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ABSTRACT
This paper describes a formal derivation of an optimized

Ackermann’s function following a general and systematic

method based on incrementalization. The method identifies

an appropriate input increment operation and computes the

function by repeatedly performing an incremental computa-

tion at the step of the increment. This eliminates repeated

subcomputations in executions that follow the straightfor-

ward recursive definition of Ackermann’s function, yielding

an optimized program that is drastically faster and takes

extremely little space. This case study uniquely shows the

power and limitation of the incrementalization method, as

well as both the iterative and recursive nature of computa-

tion underlying the optimized Ackermann’s function.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs

and Features—control structures, recursion; D.3.4 [Pro-

gramming Languages]: Processors—optimization; F.3.2

[Logics and Meanings of Programs]: Logics and Mean-
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telligence]: Automatic Programming—program transfor-

mation
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ation, memoization, program transformation, optimization,

recursion, tabulation

1. INTRODUCTION
General and systematic methods for transforming high-

level programs into efficient implementations are important

for programming languages, compilers, and programming

methodologies. The power and limitation of such a method,

as well the method itself, can be well shown through chal-

lenging case studies. This short paper presents such a case

study, by applying a general and systematic method based

on incrementalization to Ackermann’s function.

Ackermann’s function is defined recursively by

a(i,n) = if i=0 then n+1

else if n=0 then a(i-1,1)

else a(i-1,a(i,n-1))

It is the canonical example of a recursive function that is not

primitive recursive; it grows faster than any polynomial, ex-

ponential, multiple exponential, or primitive recursive func-

tions. A function that is roughly inverse of Ackermann’s

function is used for complexity analysis of algorithms, such

as disjoint set union-find [8], which has applications such as

program analysis [10, 14, 28]. Grossman and Zeitman [9]

give a historical account of Ackermann’s function.

Direct evaluation of the recursive definition requires

O(a(i, n)) stack space and has much worse running time

due to repeated computation of the same function calls.

For example, notice that a(i,n) needs a(i,n-1), which

needs a(i,n-2), and so on down to a(i,0); each of the

a(i,j) for 1≤ j≤ n gets the value of a(i-1,a(i,j-1)), but

each a(i-1,a(i,j-1)) also needs a(i-1,a(i,j-2)), so each

a(i-1,a(i,j-2)) is computed repeatedly in all of a(i,j-1),

a(i,j), ... a(i,n). An optimized Ackermann’s function can

compute each function call once, take only O(i) space, and

run drastically faster.

We derive such an optimized Ackermann’s function by

applying a general and systematic method based on incre-

mentalization [15, 20]. The idea is to identify an appropriate

input increment operation and compute the function by re-

peatedly performing an incremental computation at the step

of the increment. Transforming a function into an incremen-

tal version that does an incremental computation under the



input increment operation involves three steps: (1) cache

all intermediate results, (2) incrementalize the function un-

der the input increment to use the cached results, and (3)

prune unused intermediate results. The resulting optimized

Ackermann’s function takes O(i) space and O(a(i, n)) time.

The derivation based on semantics-preserving transforma-

tions also ensures the correctness of the optimized program.

Applying optimization based on incrementalization to Ack-

ermann’s function has three benefits. First, even though the

transformations and analyses for incrementalization have

been studied previously and used successfully on many ex-

amples [15, 19, 18, 20, 21], applying it to Ackermann’s func-

tion needed a small and natural but important extension,

to allow the body of an incremental function to contain re-

peated calls, not just one-time calls, to incremental func-

tions. This extension has general applications for incremen-

tal computation problems in practice, where a change to a

problem input needs to be handled by a sequence of incre-

mental updates. For incrementally computing a(i,n) after

a(i,n-1) has already been computed, the number of repe-

titions can even be as large as a(i,n-1).

Second, the derivation helps explain what contributes to

the optimization. Repeated incremental computation at the

step of an increment is naturally an iterative computation as

well as a bottom-up computation, though it can be written

using tail recursion also. Besides this iterative computa-

tion, our resulting program also contains non-tail recursion,

though one may use loops in place of recursion and keep the

stack in a linked list or an array. Iterative in contrast to

recursive forms are not what give rise to the optimization.

What yields the optimization is the elimination of repeated

computations, a smart form of memoization [22] and tabu-

lation [3], as a result of incremental computation.

Third, although the optimization method based on incre-

mentalization has been used successfully to optimize loops,

arrays, recursive functions, and recursive data structures [15]

and transform recursion to iteration [17], the power of the

method in general remains unknown. A similar method has

also been used to optimize set and fixed-point operations [4,

23, 24]. Previously, all these optimizations succeeded in de-

riving efficient programs, including well-known dynamic pro-

gramming programs [19, 18], from more straighforward high-

level programs that are exponential or high-degree polyno-

mial. Applying it to Ackermann’s function shows that it

also applies to functions that are not primitive recursive.

In particular, it reduces the space usage from O(a(i, n)) to

O(i), while other methods using memoization and tabula-

tion would yield programs that still need O(a(i, n)) space.

Related work
To the best of our knowledge, this is the first formal deriva-

tion of such an optimized Ackermann’s function following a

general and systematic method. Grossman and Zeitman [9]

describe an optimized version that uses loops and arrays

and takes O(i) space and O(i ∗ a(i, n)) time but their op-

timized program was not derived and they leave the proofs

to the reader; they attribute the optimization to iteration

in contrast to recursion. Our optimized program is de-

rived through semantics-preserving transformations. The

derivation serves as a proof of correctness of the optimized

program, even though it is not a formal proof. Our op-

timized program uses both recursion and iteration. Much

earlier, Rice [27] gives a similar iterative procedure, with-

out derivation, correctness proof, or complexity analysis.

Berry [2] characterizes these efficient procedures for Acker-

mann’s function as bottom-up computation [1] and demon-

strates their optimality properties. Some other procedures,

either similar but specialized for i≤ 3 or less efficient, are

given in [29]. Jones [12] describes analysis and specialization

of Ackermann’s function succinctly and precisely.

Partial evaluation [11, 13] is a powerful and systematic

method for program specialization; it can be used to de-

rive a specialized version of a function for a given value of

part of its input, for example, a specialized version of Ack-

ermann’s function for i = 3. It cannot derive an optimized

Ackermann’s function as incrementalization can, but it is

used in incrementalization and is especially important for

handling base cases; this is particularly needed for Acker-

mann’s function, as will be seen in this paper. There are

other program transformation methods for memoization [7,

22], tabulation [3, 7], etc.[6, 25, 26], which share similar ideas

as incrementalization, but they cannot derive an optimized

Ackermann’s function as incrementalization can; memoizing

or tabulating all function calls in computing Ackermann’s

function would require O(a(i, n)) space, whereas our opti-

mized program needs only O(i) space.

Language
We use the following simple programming language. A pro-

gram is a set of function definitions of the form

f(v1,...,vk) = e

and the grammar for e is given below. The recursive defini-

tion of Ackermann’s function needs only the first four kinds

of expressions, and the rest are used in the transformed pro-

grams. Tuples can have different lengths. Selectors are 1st,

2nd, and 3rd, which select the first, second, and third com-

ponent, respectively, of a tuple. Binding expressions are like

blocks.

e ::= c constant
| p(e,...,e) primitive operation
| if e then e else e conditional expression
| f(e,...,e) function application
| <e,...,e> tuple construction
| s(e) component selection
| let b in e binding expression

b ::= v:= e assignment
| b;b sequencing
| for i:= e to e do b loop



2. OPTIMIZATION BY INCREMENTALIZA-
TION

The method is based on identifying an input increment

operation under which the function can be computed in-

crementally at the step of the increment. The goal is to

reuse the results computed from one step to the next. The

original function is computed by repeatedly performing this

incremental computation.

First, an input increment operation is in the opposite di-

rection of change compared to arguments of recursive calls;

to allow maximum reuse, an increment that captures the

minimum change is selected. For Ackermann’s function a

on argument <i,n>, recursive calls have arguments <i-1,1>,

<i,n-1>, and <i-1,a(i,n-1)>. Clearly, the increment from

<i,n-1> to <i,n> is the minimum, based on component-wise

absolute difference. So the input increment operation takes

<i,n-1> to <i,n>, i.e., it increments n by 1.

Next, we derive an incremental version of the function

under the input increment operation, i.e., a function that

computes a(i,n) efficiently using the computation results

about a(i,n-1). Since the values of intermediate function

calls computed in a(i,n-1), not just the value of a(i,n-1),

might also be used for computing a(i,n), we use a method

called cache-and-prune [15, 20] that determines and main-

tains the appropriate intermediate results and uses them for

the incremental computation. This yields a function aUse

and an incremental function aUse’, such that aUse(i,n) re-

turns a tree of useful intermediate results, where the value

of a(i,n) is the leftmost child and can be retrieved using

the selector 1st, and aUse’(i,n,rUse) computes aUse(i,n)

using the result rUse of aUse(i,n-1). Functions aUse and

aUse’ satisfy

1st(aUse(i,n)) = a(i,n), and

if rUse = aUse(i,n-1), then aUse’(i,n,rUse) = aUse(i,n).

Finally, an optimized program aOpt is formed by initial-

izing using aUse for n = 0 and repeatedly calling the incre-

mental function aUse’ for n > 0. This can be written using

either recursion

aOpt(i,n)

= 1st(aUseOpt(i,n))

aUseOpt(i,n)

= if n=0 then aUse(i,0)

else let v:= aUseOpt(i,n-1)

in aUse’(i,n,v)

or iteration

aOpt(i,n)

= let v:= aUse(i,0);

for j:= 1 to n do

v:= aUse’(i,j,v)

in 1st(v)

The call to aUse will be replaced with calls to aUse’ as well,

as we will see at the end. The loop can also be rewritten

equivalently using a tail recursive function. For efficiency

and simplicity, we will use the for-loop.

The derivation of an incremental version of a under the in-

put increment operation has three steps. Step 1 constructs a

function aAll, an extended version of a, such that aAll(i,n)

returns a tree of all intermediate results computed in a(i,n),

where the value of a(i,n) is the leftmost child, i.e.,

1st(aAll(i,n)) = a(i,n).

Step 2 constructs a function aAll’, an incremental ver-

sion of aAll under the input increment operation, such that

aAll’(i,n,rAll) computes aAll(i,n) incrementally using

the result of aAll(i,n-1), i.e.,

if rAll = aAll(i,n-1), then aAll’(i,n,rAll) = aAll(i,n).

Thus, 1st(aAll’(i,n,rAll)) = 1st(aAll(i,n)) = a(i,n).

Step 3 produces two functions aUse and aUse’, pruned ver-

sions of aAll and aAll’, respectively, such that aUse(i,n)

returns only the leftmost and other intermediate results in

rAll that are useful in computing 1st(aAll’(i,n,rAll))

where rAll = aAll(i,n), and aUse’(i,n,rUse) where

rUse = aUse(i,n) returns only those useful results as

aAll’(i,n,rAll) does. These steps are described below

and the final optimized program is given at the end.

2.1 Caching all intermediate results
This step constructs the function aAll that returns a tree,

as nested tuples, containing the values of all intermediate

function calls made in computing a; the leftmost child of a

tree value is always the originally returned value. We obtain

aAll(i,n)

= if i=0 then <n+1>

else if n=0 then aAll(i-1,1)

else let v1:= aAll(i,n-1);

v2:= aAll(i-1,1st(v1))

in <1st(v2), v1, v2>

Note on caching structures: We use an untyped language

for simplicity; alternatively, one could use different construc-

tors for tuples of different lengths. The general method for

caching all intermediate results caches the value of each func-

tion call in a separate component in the tail of the return

tuple; applied to a, the second branch would be let v:=

aAll(i-1,1) in <1st(v),v>. However, if the only function

call in a branch is a tail call, then we may simply return its

value without making a new tuple and caching this value

separately. This simplification is based on the same idea as

the optimization that avoids caching values that are embed-

ded in the return value [21], but this special case is not cov-

ered by the optimization there. This simplification makes

the code a little neater, but we can obtain essentially the

same optimized program at the end without it. Note that

we cannot simply say that we do not cache separately val-

ues of all tail calls, which include, for example, the call

a(i-1,a(i,n-1)) in the third branch, by making, for ex-

ample, the third branch return <v2,v1> or append(v2,v1).



The former is not feasible since, in general, to make the op-

timized program simple, we need to be able to retrieve the

original value uniformly, for example, here, from the first

component of the extended function, not the first of first for

this particular branch. The latter is not feasible since, in

general, we need a tree-structured data, not a flattened list,

to be able to access all cached components efficiently.

2.2 Incrementalizing under the increment to
use cached results

This step constructs incremental function aAll’(i,n,rAll)

that computes aAll(i,n) incrementally using the cached

result rAll of aAll(i,n-1). This starts with introducing

function aAll’.

aAll’(i,n,rAll) = aAll(i,n),

where rAll = aAll(i,n-1).
(1)

The idea is to replace subcomputations in aAll(i,n) whose

values can be retrieved from the cached result rAll of

aAll(i,n-1), thus the resulting function aAll’ uses rAll

in addition to i and n. The method exploits data struc-

tures and control structures—to use components of struc-

tured data, rAll, and to use them under appropriate con-

ditions that appear in aAll(i,n) and aAll(i,n-1)—and

replaces function calls made in aAll(i,n) with retrievals

from rAll or with calls to incremental functions.

First, aAll(i,n) is expanded according to the definition

of aAll. To allow all conditional tests i = 0 and n = 0 in

aAll(i,n) and i = 0 and n-1 = 0 in aAll(i,n-1) to be ex-

ploited, the third branch of aAll(i,n) is duplicated with

the additional test n-1 = 0 that appears in aAll(i,n-1).

aAll’(i,n,rAll)

= aAll(i,n)

= if i=0 then <n+1>

else if n=0 then aAll(i-1,1)

else if n-1=0 then

let v1:= aAll(i,n-1);

v2:= aAll(i-1,1st(v1))

in <1st(v2), v1, v2>

else let v1:= aAll(i,n-1);

v2:= aAll(i-1,1st(v1))

in <1st(v2), v1, v2>

Then, replace function calls to aAll in each of the branches,

under the respective condition of the branch, with retrievals

from rAll or with recursive calls to aAll’. The first branch

simply returns <n+1> and is left unchanged.

In the second branch, the condition is the conjunction

of i 6= 0 and n = 0. Function call aAll(i-1,1) cannot be

computed using rAll or any component of rAll but, by

(1), equals recursive call aAll’(i-1,1,aAll(i-1,0)). Re-

call that this branch is computing aAll(i,0), and now it

needs aAll(i-1,0). Notice that aAll(0,0) = <1> by defini-

tion of aAll. Thus, we have

aAll(i,0) = if i=0 then <1>

else aAll’(i-1,1,aAll(i-1,0))

The result of this branch is as follows, using a direct recur-

sive function

a0All(i)

where a0All(i)

= if i=0 then <1>

else aAll’(i-1,1,a0All(i-1))

or an iterative loop

let v:= <1>;

for k:= 1 to i do

v:= aAll’(k-1,1,v)

in v

The loop can also be rewritten equivalently using a tail re-

cursive function. For efficiency and simplicity, we will use

the for-loop for the rest of the paper.

Note on specialization: This introduction of recursion or

iteration is new in the sense that no previous examples of in-

crementalization use it. Indeed, the transformation for this

branch is a kind of specialization [11, 13] during incremen-

talization, where a0All may be viewed as an incremental

Ackermann’s function specialized with respect to the sec-

ond argument being 0. As we can see with the optimized

program at the end, this branch of the incremental func-

tion is actually never executed, i.e., it is dead, and can be

eliminated, but the same computation is needed for initial-

ization by the optimized program that calls the incremental

function.

In the third branch, the condition is the conjunction of

i 6= 0, n 6= 0, and n-1 = 0. First, exploit the result rAll =

aAll(i,n-1) under this condition. Since n-1 = 0, by defi-

nition of aAll we have aAll(i,n-1) = aAll(i-1,1). There-

fore,

rAll = aAll(i,n-1) = aAll(i-1,1). (2)

Then, consider the two function calls bound to v1 and v2

respectively. The first call aAll(i,n-1) is replaced with

rAll, since rAll = aAll(i,n-1). Note that, under n-1 = 0,

aAll(i,n-1) also equals aAll(i,0) and thus a0All(i), but

this is more expensive than rAll. The second call aAll(i-1,

1st(v1)) equals aAll(i-1,a(i,n-1)). By (2), aAll(i,n-1)

computed aAll(i-1,1) but not aAll(i-1,a(i,n-1)). Since

a(i,n-1) = a(i,0) and a(i,0) > 1 under n-1 = 0 and i 6= 0,

which can be shown by a simple induction, we can start

with aAll(i-1,1) and incrementally compute aAll(i-1,2),

aAll(i-1,3), ..., aAll(i-1,a(i,n-1)) using aAll’, as fol-

lows.

let v2:= aAll(i-1,1);

for k:= 2 to a(i,n-1) do

v2:= aAll’(i-1,k,v2)

in v2

where aAll(i-1,1) = rAll by (2)

a(i,n-1) = 1st(rAll) by (1)

In the argument of the call to aAll’, v2 = aAll(i-1,k-1),

and as the result of the call to aAll’, v2 = aAll(i-1,k).



Note on repeated updates: This introduction of iteration

is new, in the sense that no previous examples of incremen-

talization used it. It is also different from what happened in

the second branch, and we found it to be a natural extension

to the incrementalization method. Previously, if an incre-

mental version f’(n,r) is introduced to compute f(n) using

the value r = f(n-1), then at a call f(i) where r1 = f(i-1)

holds we can replace f(i) with f’(i,r1), but here, only

r2 = f(j) for some j < i holds, so we can start with f(j) and

call f’ repeatedly to compute each of f(j+1), f(j+2), ...,

f(i) incrementally. This extension has general applications

for incremental computation problems in practice, where a

change to a problem input is often larger than minimum.

Such a change can be handled by a sequence of incremental

updates. This is the best approach for many applications,

for example, incremental graph reachability [4] and incre-

mental multi-pattern matching in trees [5]. This method

applies if the sequence of updates together are cheaper than

computing the new output from scratch. For optimizing

Ackermann’s function, this is true because the incremental

version reuses values of all function calls computed previ-

ously while the original program recomputes them. In gen-

eral, program cost analysis [16] is needed. It is interesting to

note that, even though this extension is natural and impor-

tant, it is not needed to optimize all the well-known dynamic

programming problems [19, 18].

In the fourth branch, the condition is the conjunction

of i 6= 0, n 6= 0, and n-1 6= 0. Again, first, exploit rAll =

aAll(i,n-1). Since i 6= 0 and n-1 6= 0, by definition of aAll

we have

aAll(i,n-1) = let v1:= aAll(i,n-2);

v2:= aAll(i-1,1st(v1))

in <1st(v2),v1,v2>

Therefore,

aAll(i,n-2) = v1 = 2nd(rAll) and
aAll(i-1,a(i,n-2)) = v2 = 3rd(rAll).

(3)

Consider the two function calls in the fourth branch, bound

to v1 and v2 respectively. As in the third branch, the first

call aAll(i,n-1) is replaced with rAll. The second call

aAll(i-1,1st(v1)) equals aAll(i-1,a(i,n-1)). By (3),

aAll(i,n-1) computed aAll(i-1,a(i,n-2)) but not

aAll(i-1,a(i,n-1)). Similar to the third branch, since

a(i,n-1) > a(i,n-2), we can start with aAll(i-1,a(i,n-2))

and incrementally compute aAll(i-1,a(i,n-2)+1),

aAll(i-1,a(i,n-2)+2), ..., aAll(i-1,a(i,n-1)) using aAll’,

as follows.

let v2:= aAll(i-1,a(i,n-2));

for k:= a(i,n-2)+1 to a(i,n-1) do

v2:= aAll’(i-1,k,v2)

in v2

where aAll(i-1,a(i,n-2)) = 3rd(rAll) by (3)

a(i,n-2) = 1st(2nd(rAll)) by (3)

a(i,n-1) = 1st(rAll) by (1)

Putting the results of all four branches together, we obtain

the following incremental function.

aAll’(i, n, rAll)

= if i=0 then <n+1>

else if n=0 then

let v:= <1>;

for k:= 1 to i do

v:= aAll’(k-1,1,v)

in v

else if n-1=0 then

let v1:= rAll;

v2:= rAll;

for k:= 2 to 1st(rAll) do

v2:= aAll’(i-1,k,v2)

in <1st(v2), v1, v2>

else let v1:= rAll;

v2:= 3rd(rAll);

for k:=1st(2nd(rAll))+1 to 1st(rAll) do

v2:= aAll’(i-1,k,v2)

in <1st(v2), v1, v2>

2.3 Pruning unused intermediate results

This step prunes aAll and aAll’ to obtain aUse and aUse’

that together cache, use, and maintain only intermediate

results needed for incrementally computing the first com-

ponent of aAll. This is based on a backward dependence

analysis of aAll’, starting at the first component of its re-

turn value. We find that arguments i, n, and the first and

third components of rAll are needed but, in the second

component of rAll, only the first subcomponent is needed.

Eliminating other subcomponents of the second component,

we obtain the following pruned functions.

aUse(i,n)

= if i=0 then <n+1>

else if n=0 then aUse(i-1,1)

else let v11:= a(i,n-1);

v2:= aUse(i-1,v11)

in <1st(v2), v11, v2>

aUse’(i, n, rUse)

= if i=0 then <n+1>

else if n=0 then

let v:= <1>;

for k:= 1 to i do

v:= aUse’(k-1,1,v)

in v

else if n-1=0 then

let v11:= 1st(rUse);

v2:= rUse;

for k:= 2 to 1st(rUse) do

v2:= aUse’(i-1,k,v2)

in <1st(v2), v11, v2>



else let v11:= 1st(rUse);

v2:= 3rd(rUse);

for k:= 2nd(rUse)+1 to 1st(rUse) do

v2:= aUse’(i-1,k,v2)

in <1st(v2), v11, v2>

Finally, an optimized program is formed by initializing

using aUse for n = 0 and repeatedly calling the incremen-

tal version aUse’ for n > 0. Notice that, if n = 0, aUse(i,n) =

aUse(i,0), which is computed in the second branch of aUse’.

Therefore, we can use the second branch of aUse’ for the

initialization. We obtain the following optimized program

aOpt, where aUse’ is as defined above.

aOpt(i,n)

= let v:= <1>;

for k:= 1 to i do

v:= aUse’(k-1,1,v);

for j:= 1 to n do

v:= aUse’(i,j,v)

in 1st(v)

Note on the final program: When aUse’ is called, the sec-

ond argument is never 0, so the second branch of aUse’ is

dead and can be eliminated. Although aUse is not used in

the final program, it plays an important role in the trans-

formation.

3. ANALYSIS AND EXPERIMENTS
The final optimized program aOpt takes O(i) live space,

for the following reasons. First, aOpt calls aUse’ iteratively,

and aUse’ calls itself recursively but its first argument is

smaller than i and decreases strictly. Second, each call to

aUse’ requires constant space, because it allocates a few lo-

cal variables and creates one triple, whose first two compo-

nents are numbers and whose third component is the result

of a recursive call.

Running time of the optimized program is O(a(i, n)). First,

the only operations Ackermann’s function performs are re-

cursive calls and adding 1, together from 1 to a(i,n), al-

though the straightforward function computes many repeated

recursive calls. The optimized program computes a(i,n) in-

crementally based on what is computed by a(i,n-1), and

thus there are no repeated computations; it only performs

new recursive calls and, for the base cases of i = 0, adds by

1. Second, each recursive call evaluates to a distinct number

except for pairs like a(i,n) and a(i-1,a(i,n-1)), but such

pairs become rarer at an increasing rate as i increases, so

the total number of recursive calls is O(a(i, n)).

Grossman and Zeitman [9] say that the time complexity

has an additional i factor, which is unnecessary. They also

say that their program is inherently iterative, but it basically

uses two arrays in place of the stack. They also leave the

proof of correctness to the reader, but the proof is non-

trivial.

We implemented the straightforward Ackermann’s func-

tion and the optimized Ackermann’s function in C. Tuples

are implemented as records in the optimized function. The

program was compiled with gcc 2.96 and uses the Boehm-

Demers conservative garbage collector 5.3 to collect dynam-

ically allocated records. We measured the running times

on a 733MHz Pentium III with 256KB cache and 128MB

memory running Red Hat Linux 7.0. The optimized pro-

gram computes drastically faster than the straightforward

program and takes extremely little space. For example,

the straightforward program took about 6 minutes to com-

pute a(4,1), which equals a(3,13) and equals 65533, and

the memory usage increased steadily to about 2.4MB from

a jump start of about .5MB, but the optimized program

took only 0.04 seconds. Also, the optimized program com-

puted a(3,20), which equals 8388605, in 5.05 seconds and

computed a(3,30), which equals 8589934589, in about 87

minutes, and the memory usage stayed constantly at about

.5MB. Note that 64-bit long integers are used, because com-

puting a(3,30) would cause overflows using 32-bit integers.

Grossman and Zeitman [9] report that their optimized pro-

gram, written in Pascal and using only loops and statically

allocated arrays, computed a(4,1) in about 12 minutes. As-

suming the measurement was taken in 1986 when the pa-

per was submitted, then based on Moore’s law that CPU

speed doubles every 18 months, their algorithm would be

645 (= 214/1.5) times faster in 2000, the vintage of the ma-

chine used for our measurements, and thus take about 1.12

(= 12*60/645) seconds. Our optimized program is about 30

times faster than this, and it can be made even faster by us-

ing loops and statically allocated arrays instead of dynam-

ically allocated and deallocated stack (for recursion) and

heap (for records).
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