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Abstract

Concurrent Class Machines are a novel state-machine
model that directly captures a variety of object-oriented
concepts, including classes and inheritance, objects and
object creation, methods, method invocation and excep-
tions, multithreading and abstract collection types. The
model can be understood as a precise de£nition of UML
activity diagrams which, at the same time, offers an ex-
ecutable, object-oriented alternative to event-based state-
charts. It can also be understood as a visual, combined con-
trol and data ¤ow model for multithreaded object-oriented
programs. We £rst introduce a visual notation and tool for
Concurrent Class Machines and discuss their bene£ts in en-
hancing system design. We then equip this notation with a
precise semantics that allows us to de£ne re£nement and
modular re£nement rules. Finally, we summarize our work
on generation of optimized code, implementation and ex-
periments, and compare with related work.

1. Introduction

Embedded software design automation (ESDA) is
emerging as a promising approach to developing the high-
con£dence software demanded by embedded-system appli-
cations, including those found in the telecommunications,
aerospace/military, medical-device, and automotive indus-
tries. A comprehensive ESDA solution is expected to pro-
vide integrated support for (1) requirements capture, (2) vi-
sual modeling, (3) simulation, (4) component mapping to
target platforms, (5) code generation, (6) testing and (7)
documentation generation.

Visual modeling plays a key role in this context, akin
to the “design blueprints” found in other engineering disci-
plines such as electrical, mechanical and civil. Errors unde-
tected at this stage of development are carried over to later
stages where they are much more costly to deal with. The
importance of visual modeling has been recognized by the
Object Management Group (OMG) computer-industry con-
sortium. The goal of this group is to set software standards
that enable distributed and enterprise-wide interoperability.

OMG is arguably most well known for UML, the uni£ed
modeling language that has been unanimously embraced by
industry and promises to become the visual modeling lan-
guage of ESDA.

To model the behavior of object-oriented systems, UML
proposes both a state model (given by state diagrams) and
a ¤ow model (given by activity diagrams). The former em-
phasizes states and state hierarchy, while the latter empha-
sizes actions and action hierarchy. Emphasizing states leads
to an intuitive understanding of allowed method-invocation
sequences. Emphasizing actions leads to an intuitive under-
standing of exceptions, recursion and inheritance. A recent
RFP (Request For Proposals) for the UML 2.0 Superstruc-
ture asked for clari£cation of the precise relation between
class and behavior diagrams. In particular, the RFP asks:
How does message-based communication relate to method
invocation and how is inheritance captured in behavior dia-
grams (state machines cannot be generalized in UML)?

In this paper, we develop a comprehensive framework for
automated software engineering based on a combined con-
trol and data ¤ow model for multi-threaded object-oriented
programs we call concurrent class machines (CCMs).
CCMs can be understood as a precise semantic de£nition
of UML activity diagrams that offers an executable object-
oriented alternative to event-based statecharts. It can also be
understood as an abstract, visual model for Java programs.
The visual presentation can enhance developer productiv-
ity and the interaction between developers and customers.
It also enables the development of ef£cient analysis algo-
rithms that exploit the structure present in the model. Our
main contributions are the following.

• We introduce a visual notation for CCMs which we re-
fer to as Visual Class Machines (Section 2). Visual CM
provides an intuitively appealing notation for develop-
ers that graphically and coherently captures a variety of
object-oriented features, including classes and inheri-
tance, objects and object creation, methods, method in-
vocation and exceptions, multi-threading and abstract
collection types.

• We then present our Concurrent Class Machines
model (Sections 3 and 4) which serves both as a for-



mal, transition system-style semantics and abstract
syntax for Visual CM. The operational nature of CCMs
renders Visual CM speci£cations executable and the
model itself provides the basis for powerful analysis,
veri£cation, and code-generation techniques.

• We complement our CCM model with a collection
of re£nement rules (Section 5) that allow one to rea-
son compositionally about multi-threaded, recursive,
object-oriented systems in a trace-based setting. The
basis for our de£nition of CCM traces is the notion of
an evolving communication interface between a sys-
tem and its environment.

2. A Visual Language for Class Machines

We £rst describe Visual CM, a visual representation for
CMs. (We have also developed a grammar for a textual rep-
resentation of CMs.) By design, the visual representation
and CMs have exactly the same structure, so CMs provide
an “abstract syntax” as well as a semantics for the visual
language. Therefore, we do not give a separate grammar for
the visual language. Instead, we present the language us-
ing a familiar example—the readers/writers problem. Next,
a semantically minimal extension to handle concurrency is
introduced, providing a notation for concurrent CMs.

2.1. Visual CM

A solution to the readers/writers problem—effectively,
an implementation of read locks and write locks—appears
in Figure 1. To save space, the £gure does not show class
Resource, which declares public methods read():int
and write(int x), and class MonitorExc, which de-
clares no £elds or methods; de£nitions of methods of Wr-
Cap are also elided. Our solution is fairly standard except
for the use of capabilities to identify the client to whom a
lock was granted; more commonly, thread identity is used.
Our approach is more ¤exible. For example, a coordina-
tor thread could create a resource, a monitor, and a write
capability, acquire the write lock embodied in the write ca-
pability, initialize the resource, and then pass the write ca-
pability to a worker thread, which can immediately use the
write capability to access the resource. The capabilities also
enforce the calling discipline; for example, if the acquire
operation is invoked on a capability whose lock is already
held, the capability throws a MonitorExc. Our language
is designed to £t into the UML, so class diagrams are used
to describe the static structure of systems. Due to space lim-
itations, we omit the class diagram for our example and in-
clude information from it directly in the UML-like activity
diagrams that de£ne the behavior of methods. The notation
is the same as in class diagrams: underlining a declaration
indicates that the declared element has class scope (this is

equivalent to Java’s static modi£er), and the visibility
modi£ers are public (“+”), private (“−”), and package (de-
fault). We use a Java-like throws clause to indicate the
types of exceptions that a method can throw.

Methods are de£ned by UML-like activity diagrams.
Three kinds of nodes may appear on the border of a dia-
gram: (1) a call entry node (un£lled circle),1 (2) return exit
nodes (£lled circles), each labeled with an expression that
evaluates to the return value, (3) exception exit nodes (£lled
diamonds), each labeled with an expression that evaluates
to the returned exception.2 The types of expressions associ-
ated with return nodes must be consistent with the declared
return type of the method; similarly, the types of expres-
sions associated with exception nodes must be consistent
with the throws clause in the declaration of the method.

Execution of a CM starts by creating an instance of the
designated main class and invoking its run method. Ex-
ecution of a method starts at the call node and proceeds
along edges labeled with guarded commands, which con-
sist of a guard (a Boolean expression) and a parallel as-
signment statement (a set, possibly empty, of assignments
that are performed in parallel). Naturally, an edge can be
traversed only if the guard is true. We elide the constant
guard true and the empty parallel assignment statement.

Guarded commands may contain only operations that
have no net effect on the size of the stack or heap. Thus,
expressions may contain operations on primitive values (in-
tegers, sets regarded as mathematical values, etc.), reads
of object attributes, and invocations of functional methods
(i.e., methods that do not throw exceptions and do not con-
tains writes to object attributes); parallel assignments may
update variables and object attributes.

Operations that may have a net effect on the size of the
state appear in boxes. The sequential language contains
two kinds of boxes: method invocation boxes, which rep-
resent method invocations with dynamic dispatch, and ob-
ject creation boxes, which allocate and new object, execute
a constructor to initialize it, and return a reference to it.
Our language is garbage-collected and hence does not con-
tain object de-allocation boxes. Each box has a call-entry
node, labeled with the argument, a return-exit node, labeled
with a variable or attribute into which the returned value is
stored, and (if the called method can throw an exception) an
exception-exit node, labeled like the return-exit node.

An internal node is a node that is not a call, return, or ex-
ception node of a method de£nition or box. Internal nodes
are simply intermediate control points. Execution blocks
when control is at an internal node whose outgoing edges all
have false guards. This is a well-known, ¤exible, high-level

1In the formal CM model, the call node is labeled with the formal
parameters; in the visual language, the formal parameters appear in the
method declaration.

2If the return or exception type is void, the corresponding expression
may be omitted.



Figure 1. Package ReaderWriter.

way to express condition synchronization in concurrent sys-
tems. For example, execution of Monitor.acqWr blocks
if the monitor is not free. Declarations of local variables
may appear anywhere inside the method body (e.g., the dec-
laration of e in RdCap.acq).

Conditional branches are drawn with un£lled diamonds;
this is syntactic sugar, just as it is in activity diagrams [7, p.
263]. An example appears in the de£nition of RdCap.acq.
As in activity diagrams, the guards on the outgoing transi-
tions of a conditional diamond should be disjoint and ex-
haustive [7, p. 263].

For brevity, some features described in this section are
omitted from the formal de£nition of CMs in Section 3 but
can easily be added. Speci£cally, these features are: static
attributes and methods, multiple exception types for a sin-
gle method, packages, and visibility modi£ers for methods
and attributes. Also, the semantics for object creation re-
¤ects only the behavior default constructors, which have no
arguments (except this) and initialize all attributes to de-
fault values (zero for integers, null for references, and so
on); non-default constructors can easily be modeled as this
default initialization followed by invocation of the speci£ed
constructor.

2.2. Visual Language for Concurrent CMs

Concurrent CMs are an extension of CMs with a mech-
anism for forking threads. Incorporating only this semanti-
cally minimal extension into the language helps simplify the
semantics and allow maximum ¤exibility. Synchronization
is achieved using guarded commands. The semantics re-
quires: (1) a guarded command executes atomically, and (2)

it executes only in states where its guard is true. All com-
mon synchronization constructs (semaphores, locks, condi-
tion variables, wait-free data structures, etc.) can be im-
plemented using these primitives. We allow methods to
be declared atomic; this is syntactic sugar for acquiring
and releasing a system-wide lock (thus, atomic is stronger
than synchronized in Java). An optimizing code gener-
ator might allow more concurrency by using multiple locks,
when this is behaviorally equivalent.

An alternative would be to prohibit the use of guards for
condition synchronization (by allowing guards only in con-
ditional diamonds, where the guards should be exhaustive)
and introduce selected synchronization constructs as prim-
itives. This approach would clutter the semantics, and the
choice of primitives would inevitably be somewhat arbitrary
and unsatisfactory for some applications. For example, if
Java-like monitors are primitive, there is no way to asso-
ciate multiple condition variables with a single lock (this is
inconvenient when solving the readers/writers problem, be-
cause a natural approach is to have separate condition vari-
ables on which readers and writers wait, and to associate
these two condition variables with a single lock).

An object is associated with each thread. These objects
are instances of a distinguished class named Thread or a
subclass thereof. Class Thread declares one method with
signature run(): void and no attributes. These ob-
jects are created and initialized in the usual way, using ob-
ject creation boxes, etc. The thread of execution is started
using a new kind of box, called a thread start box. An ex-
ample appears in Figure 2. The new thread executes the
run method of the target object. The thread start operation
is a box because it changes the structure of the state space,



by allocating a new call stack. Execution of a concurrent
CM starts in the same way as execution of a CM; the only
additional requirement is that the main class is a subclass of
Thread.

The diagram for Client.run contains a simple
example of catching an exception. The diagram for
Client.activateClient illustrates our notation for
propagating exceptions. Consider a method invocation box
b in a method m. Suppose b has an exception exit node
nb. It is common for m not to catch the exception. We
make this the default behavior using the following syntactic
sugar: if nb has no explicit outgoing edges, then implicitly
there is an edge labeled with true --> skip and going
from nb to an exception exit node nm of m with appropri-
ate type, and the exception expression associated with nm

is the variable associated with nb (if that variable is omitted,
then implicitly a fresh local variable is used at nm and the
corresponding nb’s).

Synchronization bars are used in UML activity diagrams
to represent forks and joins in a structured way. Synchro-
nization bars can easily be introduced in our language as
syntactic sugar: forks correspond to boxes that create and
start threads, and joins correspond to a simple condition
synchronization that can be implemented in various ways.

3. Sequential Class Machines

In this and the following section we introduce a class ma-
chine model that closely corresponds to the sequential and
concurrent parts of the visual language respectively. Keep-
ing the model close to the syntax makes it accessible to en-
gineers. The model sets a solid ground for understanding
their visual speci£cations and for developing tools. It also
helps us to develop ef£cient analysis algorithms that exploit
the structure present in the model.

As in C++ or Java, the class machine model allows re-
cursion. The meaning of recursion is usually explained by
introducing a least £xpoint operator. In this paper we use a
more operational approach. We give the meaning of recur-
sion by de£ning a ¤at state machine, with a potentially un-
bounded number of states and transitions that, similarly to
the £xpoint operator, computes the least solution of the re-
cursive machine by unfolding the method invocations. Note
however, that our analysis algorithms work directly on the
£nite-control recursive machine.

3.1. The Recursive De£nition

Environments and actions. We assume, the set of classes
C and their subclass relation ≤ with single inheritance is
given by the class diagrams in our visual notation. Given
a set X={x1:T1,. . .,xn:Tn} of typed variables, a vari-
able environment (frame) σ over X is a partial function
[x1 7→a1,. . .,xk 7→ak] where k ≤ n and for all i, ai ∈ Ui

and Ui ≤ Ti. We denote by σ[y 7→a] the environment where
the value of y is bound to a. The set of all variable environ-
ments over X is denoted by ΣX . Attributes and attribute
environments are treated similarly to variables and variable
environments. The set of attributes of each class is given by
the class diagram.

For x∈X , let [[x]] be the evaluation function of x over σ
de£ned by [[x]]σ = σ(x)3. For an expression e over X , let
[[e]] be the homomorphic extension of the evaluation func-
tion to expressions. For example, suppose σ(x) = 1 and
σ(y) = 2. Then [[x + y]]σ = [[x]]σ + [[y]]σ = 1 + 2 = 3.
In the following, we call [[e]] also an expression and write it
as e. Expressions are de£ned as usual over typed variables
and identi£ers of primitive (mathematical) functions.

To keep track of data, we maintain a frame σ and a global
object environment (object pool) ω. Assuming that A is the
set of all attributes and O is the set of all object identi£ers,
ω is a partial function in C→(O→ΣA). The domain of
ω(c) : O→ΣAc

contains all instances of c. De£ne a partial
function classOf(o) = c iff o ∈ dom(ωc). The set of all ob-
ject pools ω is denoted by Ω. To keep track of control, i.e.,
the return locations of method calls and the current program
counter, we maintain a location stack of boxes having on top
the current node. Similarly, the variable frame is extended
to a stack of frames.

An action from U to V is a relation α ⊆ U × V . Syn-
tactically actions are boxes or guarded commands. Boxes
encapsulate actions that change the size of environments.
Guarded commands gc correspond to actions that test or
change values in the data environments. They have the form
g→a where the guard g is a boolean expression and the par-
allel assignment a is a set x1:=e1‖ . . . ‖xn:=en of assign-
ments. We extend the evaluation function to guarded com-
mands by de£ning [[gc]]σ,σ′ by its characteristic predicate
[[g]]σ ∧ σ′=σ[x1 7→ [[e1]]σ, . . ., xn 7→ [[en]]σ]. By de£nition,
[[gc]] is an action from ΣX to ΣX .

To access object attributes, we extend expressions with
attribute selectors. As a consequence, we extend the ex-
pression evaluation function to [[e]]σ:ω

4. The evaluation
function for guarded commands is extended accordingly.
For example, !inCs->inCS:=true in RdCap.acq()
has for an object v∈dom(ωRdCap) the action:

{(σ:ω, σ:ω′) |
¬(ωRdCap(v)(RdCap.inCS)) ∧
ω′ = ω[RdCap 7→ ωRdCap[v 7→ [RdCap.inCS 7→ true]]]}

Expressions may not contain method invocations, object
creation or thread starting expressions. These operations
appear only in boxes.

De£nition of SCM. A sequential class machine M =
((C,≤), B,N,Ci,Ω) consists of:

3For a function f we also write fx for f(x).
4To avoid parenthesis we write tuples (x, y) as x:y.



Figure 2. Package Client.

• A £nite tree of classes (C,≤), where c ≤ d if class
c is a subclass of class d. Ci is the main class. The
machine starts by executing Ci’s run method.

• A £nite set of boxes B, a £nite set of nodes N and a
set of all object environments Ω.

We assume that C,B and N are disjoint. Each class c ∈ C

has associated the following elements:

• A £nite set of attributes Ac={a1:T1, . . . ,an:Tn}. The
set of all attributes Âc = ∪d≥c{d}×Ad consists of de-
clared and inherited attributes pre£xed with their class.

• A £nite set Mc of methods.

Each method m∈Mc has associated the following elements:

• A type Tcm = cTcm × rTcm × eTcm de£ning the call,
return and exception types of m5.

• A set of local variables Xcm = {x1 : T1, . . . , xl : Tl}.

• A set of nodes Ncm ⊆ N such that Ncm ∩ Ndn = ∅
for cm 6= dn. This set is partitioned into:

– A call entry node c with formal parameters x :
cTcm and this : c in Xcm.

– A set of return exit nodes R where each node r ∈
R has a return expression re over Xcm of a type
T where T ≤ rTcm.

– A set of exception exit nodes E where each node
e ∈ E has an exception expression ee over Xcm

of a type T where T ≤ eTcm.

– A set of internal nodes I .

– A set of box entry nodes Bcm.En and a set of
box exit nodes Bcm.Ex.

The set of from-nodes is de£ned as F = {c} ∪ I ∪
Bcm.Ex. The set of to-nodes is de£ned as T = {c} ∪
I ∪R ∪ E ∪Bcm.En.

5To simplify the presentation, we consider only one parameter and ex-
ception type.

• A set of invocation boxes Bcm ⊆ B such that Bcm ∩
Bdn = ∅ for cm 6= dn. The invocation boxes are par-
titioned into method invocation boxes and object cre-
ation boxes. Each method invocation box b ∈ Bcm has
associated:

– An expression oeb of a class type db ∈ C deter-
mining the target object.

– A call node cb∈Bcm.En, a method identi£er mb

with mb∈Mdb
and argument aeb of a type T such

that T≤cTdbmb
.

– A return node rb∈Bcm.Ex and a variable
x∈Xcm of a type T such that T≥rTdbmb

6. The
return value gets bound to x.

– An exception node eb∈Bcm.Ex and a variable
y∈Xcm of a type T such that T≥rTdbmb

. The
exception value gets bound to y.

Object creation boxes are similar to method invocation
boxes except that: (1) they have associated a class db
instead of an object expression oeb, (2) the call node
has no expression, (3) the variable x of the return node
has class db and (4) the method identi£er is new and is
not required to be in Mdb

• A labeled transition relation δcm ⊆ F×Act×T where
Act = P((ΣXcm

×Ω)×(ΣXcm
×Ω)) is a set of actions

α from ΣXcm
×Ω to ΣXcm

×Ω that relate frame and
pool tuples σcm : ω.

For example, class Client has an attribute Client.m
and the methods main,runClient and run. Method
runClient starts with an object creation box having as-
sociated the class WrCap. The method invocation box
w.read() has associated the expression (target object) w,
the method identi£er read, a return node with variable v
and an exception node with no variable.

The above de£nition separates control from data. While
control is kept explicitly in the nodes, data (environments)

6For primitive type T we assume ≤ relates T to itself only.



is handled implicitly by the transitions. As a consequence
the class machine has a direct,compact and human readable
representation in visual CM. This representation also ad-
mits a compact symbolic representation (with BDDs) that is
well suited for combined enumerative and symbolic model
checking algorithms. By contrast, a state machine repre-
sentation that adds the environments to the nodes, leads to
a human unreadable representation and can easily blow up
the state space in a symbolic representation.

3.2. Meaning of Recursion and Object Creation

The meaning of recursion and object creation in a CM
A = ((C,≤), B,N,Ci,Ω) is given in terms of a global
class machine (GCM) A∗ = (GL,GF, ni, δ) consisting of
the following elements:
• A set of global locations GL ⊆ B∗N . Each global

location λ = β:n of GL is a stack β = b1: . . . :bk of
boxes bi with a node n on top. For each k, bk+1 (or n)
belongs to a method m of class d where d ≤ c, c is the
class of the target expression oe associated with bk and
m is the method associated with bk.

• A set of global frames GF ⊆ Σ∗X where X is the set
of all variables. A global frame ϕ ∈ GF is a stack
σ0: . . . :σk associated with a location b1: . . . :bk:n. For
each i, σi is the frame (local variable environment) of
the method containing box bi+1 (or n). Let GFλ be the
set of all global frames associated with λ.

• A labeled transition relation δ ⊆ GL × GA × GL

where GA = P((GF×Ω)× (GF×Ω)). This relation
contains tuples (λ1, α, λ2) where λ1, λ2 are global lo-
cations and α is a global action from GFλ1

× Ω to
GFλ2

× Ω.
The transition relation δ is the least relation that contains
for each method, internal transitions, call transitions, return
transitions, exception transitions and object creation tran-
sitions. Call transitions capture dynamic method dispatch.
To ease notation we treat environment tuples in ΣX×Ω and
GF×Ω also as stacks σ : ω and ϕ : ω respectively.
Internal. In this case the source location is λ=β:n where

n is a from node of a method c.m. If (n, αcm, n′) is
in δcm and λ′=β:n′ then (λ, α, λ′) is in δ where the
global action α extends the action αcm as de£ned be-
low:

{ (ϕ:σ:ω, ϕ:σ′:ω′) |
(σ:ω, σ′:ω′) ∈ αcm ∧ ϕ:σ:ω ∈ GFλ }

Call. In this case the source location is λ=β:cbk
where cbk

is the call node of method box bk. Let m, oe and d be
the method, object expression and class of oe respec-
tively, associated with box bk. Let p be the class from
which d inherits m; if d de£nes m then p=d. For each
class a≤p that de£nes m there is a destination location
λ′=β:bk:c and a transition (λ, α, λ′) in δ. The node c

is the call node of the method m of class a, and the
global action α de£ned by

{( ϕ:σ:ω, ϕ:σ:τ :ω) |
classOf(oeσ,ω) = a ∧ ϕ:σ:ω ∈ GFλ ∧
τ = τi[this 7→ oeσ,ω, x 7→ aeσ,ω] }

does the following: (1) it checks if the value of oe has
class a7, (2) it pushes a frame τi that binds local vari-
ables to default values and binds this and the formal
parameter x to the values of oe and ae, respectively.

Return. In this case the destination location is λ′=β:rbk

where rbk
is the return node of method box bk. Let m,

oe and d be the method, object expression and class
of oe respectively, associated with box bk. Let p be
the class from which d inherits m; if d de£nes m then
p=d. For each class a≤p that de£nes m and each re-
turn node r∈Ram there is a source location λ=β:bk:r
and a transition (λ, α, λ′) in δ, where the global action
α de£ned by

{ ( ϕ:σ:τ :ω, ϕ:σ′:ω) |
σ′ = σ[x 7→ reτ,ω] ∧ ϕ:σ:τ :ω ∈ GFλ′ }

does the following: (1) it binds the return variable x

associated with node rbk
of bk to the actual return value

of re in σ′ and (2) it discards τ .

Exception. These transitions are handled similarly to re-
turn transitions. Their main role is to separate control
and return type of the normal execution sequence from
the exceptional one.

Object creation. In this case the source and destination lo-
cations are λ = β : cbk

and λ′ = β : rbk
where

cbk
and rbk

are call and return nodes respectively, of
the object creation box bk. Let d be the class and
x the return variable associated with box bk. Then
(λ, α, λ′) ∈ δ with global action α de£ned as below
where odom(ω)= ∪c∈C dom(ωc).

{ (ϕ:σ:ω, ϕ:σ′:ω′) |
i ∈ (O\odom(ω)) ∧ ω′ = ω[d 7→ ωd[i 7→ τi]] ∧
σ′ = σ[x 7→ i] ∧ ϕ:σ:ω ∈ GFλ }

The action α does the following: (1) it £nds a fresh
object identi£er i∈O, (2) it binds i to the default at-
tribute environment τi∈ΣÂd

inside ω′ and (3) it binds
the return variable x to the new identi£er i inside σ ′.

4. Concurrent Class Machines

Concurrent CMs (CCMs) are an extension of CMs with
a mechanism for forking threads. Formally, CCMs are the
same as CMs except that: (1) the class hierarchy must con-
tain a class Threadwith no attributes and one method with
signature run():void, (2) there is an additional kind of

7This is false if the value of oe is null



box, namely, a thread start box, and (3) the main class Ci

must be a subclass of Thread.
A thread start box is similar to a method invocation box

except that: (1) the class db is Thread, (2) the associated
method identi£er mb is start (note that start, like new,
is not a method), (3) the argument expression is omitted (be-
cause start has no parameters), (4) the return node has no
associated variable (because start has no return value),
and (5) there is no exception node eb (because start does
not throw exceptions).

The semantics of a CCM Ā = ((C,≤), B,N,Ci,Ω)
is given in terms of a global state machine Ā∗ =
(GL,GF,Ci, δ) consisting of the following elements:
• A set of location maps GL that are partial functions

from O to GL, where GL ⊆ B∗N . In particular, the
domain of a location map is the set of threads that have
been started.

• A set of frame maps GF that are partial functions from
O to GF , where GF ⊆ Σ∗X .

• A labeled transition relation δ̄ ⊆ GL × GA × GL

where GA = P((GF × Ω)× (GF × Ω)).
The transition relation δ̄ is de£ned by interleaving the tran-
sitions of the threads. Transitions that do not go through
thread start boxes have the same semantics as in a se-
quential CM. To capture this in the semantics of CCMs,
we consider the sequential CM A obtained from Ā by
adding to class Thread a method called start that does
nothing and replacing all thread start boxes with method-
invocation boxes that invoke this new method. We de-
£ne δ̄ in terms of the transition relation δ of A∗. Let
threads(ω) =

⋃
c≤Thread

dom(ω(c)). For c ≤ Thread,
let startGL(c) = (nc), where nc is the call node of the
run method of class c (this method might be inherited) and
startGF(c) = (σc), where σc maps local variables of c.run
to default values. Note that (nc) and (σc) are tuples inter-
preted as stacks containing one element.

Consider a location map λ̄ and a thread θ ∈ dom(λ̄).
Let β : n = λ̄(θ). If n is not the call node of a
thread start box, then for each transition (λ̄(θ), α, λ′) ∈ δ,
(λ̄, extend(α, θ), λ̄[θ 7→ λ′]) ∈ δ̄, where extend(α, θ) =
{(ϕ̄ : ω, ϕ̄[θ 7→ ϕ′] : ω′) | (ϕ̄(θ) : ω, ϕ′ : ω′) ∈ α}. If n is
the call node of a thread start box b, there are two cases, de-
pending on whether the thread has already been started. The
target thread is θ1 = oeϕ̄(θ),ω . Let c = classOf(θ1). If the
target thread has not been started, i.e., θ1 ∈ threads(ω) \
dom(λ̄), then (λ̄, α, λ̄[θ 7→ β : rb][θ1 7→ startGL(c)]) ∈ δ̄,
where

α = {(ϕ̄ :ω, ϕ̄′ :ω′) | ϕ̄′ = ϕ̄[θ1 7→ startGF(c)]∧ω′ = ω}.

If the target thread has been started, i.e., θ1 ∈ dom(λ̄), then
the start operation is a no-op that returns normally (we
could easily adopt a Java-like semantics in which start
throws an exception in this situation), and (λ̄, ι, λ̄[θ 7→ β :
rb]) ∈ δ̄, where ι is the identity relation on GF × Ω.

5. Trace Semantics and Re£nement

Trace semantics. Given a CM Ā denote the associated
GCM by Ā∗. A pair (λ, η) where λ∈GL and η ∈GF×Ω is
called a con£guration of Ā∗. We write ((λ, η), (λ

′
, η′))∈ δ.

if (λ, α, λ
′
)∈ δ and (η, η′)∈α. An execution of Ā∗ is a se-

quence (λ0, η0)→ (λ1, η1)→ . . .→ (λn, ηn) such that for
all i, ((λi, ηi), (λi+1, ηi+1)) is an environment or a δ step.

An environment step occurs when the environment in-
vokes a method of an object shared by the CM and its en-
vironment; these objects (e.g. static shared attributes and
input/output streams) form the CM’s communication inter-
face (CI). The net effect of the step is to push a stack frame
with two local variables, ret and exc, non-deterministically
assign an arbitrary value to one of them, and return that
value. The CI may vary over time and can be computed
inductively using an approach related to [9]. For space rea-
sons, this computation is deferred to the full paper.

Given an execution ex its associated trace tr captures
only the observable part of ex. The location and frame
stacks are private, so they can be discarded, along with the
private objects. Hence, tr contains at each i the projection
of ωi to the objects accesible from CIi. The £rst and last
elements of the trace also contain the call and return values.
The executions and traces of Ā are de£ned to be the same
as for Ā∗. The set of traces of A is denoted LA.

Re£nement. The trace semantics leads to a natural notion
of re£nement between CCMs: an implementation CCM I

re£nes a speci£cation CCM S, denoted I ¹ S, if LI ⊆ LS

modulo an isomorphism of object identi£er names. The iso-
morphism is necessary, because the exact policy of allocat-
ing identi£ers should be hidden and therefore not in¤uence
re£nement. If the implementation CCM is large, we would
like to decompose the re£nement task into simpler subtasks.
For this we provide two compositional and two least £x-
point induction rules. We write C[M ] if CCM C contains a
box refering to CCM (method) M .

Theorem 1 If M¹N then C[M ]¹C[N ]. If C[.]¹∗D[.]
then C[M ]¹D[M ]. If C[N ]¹N then (µx.C[x])¹N . If for
all x, x¹N implies C[x]¹N then (µx.C[x])¹N .

The £rst compositional rule is justi£ed by the monotonicity
of the corresponding GCMs. The second compositional rule
is justi£ed in addition by observations at the “inner envi-
ronment” border (¹∗ relates trace sets where the call/return
information at the inner box is made visible). The £xpoint
rules are justi£ed by the continuity of the GCMs. These
rules are related to the rules given in [3].

6. Conclusions

We have presented CCMs, a comprehensive, machine-
based model of multi-threaded, object-oriented systems.
We have equipped CCMs with a visual design notation and



a collection of re£nement proof-rules supporting composi-
tional reasoning. Although not described in this paper due
to space limitation, we have also studied important new
techniques for generating ef£cient code from CCM speci-
£cations, by applying incrementalization [15, 18, 13, 12] to
multi-threaded programs and to object-oriented programs;
we have also studied the use of other analyses and optimiza-
tions, e.g., [11, 6, 16, 6], in our framework.

We have a prototype implementation that allows interac-
tive speci£cation in Visual CM and automatic generation of
Java code for most features of our language. We have used
the system for the speci£cation and code generation of ex-
ample applications, including the readers/writers problem
and a simple telephone switch system. Performance of the
generated code is similar to the best handwritten code.

A variety of visual notations, formal models and anal-
ysis methods for object-oriented systems have been pro-
posed in the literature; an extensive bibliography can be
found in [17]. What distinguishes our approach from
this body of work (and more recent proposals such as
[1, 10, 14]) is the comprehensive nature of the Concur-
rent Class Machine model. CCMs capture a host of key
object-oriented concepts in one machine-based model, in-
cluding classes, objects, inheritance, dynamic method dis-
patch, multi-threading and exceptions. Moreover our re£ne-
ment rules allow one to reason compositionally about multi-
threaded object-oriented systems in a trace-based setting.
The CCM model and accompanying re£nement rules have
been inspired by the work of [3, 2, 5]. These approaches
are not object-oriented and hence do not cover the array of
object-oriented programming concepts featured in CCMs.

For future work, we plan to complete the implementa-
tion of the code generator and optimizer for more advanced
features of CCM and assess performance of our system and
the generated code via further experimentation. We are also
in the process of developing a model checker in the style of
[4, 5] that supports both enumerative and symbolic invari-
ant and re£nement checking of CCM models and that uses
static analysis techniques similar to [8].
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