.
10 0 0 10 5 42 16 10 5
15 3 1 185 7 7453 23 111 7
20 305 2 36250 9|| 3282564 75 3712 10
25 4924 3|| 1454555 16| Hoxwdedohk 180|| 123360 16
40! 2436874 R 60 || *FFHHFH* TR || FHEEH Rk 68
80 || HHHHHHRx 15| [k 911 |[FxxHHHRx GL]T||FHHHHHHx 395

Figure 4: Running Times of Original Programs and Optimized Programs (in Milliseconds).

8 Related work and conclusion

Dynamic programming was first formulated by Bellman [4], where “programming” refers to the use
of tabular solution method, and has been studied extensively since [58]. Bird [5], de Moor [17], and
others have studied it in the context of program transformation. While some work addresses the
derivation of recursive equations, including the original work by Bellman [4] and the later work by
Smith [57], our work addresses the derivation of efficient programs that use tabulation. Previous
methods for this problem either apply to specific subclasses of problems [11, 13, 14, 24, 46, 48] or
give general frameworks or strategies rather than precise derivation algorithms [3, 5, 6, 8, 9, 16, 17,
45, 47, 55, 56, 62]. Our work is based on the general principle of incrementalization [37, 44] and
consists of precise program analyses and transformations.

In particular, tupling [9, 46, 47] aims to compute multiple values together in an efficient way. It
is improved to be automatic on subclasses of problems [11] and to work on more general forms [13].
It is also extended to store lists of values [48], but such lists are generated in a fixed way, which
is not the most appropriate way for many programs. A special form of tupling can eliminate
multiple data traversals for many functions [24]. A method specialized for introducing arrays was

proposed for tabulation [12], but as our method has shown, arrays are not essential for the speedup
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of many programs; their uses of arrays are complicated to derive and often take more space than
necessary. For example, for longest common subsequence, binomial coefficients, string editing, dag
path sequence, and 0-1 knapsack, quadratic space must be used there, while our derived programs
requires only linear space, including the linear stack space [59], because of automatic garbage
collection. To summarize, no previous method can perform all the powerful optimizations our
method can. Each of our examples is non-trivial and requires advanced algorithm design discipline
to derive even by hand.

Compared with our previous work for incrementalizing functional programs [37, 38, 39], this
work contains several substantial improvements. First, our previous work addresses the systematic
derivation of an incremental program f’ given both program f and operation @. This paper
describes a systematic method for identifying an appropriate operation @ given a function f and
forming an optimized version of f using the derived incremental program f’. Second, since it is
difficult to introduce appropriate cache arguments, our previous method allows at most one cache
argument for each incremental function. This paper allows multiple cache arguments, without
which many programs could not be incrementalized, e.g., the matrix-chain multiplication program.
Third, our previous method introduces incremental functions using an on-line strategy, i.e., on-
the-fly during the transformation, so it may attempt to introduce an unbounded number of new
functions and thus not terminate. The algorithm in this paper introduces one incremental function
for each function in the original program, i.e., it is monovariant; even though it is theoretically
more limited, it is simpler, always terminates, and is able to incrementalize all previous examples.
Finally, based on the idea of cache-and-prune [38], the method in this paper uses hoisting to
extend the set of intermediate results [38] to include a kind of auxiliary information [37] that is
sufficient for dynamic programming. This method is simpler than our previous general method
for discovering auxiliary information [37]. Additionally, we now use a more precise and efficient
dependence analysis for pruning [35].

Finite differencing [42, 43, 44] is based on the same underlying principle as incremental com-
putation. Fifteen years ago, Paige explicitly asked whether finite differencing can be generalized
to handle dynamic programming [42]; it is clear that he perceived an important connection. How-
ever, finite differencing has been formulated for set expressions in while loops [44], which can be
obtained from fixed-point specifications [10], while straightforward solutions to dynamic program-
ming problems are usually formulated as recursive functions, so it has been difficult to establish
the exact connection. A major open problem is how to transform general recursive functions into
set expressions extended with fixed-point operations [10].

Overall, being able to incrementalize complicated recursion in a general and systematic way
is a substantial improvement complementing previous methods for incrementalizing loops [30, 44].
Our new method based on static incrementalization is both powerful and automatable. Based on
our existing implementation, we believe that a complete system will perform incrementalization

efficiently.
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