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Abstract. A new approach is presented for detecting whether a computation of an asynchronous
distributed system satis�es Poss� (read \possibly �"), meaning the system could have passed through
a global state satisfying property �. Previous general-purpose algorithms for this problem explicitly
enumerate the set of global states through which the system could have passed during the computation.
The new approach is to represent this set symbolically, in particular, using ordered binary decision
diagrams. We describe an implementation of this approach, suitable for o�-line detection of properties,
and compare its performance to the enumeration-based algorithm of Alagar & Venkatesan. In typical
cases, the new algorithm is signi�cantly faster. We have measured over 400-fold speedup in some cases.

1 Introduction

A history of a distributed system can be modeled as a sequence of events in their order of occurrence. Since
execution of a particular sequence of events leaves the system in a well-de�ned global state, a history uniquely
determines a sequence of global states through which the system has passed. In an asynchronous distributed
system,1 no process can determine in general the order in which events on di�erent processors actually
occurred. Therefore, no process can determine in general the sequence of global states through which the
system passed. This leads to an obvious di�culty for detecting whether a global property (i.e., a predicate
on global states) held.

Cooper and Marzullo's solution to this di�culty involves two modalities, which we denote by Poss (read
\possibly") and Def (read \de�nitely") [CM91]. These modalities are based on logical time as embodied
in the happened-before relation, a partial order that reects causal dependencies [Lam78]. A history of an
asynchronous distributed system can be approximated by a computation, which comprises the local compu-
tation of each process together with the happened-before relation. Happened-before is useful for detection
algorithms because, using vector clocks [Mat89], it can be determined by processes in the system.

Happened-before is not a total order, so it does not uniquely determine the history. But it does restrict
the possibilities. Histories consistent with a computation c are exactly those sequences of the events in c
that correspond to total orders containing the happened-before relation. A consistent global state (CGS) of
a computation c is a global state that appears in some history consistent with c. A computation c satis�es
Poss� i�, in some history consistent with c, the system passes through a global state satisfying �. A
computation c satis�es Def � i�, in all histories consistent with c, the system passes through a global state
satisfying �.

Cooper and Marzullo give centralized algorithms for detecting Poss� and Def � for an arbitrary pred-
icate � [CM91]. A stub at each process reports the local states of that process to a central monitor. The
central monitor incrementally constructs a lattice whose elements correspond to CGSs of the computation.
Poss� and Def � are evaluated by straightforward traversals of the lattice.

Unfortunately, these algorithms can be expensive. In a system of N processes, the worst-case number
of CGSs is �(SN ), where S is the maximum number of steps taken by a single process. This worst case
comes from the (exponential) number of CGSs of a computation in which there is little communication.
Any detection algorithm that enumerates all CGSs|like the algorithms in [CM91,MN91,JMN95,AV97]|
has time complexity that is at least linear in the number of CGSs. This time complexity can be prohibitive,
so researchers have sought faster alternatives. One approach is to restrict the problem and develop e�cient
algorithms for detecting only certain classes of predicates [GW94,TG93].2 Another approach is to modify

1 An asynchronous distributed system is characterized by lack of synchronized clocks and lack of bounds on processor
speed and network latency.

2 These restricted algorithms do not apply to the examples in Section 4.
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some aspect of the problem|for example, detecting a di�erent modality [FR97] or assuming that the system
is partially synchronous [MN91,Sto97].

This paper presents an e�cient and general approach to detecting Poss�. In this approach, the set of
CGSs is represented symbolically, using boolean formulas implemented as ordered binary decision diagrams
(BDDs), and Poss� is detected by testing satis�ability of a formula. This can be much more e�cient
than explicit enumeration. For simplicity, we consider here only o�-line detection, in which the detection
algorithm is run after the distributed computation has terminated. The approach can also be applied to on-
line detection. Section 2 provides some background. Section 3 describes our detection algorithm. Section 4
gives performance results from using the new algorithm and (for comparison) an enumeration-based algorithm
[AV97] to detect violations of invariants in a coherence protocol and a spanning-tree algorithm. For both
examples, when the invariant is not violated, the new method is faster by a factor that increases exponentially
with the number of processes in the system. We also measure the e�ects of judiciously applying the two
variable-reordering methods. Both methods greatly reduce memory consumption, though at a signi�cant cost
in running time. Section 5 compares our work to temporal-logic model checking. Directions for future work
include extending our algorithm to support on-line detection, applying our symbolic approach to detection of
Def �, and experimenting with the use of a satis�ability checker, such as tableau [CA96], instead of BDDs.
Our approach does not involve computation of �xed points, so the use of a canonical form, such as BDDs,
is not essential.

2 Background

2.1 System Model

A (distributed) system is a collection of processes connected by an asynchronous, reliable, and FIFO network.
Let N denote the number of processes. We use the numbers 0; 1; : : : ; N � 1 as process identi�ers, and de�ne
PID = f0; 1; : : : ; N � 1g. A local state s of a process p is a mapping from the local variables of p to values;
for example, s(x) is the value of variable x in local state s.

Each process starts in a speci�ed initial state and optionally with its timer set to a speci�ed value.
Computations contain only two kinds of events: timer expiration and message reception. As a result of either
kind of event, a process can atomically (i.e., without interruption by other events) change its local state,
send a set of messages (with speci�ed destinations), and set its timer.3 Processes can be non-deterministic,
i.e., the input event need not uniquely determine the new local state, set of sent messages, and timer setting.

Each process has a timer. For convenience, we assume the timers all run at the same speed, though this
assumption is not required for correctness of the example protocols in Section 4.

Each process p has a vector clock vcp with N components. We regard vcp as a (special) variable; thus,
s(vcp) is the value of the vector clock in local state s. In the initial state of process p, vcp = h0; 0; : : : ; 0i. The
vector clock is updated after each event, and the updated value is piggybacked on the outgoing messages
(if any). Thus, each message m has a vector timestamp ts(m). The rules for updating the vector clock are:
(1) For a timer expiration event of process p, component p of vcp is incremented by 1; (2) When process p
receives a message m, its vector clock vcp is assigned the component-wise maximum max(vcp; ts(m)) and
then component p is incremented by 1.

Given a system, a straightforward simulation can be used to generate a possible computation of that
system. The intrinsic non-determinism of the asynchronous network is modeled by selecting message latencies
from a random distribution. Each running timer and in-transit message corresponds to a pending event. When
a pending event is generated, it is timestamped with its (future) time of occurrence. The simulator repeatedly
executes the pending event with the lowest timestamp, thereby changing the local state of a process and
generating new pending events. Since some protocols are designed to service requests forever, the simulator
accepts a parameter maxlen, which is the maximum number of events per process. So, the simulation ends
either when there are no pending events or when some process has executed maxlen events.

A computation of a system is represented as a sequence of N local computations, one per process. A local

computation is a sequence of local states that represents the execution history of a single process. Each local
state includes values of all the declared variables of the process and the value of the process's vector clock.

3 Thus, in contrast to most models of distributed computation, the sending of a message is not modeled as a separate
event. This di�erence is inessential but simpli�es our model slightly.
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2.2 Consistent Global States and Poss�

A global state is a collection of local states, one from each process. For a sequence c and natural number i,
c[i] denotes the i'th element of c (we use 0-based indexing). A global state of a computation c is a collection
of local states s0; : : : ; sN�1 such that, for each process p, sp is an element of c[p].

Some global states of a computation are uninteresting, because the system could not have been in those
global states during that computation. So, we restrict attention to consistent global states, i.e., global states
through which the system might have passed during the computation. We de�ne consistency for global states
in terms of the happened-before relation on local states [GW94]. Intuitively, a local state s1 happened-before
a local state s2 (of the same or a di�erent process) if s1 �nished before s2 started. In particular, de�ne !
for a computation c to be the smallest transitive relation on the local states of c such that

1. For all proceses p and all local states s1 and s2 of p in c, if s1 immediately precedes s2, then s1 ! s2.
2. For all local states s1 and s2 in c, if the event immediately following s1 is the sending of a message and

the event immediately preceding s2 is the reception of that message, then s1 ! s2.

Two local states s1 and s2 of a computation are concurrent, denoted s1 k s2, i� neither happened-before the

other: s1 k s2 �

= s1 6! s2 ^ s2 6! s1. A global state is consistent i� its constituent local states are pairwise
concurrent.

Vector timestamps are useful because they capture the happened-before relation [Mat89]. De�ne a partial
order � on vector timestamps by: v1 � v2 i� (8p 2 PID : v1[p] � v2[p]). Then, for all computations c and all
processes p1 and p2,

(8i1 2 dom(c[p1]) : (8i2 2 dom(c[p2]) :
c[p1][i1]! c[p2][i2] � c[p1][i1](vcp1) � c[p2][i2](vcp2)))

(1)

where for a sequence �, dom(�) = f0; 1; : : : ; (j�j� 1)g, where j�j is the length of �. Concurrency of two local
states can be tested in constant time using vector timestamps by exploiting the following theorem [FR94]:
for a local state s1 of process p1 and a local state s2 of process p2,

s1 k s2 � s1(vcp1)[p2] � s2(vcp2)[p2] ^ s2(vcp2)[p1] � s1(vcp1)[p1] (2)

where, for example, s1(vcp1)[p2] is component p2 of the vector timestamp s1(vcp1).
Now we de�ne Poss. A computation c satis�es Poss�, denoted c j= Poss�, i� there exists a consistent

global state of c that satis�es �.

3 Detection Method

To test c j= Poss� e�ciently using symbolic methods, we generate a formula b such that b is satis�able
i� c j= Poss�. In this formula, we use xp to denote the local variables (excluding the vector clock) of
process p, and we use the variable vcp;q to denote component q of the vector clock of process p (i.e., we treat
each vector clock as N separate variables). For convenience, we assume that the sets of local variables of
di�erent processes are disjoint. Let x denote the collection of variables x0; x1; : : : ; xN�1, and let vc denote
the collection of all �(N2) vector-clock variables. Using (2) to express concurrency of local states, it is easy
to show that b can be taken to be

�(x) ^ globalStatec(x; vc) ^ consisc(vc) (3)

where

globalStatec(x; vc) =
^

p2PID

_

i2dom(c[p])

xp = c[p][i](xp) ^
^

q2PID

vcp;q = c[p][i](vcp)[q]

consisc(vc) =
^

p12PID

^

p22(PIDnfp1g)

vcp2;p1 � vcp1;p1
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Since we test c j= Poss� by testing satis�ability of b, there is, in e�ect, an implicit existential quanti�cation
over all of the free variables of b.

For example, consider a system with N = 2. Suppose each process p has a single local variable yp, and
that we want to detect Poss(y0 + y1 = 1). Consider the computation c in which each local computation has
length 2, and c[p][i](yp) = i, c[p][0](vcp) = h0; 0i, c[0][1](vc0) = h1; 0i, and c[1][1](vc1) = h1; 1i. Instantiating
(3), we obtain the formula

(y0 + y1 = 1) ^ globalStatec(y0; y1; vc) ^ consisc(vc) (4)

where

globalStatec(y0; y1; vc) = ((y0 = 0 ^ (vc0;0 = 0 ^ vc0;1 = 0)) _ (y0 = 1 ^ (vc0;0 = 1 ^ vc0;1 = 0)))
^ ((y1 = 0 ^ (vc1;0 = 0 ^ vc1;1 = 0)) _ (y1 = 1 ^ (vc1;0 = 1 ^ vc1;1 = 1)))

consisc(vc) = vc0;1 � vc1;1 ^ vc1;0 � vc0;0

Formulas obtained from (3) contain �(N2) variables for the vector clocks. To reduce the number of
variables in the formula, and thereby reduce the cost of testing satis�ability of the formula, we change
variables. For each process p, we introduce a new variable idxp, which contains the \index" of the local state
in c[p], i.e., (8i 2 dom(c[p]) : c[p][i](idxp) = i).4 Re-expressing globalState and consis in terms of these new
variables, we take b to be:

�(x) ^ globalStatec(x; idx) ^ consisc(idx ) (5)

where

globalStatec(x; idx ) =
^

p2PID

_

i2dom(c[p])

xp = c[p][i](xp) ^ idxp = i (6)

consisc(idx ) =
^

p1 2 PID

p2 2 (PIDnfp1g)

_

i22dom(c[p2])

idx p2 = i2 ^ c[p2][i2](vcp2)[p1] � idxp1 (7)

where idx denotes the collection of variables idx 0; idx 1; : : : ; idxN�1.
Revisiting the above example, we obtain, instead of (4), the formula

(y0 + y1 = 1) ^ globalStatec(y0; y1; idx) ^ consisc(idx) (8)

where

globalStatec(y0; y1; idx) = ((y0 = 0 ^ idx 0 = 0) _ (y0 = 1 ^ idx 0 = 1))
^ ((y1 = 0 ^ idx 1 = 0) _ (y1 = 1 ^ idx 1 = 1))

consisc(idx ) = ((idx 1 = 0 ^ 0 � idx 0) _ (idx 1 = 1 ^ 1 � idx 0))
^ ((idx 0 = 0 ^ 0 � idx 1) _ (idx 0 = 1 ^ 0 � idx 1))

3.1 Implementation and an Optimization

We represent the formula de�ned by (5) using ordered binary decision diagrams (BDDs) [Bry92]. The
main bene�ts of this representation are: (1) it is a canonical form, so testing satis�ability is easy; (2) for
many formulas of interest, BDDs are more compact than other canonical forms (such as conjunctive normal
form). Let truebdd and falsebdd denote the BDDs representing true and false, respectively. Let ^bdd denote
conjunction of BDDs. Let a formula with an overline denote a function that returns the BDD representation
of that formula. Formula b is constructed and tested for satis�ability by procedure BDD-detection0 in Figure
1.

The functions globalState and consis are easily written based on (6) and (7). The numbers in vector
timestamps are encoded as unsigned integers, with a binary variable representing each bit; the number of

4 We could take idxp to be vcp;p, since the rules for updating vector clocks imply c[p][i](vcp;p) = i. However, we �nd
it easier to think of idxp as a new variable.
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bits required is easily determined, since we consider here only o�-line detection. Currently, the user writes the
function �, though generating that function automatically from a logical formula would be straightforward.
If Poss� holds, it is straightforward to obtain a satisfying assignment for b and (from that) a particular
CGS satisfying �.

procedure BDD-detection0(c; �)
b := truebdd
b := b ^bdd globalStatec(x; idx)

b := b ^bdd consisc(idx)

b := b ^bdd �(x)
if b = falsebdd then

return(\c 6j= Poss(�)")
else return(\c j= Poss(�)")

procedure BDD-detection(c;
W

�2S
��)

b := truebdd
b := b ^bdd globalStatec(x; idx)

b := b ^bdd consisc(idx)
for each � in S

b1 := b ^bdd ��(x)
if b1 6= falsebdd then

return(\c j= Poss(�)")
return(\c 6j= Poss(�)")

Fig. 1. Pseudo-code for BDD-detection0 and BDD-detection.

Often (as in both examples in Section 4), � is a disjunction: � =
W
�2S ��, for some set S. Procedure

BDD-detection0 can be optimized by distributing the conjunctions over the disjunction, yielding procedure
BDD-detection in Figure 1. By testing each disjunct of � separately, BDD-detection avoids constructing the
potentially large intermediate result �.

4 Examples

We compare the performance of BDD-detection to Alagar & Venkatesan's o�-line detection algorithm [AV97],
which (to our knowledge) is the most time- and space-e�cient previously known general-purpose algorithm
for detecting Poss. Their algorithm, which we refer to as DFS-detection, performs a depth-�rst-search
search of the lattice of CGSs. Normally, a depth-�rst search requires storing all of the generated nodes (i.e.,
consistent global states), in order to avoid re-exploring a node. The order in which their algorithm visits
the successors (children) of a node is based on the vector timestamps, so one can determine from the vector
timestamps whether a node has already been explored, thereby avoiding the need to store the set of explored
nodes.

To characterize the performance of a detection algorithm, it is important to consider cases where c j=
Poss� holds and cases where it doesn't. The most common use of detection algorithms for Poss is to check
that an invariant I holds, by detecting whether the computation satis�es Poss:I . So, we consider correct
and buggy versions of each example protocol.

For each version of each example, we use a simulator to generate a computation, and then we analyze
that computation using both BDD-detection and DFS-detection. By default, the simulator selects message
delays from the distribution �1 = 1 + expRand(1), where expRand(�) denotes an exponential distribution
with mean �. To measure the sensitivity of the analysis cost to message latencies, we consider also another
(less realistic) distribution, �0 = expRand(1).

All measurements were made on a SGI Power Challenge with ten 75 MHz MIPS R8000 CPUs and 2GB
RAM. The algorithms we measured are sequential, so the use of a parallel machine was irrelevant. We use
the BDD library developed by E. M. Clarke's group at CMU [BDD]. The reported running times are \user
times" obtained from the UNIX time command; thus, they reect the CPU time consumed.

For BDD-detection, the variable ordering can a�ect performance. The overall variable ordering is x0; x1; : : : ; xN�1; idx 0; idx
where xp denotes the sequence of binary variables encoding the local state of process p excluding idx p and
excluding variables not mentioned in the predicate being detected, and idxp denotes the sequence of binary
variables encoding the \index" of the local state.
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4.2 Analysis of Coherence Protocol

We use the detection algorithms to �nd violations of the following invariant: when one process is writing, no
other process is reading or writing. Formally, we detect the predicate

�C =
_

p12PID

_

p22PIDnfp1g

wrtgp1 ^ (rdgp2 _ wrtgp2):

where boolean variables rdgp and wrtgp indicate whether process p is reading or writing, respectively.
To make the computations of the coherence protocol �nite, we take the argument maxlen of the simulator

to be 8N ; on average, this lets each process read or write the shared data twice during a computation.
The left graph in Figure 2 shows log10(tBDD(N)) and log10(tDFS(N)) for the coherence protocol, where
tBDD(N) and tDFS(N) denote the average running times, in seconds, of BDD-detection and DFS-detection,
respectively. The average is over 10 di�erent seeds of the random number generator; the error bars show the
standard deviation. These functions both exhibit exponential growth|not surprising, since the number of
CGSs is exponential in N . Nevertheless, for larger values of N , the di�erence in the running times of the two
procedures is dramatic. For example tDFS(9)=tBDD(9) � 433; that is, the BDD algorithm is 433 times faster,
running in about 2.4 minutes, compared to 17 hours. More generally, the ratio tDFS(N)=tBDD(N) increases
exponentially with N . This behavior also occurs with latency distribution �0.

Now consider the buggy coherence protocol. We ignore computations in which the bug does not manifest
itself in a violation of �C . BDD-detection is again faster than DFS-detection, though by a smaller margin|
for example, by a factor of 46 at N = 9. The running time of BDD-detection is roughly independent of
whether c j= Poss�C holds. In contrast, the average running time of DFS-detection is reduced by a factor
of 7 to 10 when c j= Poss�C holds, because DFS-detection halts as soon as it �nds a consistent global state
satisfying the predicate, and with luck, that can happen early in the search.

4.3 Spanning Tree

The following algorithm constructs a spanning tree in a network [Lyn96, Section 15.3]. For convenience, we
assume that process 0 always initiates the algorithm and therefore always becomes the root of the spanning
tree. Process 0 initiates the algorithm by sending its level in the tree (namely, 0) to each of its neighbors
in the network. When a process other than process 0 receives its �rst message, it takes the sender of that
message as its parent, sets its level to one plus the level of its parent, and sends its level to each of its
neighbors, except its parent. A process ignores subsequent messages.

To save space in local states, we represent the identity of the parent using relative coordinates rather than
absolute coordinates. For example, in a (2-dimensional) grid with N processes, we can represent the parent
with 2 bits (0=left neighbor, 1=upper neighbor, etc.), compared to log2N bits to store a PID. The type RC
corresponds to these relative coordinates. For a process p and relative coordinate r, PIDofRC(p; r) is the PID
of the process with relative coordinate r with respect to process p. If process q is a neighbor of process p,
then RCofPID(p; q) is the relative coordinate of q with respect to p. Thus, PIDofRC(p;RCofPID(p; q)) = q.

In the buggy version of the algorithm, process 0 \forgets" to retain its special role, so it accepts the sender
of the �rst message it receives (if any) as its parent. If the initial message from process 0 to a neighbor p has
a high latency, then p might receive a message from some other process p1 before p receives a message from
process 0. In that case, process p sends a message to process 0, and (because of the bug) process 0 takes
process p as its parent, creating a cycle. To make this error manifest itself more often, when simulating the
spanning tree algorithm, we always take the latency of messages from process 0 to process 1 to be 5.

4.4 Analysis of Spanning Tree

We use the detection algorithms to �nd violations of the following invariant that implies absence of cycles:
the level of a process is larger than the level of its parent. Formally, we detect the predicate

�S =
_

p2PID

hasParentp ^ levelp � levelPIDofRC(p;parentp)

5 The choice of this distribution is arbitrary, in the sense that correctness of the protocol does not depend on it.
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where boolean variable hasParentp indicates whether process p has gotten a parent, parentp is the (relative
coordinate of) the parent of process p, and levelp is the level of process p in the spanning tree.

�S cannot be expressed directly as a boolean formula using the given variables, because levelp;PIDofRC(parentp)
is not a particular variable. So, we use DFS-detection to detect �S but use BDD-detection to detect the
following logically equivalent predicate:

�0S =
_

p2PID

_

r2RC

hasParentp ^ parentp = r ^ levelp � levelPIDofRC(p;r):

We analyze computations of this algorithm in a network with a grid topology. Each row in the grid
contains m = bpNc processes. Each process is connected to its neighbors in the grid. Thus, process i is
connected to processes i� 1 (if i > 0), i+ 1 (if i < N � 1), i�m (if i � m), and i+m (if i < N �m).

The right graph in Figure 2 shows log10(tBDD(N)) and log10(tDFS(N)) for the spanning-tree algo-
rithm. Again, the average is over 10 di�erent seeds of the random number generator, and the error bars
show the standard deviation. BDD-detection is signi�cantly faster for larger values of N ; for example,
tDFS(20)=tBDD(20) = (28797:6 sec=1360:2 sec) � 21:2. The ratio tDFS(N)=tBDD(N) again increases expo-
nentially with N . This behavior also occurs with latency distribution �0.

For the buggy spanning-tree algorithm, DFS-detection is much faster than BDD-detection when Poss�S
holds and is much slower than BDD-detection when Poss�S does not hold. The running time of the BDD
algorithm is again roughly independent of whether c j= Poss�S holds (for 4 � N � 20, the running time
for seeds that cause Poss�0S to hold is within a factor of 2 of the running time for other seeds). In contrast,
when Poss�S holds, DFS-detection is \lucky" and �nds a CGS satisfying �S very early in the search: for
4 � N � 20, DFS-detection is approximately 105 times faster when c j= Poss�S than when c 6j= Poss�S .

We also implemented the spanning-tree algorithm using PIDs rather than relative coordinates to indicate
a process's parent. The e�ect on the running time of DFS-detection is negligible. The memory usage and
running time of BDD-detection increase by roughly the same percentage as the number of bits per global
state (which is the number of variables in the BDD), e.g., for N = 20, by approximately 20%.

4.5 Memory Usage

BDD-detection uses signi�cantly more memory than DFS-detection, because DFS-detection never stores
any representation of the entire set of CGSs. Let mBDD(N) and mDFS(N) denote the memory used by
BDD-detection and DFS-detection, respectively.

For the coherence protocol,mBDD(N) grows exponentially with N , to 28.5 MB at N = 9, while mDFS(N)
is linear in N , growing to 2.6 MB at N = 9. For the spanning-tree example, the same asymptotic behav-
ior occurs, though mBDD(N) is much larger in absolute terms. For example, mBDD(20) = 914MB, while
mDFS(20) = 2:5MB. The memory usage of BDD-detection can be greatly reduced by variable reordering, as
discussed next.

4.6 E�ect of Variable Reordering

We also ran BDD-detection using the two variable-reordering methods, called sift and window3, provided by
the BDD package [BDD]. Variables were reordered once, immediately after construction of globalStatec(x; idx ) ^bdd
consisc(idx ). According to [BDD], the sift method \generally achieves greater size reductions, but is slower"
than window3.

For the coherence protocol, the window method is preferable, because the increase in running time is
smaller (typically a factor of about 1.5, compared to a factor of about 4 for sift) and, unexpectedly, the the
decrease in memory usage is greater (typically a factor in the range 0.2{0.4, compared to 0.3{0.5 for sift). For
the spanning-tree example, the sift method is preferable, because the decrease in memory usage is greater
(e.g., a factor of 0:05 at N = 9, compared to 0:08 for window) and, unexpectedly, the increase in running
time is smaller (typically a factor of about 6, compared to 9 for window). For the spanning-tree example,
the fractional reduction in memory usage increases with N .
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4.7 Comparing Performance of BDD-detection and BDD-detection0

Predicates �C and �0S are disjunctions, so it is interesting to compare procedures BDD-detection and BDD-
detection0. For the correct and buggy coherence protocols, the two procedures have the same the running
time and same amount of memory used, to within 1%. This is more surprising for the buggy protocol,
because BDD-detection halts as soon as it �nds a disjunct of �C that is satis�ed. For the spanning-tree
algorithm, BDD-detection is signi�cantly more e�cient than BDD-detection0, with bene�ts that appear
to grow exponentially with N . For example, for N = 12, so BDD-detection is 493 times faster than BDD-
detection0 and uses 0:017 as much memory. Thus, the optimization incorporated in procedure BDD-detection
has drastically di�erent e�ectiveness on di�erent examples. Further work is needed to characterize the class
of examples for which the optimization in BDD-detection is e�ective.

5 Comparison with Symbolic Model Checking for CTL

Detection of Poss� can be reduced to CTL model checking [C+92]: a computation is encoded as a transition
system whose runs are the histories consistent with the computation, and a CTL model checker is used to
check whether that transition system satis�es the CTL formula 9 � �. With this encoding, an BDD-based
model checker, such as SMV [SMV], would represent sets of CGSs as BDDs, as we do. However, that approach
could still di�er appreciably in performance from our algorithm, because di�erent intermediate BDDs would
be constructed. For example, with our method, the iterative calculations in the construction of globalState
and consis are independent of �. With SMV, the corresponding iterative �xed-point calculation used to
evaluate 9�� depends on � (roughly, the e�ect is as if lines 2 and 4 were swapped in BDD-detection), which
might make the BDDs obtained in each iteration larger. Further experiments are needed to determine the
performance impact of such di�erences.
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Appendix: Pseudo-code for Example Protocols

Pseudo-code for Coherence Protocol

The state variables (with initial values) of each process are:

bool rdg = false; wrtg = false whether process is reading or writing, respectively
bool wtgToRead = false; whether process is waiting to read
bool wtgToWrite = false whether process is waiting to write
PID set writeReq = ; write requests that haven't been OK'd yet.
PID set OKsent = ; processes we sent WriteReq to and didn't receive WriteDone from
PID set OKrcvd = ; processes we received WriteOK from (valid when wtgToWrite=true).
oat timer = expRand(4) each timer is initially set to a random value

where T set is the type of subsets of T .
Pseudo-code for the protocol appears in Figures 3 and 4. In pseudo-code, we represent the timer as a

(special) variable timer; thus, a process sets its timer (or re-sets its timer, if its timer is already running)
simply by assigning to the variable timer. For compactness, we use indentation to indicate the block structure
of the program. In Figure 3, <lex denotes lexicographic order on vector timestamps, and randbool() returns
a random bit.

In the buggy version of the protocol, WriteOK is included with every WriteDone, i.e., on line (*) in
Figure 3, fWriteDoneg is replaced with fWriteDone;WriteOKg.

Pseudo-code for Spanning-Tree Algorithm

The state variables (with initial values, when they matter) of each process are:

bool hasParent = false whether process has a parent yet
nborid parent ; parent (valid when hasParent = true)
intlevel = 0 level in the spanning tree (for processes except 0: valid when hasParent = true)

Initially, the timer of process 0 is set to a value returned by expRand(4); the timers of the other processes
are not set. Note that process 0 always has hasParent = false and level = 0, and this value of level is always
meaningful. The pseudo-code appears in Figure 5, where nbors(i) � PID denotes the set of neighbors of
process i.

In the buggy version of the algorithm, the conjunct i 6= 0 is omitted from the pseudo-code.
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Process i : On timerExpire :
if rdg then

// Stop reading.
rdg := false
send fWriteOKg to each member of writeReq
OKsent := writeReq
writeReq := ;
Set timer to start reading/writing again later.
timer := expRand(4)

else if wrtg then

// Stop writing. Send WriteDone to everyone and WriteOK to writeReq.
wrtg := false
send fWriteDone;WriteOKg to each member of writeReq
send fWriteDoneg to each member of (PID n writeReq) (�)
OKsent := writeReq
writeReq := ;
Set timer to start reading/writing again later.
timer := expRand(4)

else // Try to start reading or writing (choose non-deterministically).
if randbool() then

wtgToWrite := true
// Send WriteReq to everyone.
send fWriteReqg to each member of PID
OKrcvd := ;
// Set writeReqVTS to equal the timestamp that will be on the outgoing WriteReq messages.
writeReqVTS := vci with component i incremented by 1

else

if OKsent = ; then
// Start reading immediately. Set timer to stop reading.
timer := expRand(4)

else wtgread := true

Fig. 3. Pseudo-code for coherence protocol (part 1).
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Process i : On receiving msg from j :
if WriteReq 2 msg then

if rdg _ wrtg _ (wtgToWrite ^ writeReqVTS <lex ts(m)) then
insert j in writeReq

else

send fWriteOKg to j

insert j in OKsent
if WriteOK 2 msg then

insert j in OKrcvd
if OKrcvd = (PID n fig) then
// Start writing. Set timer to stop writing later.
wtgToWrite := false
wrtg := true
timer := expRand(4)

if WriteDone 2 msg then

remove j from OKsent
if (wtgToRead ^ OKsent = ;) then
// Start reading. Set timer to stop reading later.
wtgToRead := false
rdg := true
timer := expRand(4)

Fig. 4. Pseudo-code for coherence protocol (part 2).

Process i : On timerExpire :
// Only process 0 uses its timer.
send level to each member of nbors(i)

Process i : On receiving ` from j :
if (:hasParent ^ i 6= 0) then

hasParent := true
parent := RCofPID(i; j)
level := `+ 1
send level to each member of nbors(i) n fparentg

Fig. 5. Pseudo-code for spanning tree algorithm.


