
ar
X

iv
:1

41
2.

84
61

v3
  [

cs
.P

L]
  6

 J
an

 2
01

6

From Clarity to Efficiency for Distributed Algorithms ∗

Yanhong A. Liu Scott D. Stoller Bo Lin

Computer Science Department, Stony Brook University, Stony Brook, NY 11794, USA

{liu,stoller,bolin}@cs.stonybrook.edu

Abstract
This article describes a very high-level language for clear
description of distributed algorithms and optimizations nec-
essary for generating efficient implementations. The lan-
guage supports high-level control flows where complex syn-
chronization conditions can be expressed using high-level
queries, especially logic quantifications, over message his-
tory sequences. Unfortunately, the programs would be ex-
tremely inefficient, including consuming unbounded mem-
ory, if executed straightforwardly.

We present new optimizations that automatically trans-
form complex synchronization conditions into incremen-
tal updates of necessary auxiliary values as messages are
sent and received. The core of the optimizations is the first
general method for efficient implementation of logic quan-
tifications. We have developed an operational semantics of
the language, implemented a prototype of the compiler and
the optimizations, and successfully used the language and
implementation on a variety of important distributed algo-
rithms.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed pro-
gramming; D.3.2 [Programming Languages]: Language
Classifications—Very high-level languages; D.3.4 [Pro-
gramming Languages]: Processors—Code generation, Com-
pilers, Optimization; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about
Programs—Specification techniques; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages—Operational semantics; I.2.4 [Computing Method-
ologies]: Knowledge Representation Formalisms and Meth-
ods—Predicate logic

General Terms Algorithms, Design, Languages, Perfor-
mance

Keywords distributed algorithms, high-level queries and
updates, incrementalization, logic quantifications, synchro-
nization conditions, yield points

∗ This work was supported in part by NSF under grants CCF-
1414078, CCF-1248184, CCF-0964196, CNS-0831298, and CCF-
0613913; and ONR under grants N000141512208, N000140910651 and
N000140710928.

1. Introduction
Distributed algorithms are at the core of distributed systems.
Yet, developing practical implementations of distributedal-
gorithms with correctness and efficiency assurances remains
a challenging, recurring task.

• Study of distributed algorithms has relied on either pseu-
docode with English, which is high-level but imprecise,
or formal specification languages, which are precise but
harder to understand, lacking mechanisms for building
real distributed systems, or not executable at all.

• At the same time, programming of distributed systems
has mainly been concerned with program efficiency and
has relied mostly on the use of low-level or complex
libraries and to a lesser extent on built-in mechanisms in
restricted programming models.

What’s lacking is (1) a simple and powerful language that
can express distributed algorithms at a high level and yet
has a clear semantics for precise execution as well as for
verification, and is fully integrated into widely used pro-
gramming languages for building real distributed systems,
together with (2) powerful optimizations that can transform
high-level algorithm descriptions into efficient implementa-
tions.

This article describes a very high-level language, DistAlgo,
for clear description of distributed algorithms, combining
advantages of pseudocode, formal specification languages,
and programming languages.

• The main control flow of a process, including sending
messages and waiting on conditions about received mes-
sages, can be stated directly as in sequential programs;
yield points where message handlers execute can be spec-
ified explicitly and declaratively.

• Complex synchronization conditions can be expressed
using high-level queries, especially quantifications, over
message history sequences, without manually writing
message handlers that perform low-level incremental up-
dates and obscure control flows.

DistAlgo supports these features by building on an object-
oriented programming language. We also developed an op-
erational semantics for the language. The result is that dis-
tributed algorithms can be expressed in DistAlgo clearly ata
high level, like in pseudocode, but also precisely, like in for-

1 2016/1/8

http://arxiv.org/abs/1412.8461v3


mal specification languages, facilitating formal verification,
and be executed as part of real applications, as in program-
ming languages.

Unfortunately, programs containing control flows with
synchronization conditions expressed at such a high level
are extremely inefficient if executed straightforwardly: each
quantifier will cause a linear factor in running time, and any
use of the history of messages sent and received will cause
space usage to be unbounded.

We present new optimizations that allow efficient imple-
mentations to be generated automatically, extending previ-
ous optimizations to distributed programs and to the most
challenging quantifications.

• Our method transforms sending and receiving of mes-
sages into updates to message history sequences, in-
crementally maintains the truth values of synchroniza-
tion conditions and necessary auxiliary values as those
sequences are updated, and finally removes those se-
quences as dead code when appropriate.

• To incrementally maintain the truth values of general
quantifications, our method first transforms them into ag-
gregate queries. In general, however, translating nested
quantifications simply into nested queries can incur
asymptotically more space and time overhead than nec-
essary. Our transformations minimize the nesting of the
resulting queries.

• Quantified order comparisons are used extensively in
nontrivial distributed algorithms. They can be incremen-
talized easily when not mixed with other conditions or
with each other. We systematically extract single quanti-
fied order comparisons and transform them into efficient
incremental operations.

Overall, our method significantly improves time complexi-
ties and reduces the unbounded space used for message his-
tory sequences to the auxiliary space needed for incremental
computation. Systematic incrementalization also allows the
time and space complexity of the generated programs to be
analyzed easily.

There has been a significant amount of related research,
as discussed in Section 7. Our work contains three main
contributions:

• A simple and powerful language for expressing dis-
tributed algorithms with high-level control flows and syn-
chronization conditions, an operational semantics, and
full integration into an object-oriented language.

• A systematic method for incrementalizing complex syn-
chronization conditions with respect to all sending and
receiving of messages in distributed programs.

• A general and systematic method for generating effi-
cient implementations of arbitrary logic quantifications
together with general high-level queries.

We have implemented a prototype of the compiler and
the optimizations and experimented with a variety of im-
portant distributed algorithms, including Paxos, Byzantine
Paxos, and multi-Paxos. Our experiments strongly confirm
the benefits of the language and the effectiveness of the op-
timizations.

This article is a revised version of Liu et al. [53]. The
main changes are revised and extended descriptions of the
language and the optimization method, a new formal opera-
tional semantics, an abridged and updated description of the
implementation, and a new description of our experience of
using DistAlgo in teaching.

2. Expressing distributed algorithms
Even when a distributed algorithm appears simple at a high
level, it can be subtle when necessary details are considered,
making it difficult to understand how the algorithm works
precisely. The difficulty comes from the fact that multiple
processes must coordinate and synchronize to achieve global
goals, but at the same time, delays, failures, and attacks can
occur. Even determining the ordering of events is nontrivial,
which is why Lamport’s logical clock [40] is so fundamental
for distributed systems.

Running example. We use Lamport’s distributed mutual
exclusion algorithm [40] as a running example. Lamport de-
veloped it to illustrate the logical clock he invented. The
problem is thatn processes access a shared resource, and
need to access it mutually exclusively, in what is called a
critical section (CS), i.e., there can be at most one process
in a critical section at a time. The processes have no shared
memory, so they must communicate by sending and receiv-
ing messages. Lamport’s algorithm assumes that communi-
cation channels are reliable and first-in-first-out (FIFO).

Figure 1 contains Lamport’s original description of the
algorithm, except with the notation< instead of−→ in
rule 5 (for comparing pairs of timestamps and process ids
using standard pair comparison:(a,b) < (a2,b2) iff a < a2

or a = a2 and b < b2) and with the word “acknowledgment”
added in rule 5 (for simplicity when omitting a commonly
omitted [27, 55] small optimization mentioned in a foot-
note). This description is the most authoritative, is at a high
level, and uses the most precise English we found.

The algorithm satisfies safety, liveness, and fairness, and
has a message complexity of3(n − 1). It is safe in that at
most one process can be in a critical section at a time. It
is live in that some process will be in a critical section if
there are requests. It is fair in that requests are served in the
order of the logical timestamps of the request messages. Its
message complexity is3(n − 1) in that3(n − 1) messages
are required to serve each request.

Challenges.To understand how this algorithm is carried out
precisely, one must understand how each of then processes
acts as bothPi andPj in interactions with all other pro-

2 2016/1/8



The algorithm is then defined by the following five rules. For
convenience, the actions defined by each rule are assumed to
form a single event.

1. To request the resource, processPi sends the message
Tm:Pi requests resourceto every other process, and puts that
message on its request queue, whereTm is the timestamp of the
message.

2. When processPj receives the messageTm:Pi requests
resource, it places it on its request queue and sends a (times-
tamped) acknowledgment message toPi.

3. To release the resource, processPi removes anyTm:Pi

requests resourcemessage from its request queue and sends
a (timestamped)Pi releases resourcemessage to every other
process.

4. When processPj receives aPi releases resourcemessage,
it removes anyTm:Pi requests resourcemessage from its re-
quest queue.

5. ProcessPi is granted the resource when the following two
conditions are satisfied: (i) There is aTm:Pi requests resource
message in its request queue which is ordered before any other
request in its queue by the relation<. (To define the relation<
for messages, we identify a message with the event of sending
it.) (ii) Pi has received an acknowledgment message from every
other process timestamped later thanTm.
Note that conditions (i) and (ii) of rule 5 are tested locallyby
Pi.

Figure 1. Original description in English.

cesses. Each process must have an order of handling all the
events according to the five rules, trying to reach its own goal
of entering and exiting a critical section while also respond-
ing to messages from other processes. It must also keep test-
ing the complex condition in rule 5 as events happen.

State machine based formal specifications have been used
to fill in such details precisely, but at the same time, they are
lower-level and harder to understand. For example, a formal
specification of Lamport’s algorithm in I/O automata [55,
pages 647-648] occupies about one and a fifth pages, most
of which is double-column.

To actually implement distributed algorithms, details
for many additional aspects must be added, for example,
creating processes, letting them establish communication
channels with each other, incorporating appropriate logical
clocks (e.g., Lamport clock or vector clock [56]) if needed,
guaranteeing the specified channel properties (e.g., reliable,
FIFO), and integrating the algorithm with the application
(e.g., specifying critical section tasks and invoking the code
for the algorithm as part of the overall application). Further-
more, how to do all of these in an easy and modular fashion?

Our approach. We address these challenges with the
DistAlgo language, compilation to executable programs, and
especially optimization by incrementalization of expensive
synchronizations, described in Sections 3, 4, and 5, respec-
tively. An unexpected result is that incrementalization let us
discover simplifications of Lamport’s original algorithm in

Figure 1; the simplified algorithm can be expressed using
basically twosend statements, areceive definition, and an
await statement.

Figure 2 shows Lamport’s original algorithm expressed
in DistAlgo; it also includes configuration and setup for
running of 50 processes each trying to enter critical section
at some point during its execution. Figures 3 and 4 show two
alternative optimized programs after incrementalization; all
lines with comments are new except that theawait statement
is simplified. Figure 5 shows the simplified algorithm.

3. DistAlgo Language
To support distributed programming at a high level, four
main concepts can be added to commonly used object-
oriented programming languages, such as Java and Python:
(1) processes as objects, and sending of messages, (2) yield
points and waits for control flows, and handling of received
messages, (3) synchronization conditions using high-level
queries and message history sequences, and (4) configura-
tion of processes and communication mechanisms. DistAlgo
supports these concepts, with options and generalizationsfor
ease of programming, as described below. A formal opera-
tional semantics for DistAlgo is presented in Appendix A.

Processes and sending of messages.Distributed processes
are like threads except that each process has its private mem-
ory, not shared with other processes, and processes commu-
nicate by message passing. Three main constructs are used,
for defining processes, creating processes, and sending mes-
sages.

A process definition is of the following form. It defines a
typeP of processes, by defining a classP that extends class
Process. Theprocess_body is a set of method definitions and
handler definitions, to be described.

class P extends Process:

process_body

A special methodsetup may be defined inprocess_body for
initially setting up data in the process before the process’s
execution starts. A special methodrun() must be defined in
process_body for carrying out the main flow of execution,
and a callstart() starts the execution of the methodrun().
A special variableself refers to the current process.

A statement for process creation is of the following form.
It createsn new processes of typeP , and assigns the single
new process or set of new processes to variablev; expression
node_exp evaluates to a node (a host name or IP address plus
a port number) or a set of nodes, specifying where the new
processes will be created.

v = n new P at node_exp

The numbern and theat clause are optional; the defaults are
1 and the local node, respectively.

A statement for sending messages is of the following
form. It sends the message that is the value of expression

3 2016/1/8



mexp to the process or set of processes that is the value of
expressionpexp.

send mexp to pexp

A message can be any value but is by convention a tuple
whose first component is a string, called a tag, indicating the
kind of the message.

Control flows and handling of received messages.The
key idea is to use labels to specify program points where
control flow can yield to handling of messages and resume
afterwards. Three main constructs are used, for specifying
yield points, handling of received messages, and synchro-
nization.

A yield point preceding a statement is of the following
form, where identifierl is a label. It specifies that point in
the program as a place where control yields to handling of
un-handled messages, if any, and resumes afterwards.

-- l

The labell is optional; it can be omitted when this yield
point is not explicitly referred to in any handler definitions,
defined next.

A handler definition, also calledreceive definition, is of
the following form. It handles, at yield points labeledl1, ...,
lj , un-handled messages that match somemexpk sent from
pexpk, wheremexpk andpexpk are parts of a tuple pattern;
variables in a pattern are bound to the corresponding compo-
nents in the value matched. Thehandler_body is a sequence
of statements to be executed for the matched messages.

receive mexp1 from pexp1, ..., mexpi from pexpi
at l1, ..., lj:

handler_body

The from andat clauses are optional; the defaults are any
process and all yield points, respectively. If thefrom clause
is used, each message automatically includes the process id
of the sender. A tuple pattern is a tuple in which each com-
ponent is a non-variable expression, a variable possibly pre-
fixed with "=", a wildcard, or recursively a tuple pattern.
A non-variable expression or a variable prefixed with “=”
means that the corresponding component of the tuple being
matched must equal the value of the non-variable expres-
sion or the variable, respectively, for pattern matching tosuc-
ceed. A variable not prefixed with “=” matches any value and
becomes bound to the corresponding component of the tu-
ple being matched. A wildcard, written as “_”, matches any
value. Support forreceive mimics common usage in pseu-
docode, allowing a message handler to be associated with
multiple yield points without using method definition and
invocations. As syntactic sugar, areceive that is handled at
only one yield point can be written at that point.

Synchronization and associated actions can be expressed
using general, nondeterministicawait statements. A simple
await statement is of the following form. It waits for the
value of Boolean-valued expressionbexp to become true.

await bexp

A general, nondeterministicawait statement is of the follow-
ing form. It waits for any of the values of expressionsbexp1,
...,bexpk to become true or a timeout after time periodt, and
then nondeterministically selects one of statementsstmt1,
..., stmtk, stmt whose corresponding conditions are satis-
fied to execute. Theor andtimeout clauses are optional.

await bexp1: stmt1
or ...

or bexpk: stmtk
timeout t: stmt

An await statement must be preceded by a yield point; if a
yield point is not specified explicitly, the default is that all
message handlers can be executed at this point.

These few constructs make it easy to specify any process
that has its own flow of control while also responding to
messages. It is also easy to specify any process that only
responds to messages, for example, by writing justreceive

definitions and arun method containing onlyawait false.

Synchronization conditions using high-level queries.Syn-
chronization conditions and other conditions can be ex-
pressed using high-level queries—quantifications, compre-
hensions, and aggregations—over sets of processes and se-
quences of messages. High-level queries are used commonly
in distributed algorithms because (1) they make complex
synchronization conditions clearer and easier to write, and
(2) the complexity of distributed algorithms is measured by
round complexity and message complexity, not time com-
plexity of local processing.

Quantifications are especially common because they di-
rectly capture the truth values of synchronization conditions.
We discovered a number of errors in our initial programs that
were written using aggregations in place of quantifications
before we developed the method to systematically optimize
quantifications. For example, we regularly expressed “v is
larger than all elements ofs” as v > max(s) and either forgot
to handle the case thats is empty or handled it in an ad hoc
fashion. Naive use of aggregate operations likemax may also
hinder generation of more efficient implementations.

We define operations on sets; operations on sequences are
the same except that elements are processed in order, and
square brackets are used in place of curly braces.

• A quantification is a query of one of the following two
forms, called existential and universal quantifications, re-
spectively, plus a set of parameters—variables whose val-
ues are bound before the query. For a query to be well-
formed, every variable in it must be reachable from a
parameter—be a parameter or recursively be the left-
side variable of a membership clause whose right-side
variables are reachable. Given values of parameters, the
query returnstrue iff for some or all, respectively, com-
binations of values of variables that satisfy all member-
ship clausesvi in sexpi, expressionbexp evaluates to

4 2016/1/8



true. When an existential quantification returnstrue, all
variables in the query are also bound to a combination of
values, called a witness, that satisfy all the membership
clauses and conditionbexp.

some v1 in sexp1, ..., vk in sexpk | bexp

each v1 in sexp1, ..., vk in sexpk | bexp

For example, the following query returnstrue iff each
element inS is greater than each element inT.

each x in S, y in T | x > y

For another example, the following query, containing a
nested quantification, returnstrue iff some element inS
is greater than each element inT. Additionally, when the
query returns true, variablex is bound to a witness—an
element inS that is greater than each element inT.

some x in S | each y in T | x > y

• A comprehension is a query of the following form plus a
set of parameters. Given values of parameters, the query
returns the set of values ofexp for all combinations of
values of variables that satisfy all membership clausesvi

in sexpi and conditionbexp.

{ exp: v1 in sexp1, ..., vk in sexpk| bexp }

For example, the following query returns the set of prod-
ucts ofx in S andy in T wherex is greater thany.

{x*y: x in S, y in T | x > y}

We abbreviate{v: v in sexp | bexp} as{v in sexp |

bexp}.

• An aggregation is of the formagg(sexp), whereagg is an
operation, such assize, sum, or max, specifying the kind
of aggregate operations over the set value ofsexp.

• In the query forms above, eachvi can also be a tuple
patternti. Variables inti are bound to the corresponding
components in the matched elements of the value of
sexpi. We omit| bexp whenbexp is true.

We use{} for empty set; uses.add(x) and s.del(x) for
element addition and deletion, respectively; and usex in s

and x not in s for membership test and its negation, re-
spectively. We assume that hashing is used in implementing
sets, and the expected time of set initialization, element addi-
tion and removal, and membership test isO(1). We consider
operations that involve iterations over sets and sequencesto
be expensive; each iteration over a set or sequence incurs a
cost that is linear in the size of the set or sequence. All quan-
tifications, comprehensions, and aggregations are considered
expensive.

DistAlgo has built-in sequencesreceived andsent, con-
taining all messages received and sent, respectively, by a
process.

• Sequencereceived is updated only at yield points; af-
ter a message arrives, it will be handled when execu-
tion reaches the next yield point, by adding the mes-
sage toreceived and running matchingreceive defi-
nitions, if any, associated with the yield point. We use
received(m from p) as a shorthand form from p in

received; from p is optional, but when specified, each
message inreceived automatically includes the process
id of the sender.

• Sequencesent is updated at eachsend statement; each
message sent to a process is added tosent. We use
sent(m to p) as a shorthand form to p in sent; to p

is optional, but when specified,p is the process to which
m was sent as specified in thesend statement.

If implemented straightforwardly,received and sent can
create a huge memory leak, because they can grow unbound-
edly, preventing their use in practical programming. Our
method can remove them by maintaining only auxiliary val-
ues that are needed for incremental computation.

Configuration. One can specify channel types, handling of
messages, and other configuration items. Such specifications
are declarative, so that algorithms can be expressed without
unnecessary implementation details. We describe a few basic
kinds of configuration items.

First, one can specify the types of channels for passing
messages. For example, the following statement configures
all channels to be FIFO.

configure channel = fifo

Other options for channel types includereliable and{reliable,
fifo}. When eitherreliable or fifo is specified, TCP is
used for communication; otherwise, UDP is used. In general,
separate channel types can be specified for communication
among any set of processes; the default is for communication
among all processes.

One can specify how much effort is spent processing
messages at yield points. For example,

configure handling = all

means that all arrived messages that are not yet handled
must be handled before execution of the main flow of control
continues past any yield point. For another example, one can
specify a time limit. One can also specify different handling
effort for different yield points.

Logical clocks [25, 40, 56] are used in many distributed
algorithms. One can specify the logical clock, e.g., Lamport
clock, that is used:

configure clock = Lamport

It configures sending and receiving of messages to update
the clock appropriately. A calllogical_clock() returns the
current value of the clock.

Other language constructs. For other constructs, we use
those in high-level object-oriented languages. We mostly

5 2016/1/8



use Python syntax (indentation for scoping, ’:’ for separa-
tion, ’#’ for comments, etc.), for succinctness, except with a
few conventions from Java (uppercase initial letter for class
names, keywordextends for subclass, keywordnew for ob-
ject creation, and omission ofself, the equivalent ofthis in
Java, when there is no ambiguity), for ease of reading.

Example. Figure 2 shows Lamport’s algorithm expressed
in DistAlgo. The algorithm in Figure 1 corresponds to the
body ofcs and the tworeceive definitions, 16 lines total; the
rest of the program, 14 lines total, shows how the algorithm
is used in an application. The execution of the application
starts with methodmain, which configures the system to run
(lines 25-30). Methodcs and the tworeceive definitions are
executed when needed and follow the five rules in Figure 1
(lines 5-21). Recall that there is an implicit yield point before
theawait statement.

Note that Figure 2 is not meant to replace Figure 1,
but to realize Figure 1 in a precisely executable manner.
Figure 2 is meant to be high-level, compared with lower-
level specifications and programs.

1 class P extends Process:
2 def setup(s):
3 self.s = s # set of all other processes
4 self.q = {} # set of pending requests

5 def cs(task): # for calling task() in CS
6 -- request
7 self.c = logical_clock() # 1 in Fig 1
8 send (’request’, c, self) to s #
9 q.add((’request’, c, self)) #

# wait for own req < others in q
# and for acks from all in s

10 await each (’request’,c2,p2) in q | # 5 in Fig 1
(c2,p2) != (c,self) implies (c,self) < (c2,p2)

11 and each p2 in s | #
some received(’ack’,c2,=p2) | c2 > c

12 task() # critical section
13 -- release
14 q.del((’request’, c, self)) # 3 in Fig 1
15 send (’release’, logical_clock(), self) to s #

16 receive (’request’, c2, p2): # 2 in Fig 1
17 q.add((’request’, c2, p2)) #
18 send (’ack’, logical_clock(), self) to p2 #

19 receive (’release’, _, p2): # 4 in Fig 1
20 for (’request’, c2, =p2) in q: #
21 q.del((’request’, c2, p2)) #

22 def run(): # main method for the process
... # may do non-CS tasks of the proc

23 def task(): ... # define critical section task
24 cs(task) # call cs to do task in CS

... # may do non-CS tasks of the proc

25 def main(): # main method for the application
... # other tasks of the application

26 configure channel = {reliable, fifo}
# use reliable and FIFO channel

27 configure clock = Lamport # use Lamport clock
28 ps = 50 new P # create 50 processes of P class
29 for p in ps: p.setup(ps-{p}) # pass to each proc other procs
30 for p in ps: p.start() # start each proc, call method run

... # other tasks of the application

Figure 2. Original algorithm (lines 6-21) in a complete pro-
gram in DistAlgo.

4. Compiling to executable programs
Compilation generates code to create processes on the spec-
ified machine, take care of sending and receiving messages,
and realize the specified configuration. In particular, it in-
serts appropriate message handlers at each yield point.

Processes and sending of messages.Process creation is
compiled to creating a process on the specified or default
machine and that has a private memory space for its fields.
Each process is implemented using two threads: a main
thread that executes the main flow of control of the process,
and a helper thread that receives and enqueues messages sent
to this process. Constructs involving a set of processes, such
asn new P, can easily be compiled into loops.

Sending a messagem to a processp is compiled into calls
to a standard message passing API. If the sequencesent

is used in the program, we also insertsent.add(m to p).
Calling a method on a remote process object is compiled
into a remote method call.

Control flows and handling of received messages.Each
yield point l is compiled into a call to a message handler
methodl() that updates the sequencereceived, if it is
used in the program, and executes the bodies of thereceive

definitions whoseat clause includesl. Precisely:

1. Eachreceive definition is compiled into a method that
takes a messagem as argument, matchesm against the
message patterns in thereceive clause, and if the match-
ing succeeds, binds the variables in the matched pattern
appropriately, and executes the statement in the body of
thisreceive definition.

2. Methodl() compiled for yield pointl does the follow-
ing: for each newly arrived messagem from p in the
queue of messages, (1) executereceived.add(m from

p) if received is used in the program, (2) call the meth-
ods generated from thereceive definitions whoseat
clause includesl, and (3) removem from the message
queue.

An await statement can be compiled into a synchroniza-
tion using busy-waiting or blocking. For example, for busy-
waiting, a statementawait bexp that immediately follows a
label l is compiled into a calll() followed by while not

bexp: l().

Configuration. Configuration options are taken into ac-
count during compilation in a straightforward way. Libraries
and modules are used as much as possible. For example,
whenfifo or reliable channel is specified, the compiler
can generate code that uses TCP sockets.

5. Incrementalizing expensive synchronizations
Incrementalization transforms expensive computations into
efficient incremental computations with respect to updates
to the values on which the computations depend. It (1) iden-
tifies all expensive queries, (2) determines all updates that

6 2016/1/8



may affect the query result, and (3) transforms the queries
and updates into efficient incremental computations. Much
of incrementalization has been studied previously, as dis-
cussed in Section 7.

The new method here is for (1) systematic handling of
quantifications for synchronization as expensive queries,es-
pecially nested alternating universal and existential quantifi-
cations and quantifications containing complex order com-
parisons and (2) systematic handling of updates caused by
all sending, receiving, and handling of messages in the same
way as other updates in the program. The result is a drastic
reduction of both time and space complexities.

Expensive computations using quantifications. Expen-
sive computations in general involve repetition, including
loops, recursive functions, comprehensions, aggregations,
and quantifications over collections. Optimizations were
studied most for loops, less for recursive functions, com-
prehensions, and aggregations, and least for quantifications,
basically corresponding to how frequently these constructs
have traditionally been used in programming. However,
high-level queries are increasingly used in programming,
and quantifications are dominantly used in writing synchro-
nization conditions and assertions in specifications and very
high-level programs. Unfortunately, if implemented straight-
forwardly, each quantification incurs a cost factor that is
linear in the size of the collection quantified over.

Optimizing expensive quantifications in general is diffi-
cult, which is a main reason that they are not used in prac-
tical programs, not even logic programs, and programmers
manually write more complex and error-prone code. The
difficulty comes from expensive enumerations over collec-
tions and complex combinations of join conditions. We ad-
dress this challenge by converting quantifications into ag-
gregate queries that can be optimized systematically us-
ing previously studied methods. However, a quantification
can be converted into multiple forms of aggregate queries.
Which one to use depends on what kinds of updates must
be handled, and on how the query can be incrementalized
under those updates. Direct conversion of nested quantifica-
tions into nested aggregate queries can lead to much more
complex incremental computation code and asymptotically
worse time and space complexities for maintaining the inter-
mediate query results.

Note that, for an existential quantification, we convert it
to a more efficient aggregate query if a witness is not needed;
if a witness is needed, we incrementally compute the set of
witnesses.

Converting quantifications to aggregate queries. We
present all converted forms here and describe which forms
to use after we discuss the updates that must be handled.
The correctness of all rules presented have been proved us-
ing first-order logic and set theory. These rules ensure that
the value of a resulting query expression equals the value of
the original quantified expression.

Table 1 shows general rules for converting single quantifi-
cations into equivalent queries that use aggregate operation
size. For converting universal quantifications, either rule 2
or 3 could be used. The choice does not affect the asymp-
totic cost, but only small constant factors: rule 2 requires
maintainingsize(s), and rule 3 requires computingnot; the
latter is generally faster unlesssize(s) is already needed for
other purposes, and is certainly faster whennot bexp can be
simplified, e.g., whenbexp is a negation. The rules in Table 1
are general becausebexp can be any Boolean expression, but
they are for converting single quantifications. Nested quan-
tifications can be converted one at a time from inside out, but
the results may be much more complicated than necessary.
For example,

each x in s | some y in t | bexp

would be converted using rule 1 to

each x in s | size({y in t | bexp})!= 0

and then using rule 2 to

size({x in s | size({y in t | bexp}) != 0})

== size(s)

A simpler conversion is possible for this example, using a
rule in Table 2, described next.

Quantification Aggregation
1 some x in s | bexp size({x in s | bexp}) != 0

2
3

each x in s | bexp
size({x in s | bexp}) == size(s)

size({x in s | not bexp}) == 0

Table 1. Rules for converting single quantifications.

Table 2 shows general rules for converting nested quan-
tifications into equivalent, but non-nested, queries that use
aggregate operationsize. These rules yield much simpler
results than repeated use of the rules in Table 1. For exam-
ple, rule 2 in this table yields a much simpler result than
using two rules in Table 1 in the previous example. More
significantly, rules 1, 4, and 5 generalize to any number
of the same quantifier, and rules 2 and 3 generalize to any
number of quantifiers with one alternation. We have not en-
countered more complicated quantifications than these. It is
well known that more than one alternation is rarely used, so
commonly used quantifications can all be converted to non-
nested aggregate queries. For example, in twelve different
algorithms expressed in DistAlgo [53], there are a total of
50 quantifications but no occurrence of more than one alter-
nation.

Table 3 shows general rules for converting single quan-
tifications with a single order comparison, for any linear or-
der, into equivalent queries that use aggregate operationsmax

andmin. These rules are useful becausemax andmin can in
general be maintained incrementally inO(log n) time with
O(n) space overhead. Additionally, when there are only el-
ement additions,max andmin can be maintained most effi-
ciently inO(1) time and space.

7 2016/1/8



Nested Quantifications Aggregation
1 some x in s | some y in t | bexp size({(x,y): x in s, y in t | bexp}) != 0

2 each x in s | some y in t | bexp size({x: x in s, y in t | bexp}) == size(s)

3 some x in s | each y in t | bexp size({x: x in s, y in t | not bexp}) != size(s)

4
5

each x in s | each y in t | bexp
size({(x,y): x in s, y in t | bexp}) == size({(x,y): x in s, y in t})

size({(x,y): x in s, y in t | not bexp}) == 0

Table 2. Rules for converting nested quantifications.

Existential Aggregation
1
2

some x in s | y <= x

some x in s | x >= y
s != {} and y <= max(s)

3
4

some x in s | y >= x

some x in s | x <= y
s != {} and y >= min(s)

5
6

some x in s | y < x

some x in s | x > y
s != {} and y < max(s)

7
8

some x in s | y > x

some x in s | x < y
s != {} and y > min(s)

Universal Aggregation
9
10

each x in s | y <= x

each x in s | x >= y
s == {} or y <= min(s)

11
12

each x in s | y >= x

each x in s | x <= y
s == {} or y >= max(s)

13
14

each x in s | y < x

each x in s | x > y
s == {} or y < min(s)

15
16

each x in s | y > x

each x in s | x < y
s == {} or y > max(s)

Table 3. Rules for single quantified order comparison.

Table 4 shows general rules for decomposing Boolean
combinations of conditions in quantifications, to obtain
quantifications with simpler conditions. In particular, Boolean
combinations of order comparisons and other conditions can
be transformed to extract quantifications each with a sin-
gle order comparison, so the rules in Table 3 can be ap-
plied, and Boolean combinations of inner quantifications
and other conditions can be transformed to extract directly
nested quantifications, so the rules in Table 2 can be applied.
For example,

each x in s | bexp implies y < x

can be converted using rule 8 in Table 4 to

each x in {x in s | bexp} | y < x

which can then be converted using rule 13 of Table 3 to

{x in s | bexp} == {} or y < min({x in s | bexp})

Updates caused by message passing.Recall that the pa-
rameters of a query are variables in the query whose val-
ues are bound before the query. Updates that may affect the
query result include not only updates to the query parame-
ters but also updates to the objects and collections reachable
from the parameter values. The most basic updates are as-
signments to query parameters,v = exp, wherev is a query

Quantification Decomposed Quantifications

1
some x in s

| not e
not each x in s | e

2
some x in s

| e1 and e2

some x in {x in s | e1}

| e2

3
some x in s

| e1 or e2

(some x in s | e1) or

(some x in s | e2)

4
some x in s

| e1 implies e2

(some x in s | not e1) or

(some x in s | e2)

5
each x in s

| not e
not some x in s | e

6
each x in s

| e1 and e2

(each x in s | e1) and

(each x in s | e2)

7
each x in s

| e1 or e2

each x in {x in s | not e1}

| e2

8
each x in s

| e1 implies e2

each x in {x in s | e1}

| e2

Table 4. Rules for decomposing conditions to extract quan-
tified comparisons.

parameter. Other updates are to objects and collections used
in the query. For objects, all updates can be expressed as field
assignments,o.f = exp. For collections, all updates can be
expressed as initialization to empty and element additions
and removals,s.add(x) ands.del(x).

For distributed algorithms, a distinct class of important
updates are caused by message passing. Updates are caused
in two ways:

1. Sending and receiving messages updates the sequences
sent andreceived, respectively. Before incrementaliza-
tion, code is generated, as described in Section 4, to ex-
plicitly perform these updates.

2. Handling of messages by code inreceive definitions
updates variables that are parameters of the queries for
computing synchronization conditions, or that are used
to compute the values of these parameters.

Once these are established, updates can be determined using
previously studied analysis methods, e.g., [31, 48].

Incremental computation. Given expensive queries and
updates to the query parameters, efficient incremental com-
putations can be derived for large classes of queries and up-
dates based on the language constructs used in them or by
using a library of rules built on existing data structures [48,
50, 51, 60].

8 2016/1/8



For aggregate queries converted from quantifications, al-
gebraic properties of the aggregate operations are exploited
to efficiently handle possible updates. In particular, eachre-
sulting aggregate query result can be obtained inO(1) time
and incrementally maintained inO(1) time per update to
the sets maintained and affected plus the time for evaluat-
ing the conditions in the aggregate query once per update.
The total maintenance time at each element addition or dele-
tion to a query parameter is at least a linear factor smaller
than computing from scratch. Additionally, if aggregate op-
erationsmax andmin are used and there are only element ad-
ditions, the space overhead isO(1). Note that ifmax andmin
are used naively when there are element deletions, there may
be an unnecessary overhead ofO(n) space andO(log n) up-
date time from using more sophisticated data structures to
maintain themax or min under element deletion [19, 79, 80].

Incremental computation improves time complexity only
if the total time of repeated expensive queries is larger than
that of repeated incremental maintenance. This is generally
true for incrementalizing expensive synchronization condi-
tions, for two reasons: (1) expensive queries in the synchro-
nization conditions need to be evaluated repeatedly at each
relevant update to the message history, until the condition
becomes true, and (2) incremental maintenance at each such
update is always at least a linear factor faster than computing
from scratch.

To allow the most efficient incremental computation un-
der all given updates, our method transforms each top-level
quantification as follows:

• For non-nested quantifications, if the conditions contain
no order comparisons or there are deletions from the sets
or sequences whose elements are compared, the rules in
Table 1 are used. The space overhead is linear in the sizes
of the sets maintained and being aggregated over.

• For non-nested quantifications, if the conditions contain
order comparisons and there are only additions to the
sets or sequences whose elements are compared, the rules
in Table 4 are used to extract single quantified order
comparisons, and then the rules in Table 3 are used to
convert the extracted quantifications. In this case, the
space overhead is reduced to constant.

• For nested quantifications with one level of nesting, the
rules in Table 4 are used to extract directly nested quan-
tifications, and then the rules in Table 2 are used. If the re-
sulting incremental maintenance has constant-time over-
head maintaining a linear-space structure, we are done. If
it is linear-time overhead maintaining a quadratic-space
structure, and if the conditions contain order compar-
isons, then the rules in Table 4 are used to extract sin-
gle quantified order comparisons, and then the rules in
Table 3 are used. This can reduce the overhead to loga-
rithmic time and linear space.

• In general, multiple ways of conversion may be possible,
besides small constant-factor differences between rules 2
and 3 in Table 1 and rules 4 and 5 in Table 2. In particular,
for nested quantifications with two or more alternations,
one must choose which two alternating quantifiers to
transform first, using rule 2 or 3 in Table 2. We have not
encountered such queries and have not studied this aspect
further. Our general method is to transform in all ways
possible, obtain the time and space complexities for each
result, and choose one with the best time and then space.
Complexities are calculated using the cost model of the
set operations given in Section 3. The number of possible
ways is exponential in the worst case in the size of the
query, but the query size is usually a small constant.

Table 5 summarizes well-known incremental computation
methods for these aggregate queries. The methods are ex-
pressed as incrementalization rules: if a query in the program
matches the query form in the table, and each update to a pa-
rameter of the query in the program matches an update form
in the table, then transform the query into the correspond-
ing replacement and insert at each update the corresponding
maintenance; fresh variables are introduced for each differ-
ent query to hold the query results or auxiliary data struc-
tures. In the third rule,ds stores the argument sets of max
and supports priority queue operations.

Query Replacement Cost
size(s) count O(1)

Updates Inserted Maintenance Cost
s = {} count = 0 O(1)

s.add(x) if x not in s: count += 1 O(1)

s.del(x) if x in s: count -= 1 O(1)

Query Replacement Cost
max(s) maximum O(1)

Updates Inserted Maintenance Cost
s = {x} maximum = x O(1)

s.add(x) if x > maximum: maximum = x O(1)

Query Replacement Cost
max(s) ds.max() O(1)

Updates Inserted Maintenance Cost
s = {} ds = new DS() O(1)

s = {x} ds = new DS(); ds.add(x) O(1)

s.add(x) if x not in s: ds.add(x) O(log |s|)

s.del(x) if x in s: ds.del(x) O(log |s|)

Table 5. Incrementalization rules forsize and formax. The
rule formin is similar to the rule formax.

The overall incrementalization algorithm [48, 50, 60]
introduces new variables to store the results of expensive
queries and subqueries, as well as appropriate additional
values, forming a set of invariants, transforms the queries
and subqueries to use the stored query results and additional
values, and transforms updates to query parameters to also

9 2016/1/8



do incremental maintenance of the stored query results and
additional values.

In particular, if queries are nested, inner queries are trans-
formed before outer queries. Note that a comprehension
such as{x in s | bexp} is incrementalized with respect to
changes to parameters of Boolean expressionbexp as well
as addition and removal of elements ofs; if bexp contains
nested subqueries, then after the subqueries are transformed,
incremental maintenance of their query results become ad-
ditional updates to the enclosing query.

At the end, variables and computations that are dead in
the transformed program are eliminated. In particular, se-
quencesreceived and sent will be eliminated when ap-
propriate, because queries using them have been compiled
into message handlers that only store and maintain values
needed for incremental evaluation of the synchronization
conditions.

Example. In the program in Figure 2, three quantifications
are used in the synchronization condition in theawait state-
ment, and two of them are nested. The condition is copied
below, except that(’ack’,c2,p2) in received is used in
place ofreceived(’ack’,c2,p2).

each (’request’,c2,p2) in q |

(c2,p2) != (c,self) implies (c,self) < (c2,p2)

and each p2 in s |

some (’ack’,c2,=p2) in received | c2 > c

Converting quantifications into aggregate queries as de-
scribed using Tables 1 through 4 proceeds as follows. In the
first conjunct, the universal quantification is converted using
rule 2 or 3 in Table 1, because it contains an order compari-
son with elements ofq and there are element deletions from
q; rule 3 is used here because it is slightly simpler after the
negated condition is simplified. In the second conjunct, the
nested quantification is converted using rule 2 in Table 2.
The resulting expression is:

size({(’request’,c2,p2) in q |

(c,self) > (c2,p2)}) == 0

and

size({p2: p2 in s, (’ack’,c2,p2) in received |

c2 > c}) == size(s)

Updates to parameters of the first conjunct are additions
and removals of requests to and fromq, and also assignment
to c. Updates to parameters of the second conjunct are ad-
ditions of ack messages toreceived, and assignment toc,
after the initial assignment tos.

Incremental computation [48, 50, 51, 60] introduces vari-
ables to store the values of all three aggregations in the con-
verted query, transforms the aggregations to use the intro-
duced variables, and incrementally maintains the stored val-
ues at each of the updates, as follows, yielding Figure 3.

• For the first conjunct, store the set value and thesize

value in two variables, sayearlier andcount1, respec-
tively, so first conjunct becomescount1 == 0; whenc is

assigned a new value, letearlier be q and letcount1
be its size, takingO(|earlier|) time, amortized toO(1)
time when each request inearlier is served; when a
request is added toq, if c is defined and(c,self) >

(c2,p2) holds, add the request toearlier and increment
count1 by 1, takingO(1) time; similarly for deletion
from q. A test of definedness, herec != undefined, is
inserted for any variable that might not be defined in the
scope of the maintenance code.

Note that when(’request’,c,self) in particular is
added to or removed fromq, earlier and count1 are
not updated, because(c,self) > (c,self) is trivially
false.

• For the second conjunct, store the set value and the two
size values in three variables, sayresponded, count2,
andtotal, respectively, so the conjunct becomescount2

== total; when s is initialized in setup, assigntotal
the size ofs, takingO(|s|) time, done only once for each
process; whenc is assigned a new value, letresponded
be {}, and letcount2 be 0, takingO(1) time; when an
ack message is added toreceived, if the associated con-
ditions hold, incrementcount2 by 1, takingO(1) time.
A test of definedness ofc is omitted in the maintenance
for receivingack messages, becausec is always defined
there; this small optimization is incorporated in an incre-
mentalization rule, but it could be done with a data-flow
analysis that covers distributed data flows.

Note that incrementalization uses basic properties about
primitives and libraries. These properties are incorporated
in incrementalization rules. For the running example, the
property used is that a call tological_clock() returns a
timestamp larger than all existing timestamp values, and
thus at the assignment toc in methodcs, we have that
earlier is q and responded is {}. So, an incrementaliza-
tion rule for maintainingearlier specifies that at updatec
= logical_clock(), the maintenance isearlier = q; simi-
larly for maintainingresponded. These simplifications could
be facilitated with data-flow analyses that determine vari-
ables holding logical-clock values and sets holding certain
element types. Incrementalization rules can use any program
analysis results as conditions [51].

Figure 3 shows the optimized program after incremental-
ization of the synchronization condition on lines 10-11 in
Figure 2. All lines with comments are new except that the
synchronization condition in theawait statement is simpli-
fied. The synchronization condition now takesO(1) time,
compared withO(|s|2) if computed from scratch. The trade-
off is the amortizedO(1) time overhead at updates toc and
q and on receiving ofack messages.

Note that the sequencereceived used in the synchro-
nization condition in Figure 2 is no longer used after incre-
mentalization. All values needed for evaluating the synchro-
nization condition are stored in new variables introduced:

10 2016/1/8



earlier, count1, responded, count2, andtotal, a drastic
space improvement from unbounded forreceived to linear
in the number of processes.

1 class P extends Process:
2 def setup(s):
3 self.s = s
4 self.total = size(s) # total num of other procs
5 self.q = {}

6 def cs(task):
7 -- request
8 self.c = logical_clock()
9 self.earlier = q # set of pending earlier reqs

10 self.count1 = size(earlier) # num of pending earlier reqs
11 self.responded = {} # set of responded procs
12 self.count2 = 0 # num of responded procs
13 send (’request’, c, self) to s
14 q.add((’request’, c, self))
15 await count1 == 0

and count2 == total # use maintained results
16 task()
17 -- release
18 q.del((’request’, c, self))
19 send (’release’, logical_clock(), self) to s

20 receive (’request’, c2, p2):
21 if c != undefined: # if c is defined
22 if (c,self) > (c2,p2): # comparison in conjunct 1
23 if (’request’,c2,p2) not in earlier: # if not in
24 earlier.add((’request’, c2, p2)) # add to earlier
25 count1 += 1 # increment count1
26 q.add((’request’, c2, p2))
27 send (’ack’, logical_clock(), self) to p2

28 receive (’ack’, c2, p2): # new message handler
29 if c2 > c: # comparison in conjunct 2
30 if p2 in s: # membership in conjunct 2
31 if p2 not in responded: # if not responded already
32 responded.add(p2) # add to responded
33 count2 += 1 # increment count2

34 receive (’release’, _, p2):
35 for (’request’, c2, =p2) in q:
36 if c != undefined: # if c is defined
37 if (c,self) > (c2,p2): # comparison in conjunct 1
38 if (’request’,c2,p2) in earlier: # if in earlier
39 earlier.del((’request’, c2, p2)) # delete it
40 count1 -= 1 # decrement count1
41 q.del((’request’, c2, p2))

Figure 3. Optimized program after incrementalization. Def-
initions ofrun andmain are as in Figure 2.

Example with naive use of aggregate operation min.Note
that the resulting program in Figure 3 does not need to use
a queue at all, even though a queue is used in the original
description in Figure 1; the variableq is simply a set, and
thus element addition and removal takesO(1) time.

We show that ifmin is used naively, a more sophisti-
cated data structure [19, 79, 80] supporting priority queue
is needed, incurring anO(log n) time update instead of the
O(1) time in Figure 3. Additionally, for a query usingmin to
be correct, special care must be taken to deal with the case
when the argument tomin is empty, because thenmin is un-
defined.

Consider the first conjunct in the synchronization condi-
tion in theawait statement in Figure 2, copied below:

each (’request’,c2,p2) in q |

(c2,p2) != (c,self) implies (c,self) < (c2,p2)

One might have written the following instead, because it
seems natural, especially if universal quantification is not
supported:

(c,self) < min({(c2,p2) : (’request’,c2,p2) in q

| (c2,p2) != (c,self)})

However, that is incorrect, because the argument ofmin may
be empty, in which casemin is undefined.

Instead of resorting to commonly used special values,
such asmaxint, which is ad hoc and error prone in general,
the empty case can be added as the first disjunct of a disjunc-
tion:

{(c2,p2) : (’request’,c2,p2) in q

| (c2,p2) != (c,self)} == {}

or

(c,self) < min({(c2,p2) : (’request’,c2,p2) in q

| (c2,p2) != (c,self)})

In fact, the original universal quantification in the first con-
junct in theawait statement can be converted exactly to this
disjunction by using rule 8 in Table 4 and then rule 13 in Ta-
ble 3. Our method does not consider this conversion because
it leads to a worse resulting program.

Figure 4 shows the resulting program after incremental-
ization of the synchronization condition that uses the dis-
junction above, whereds stores the argument set ofmin and
supports priority queue operations. All commented lines are
new compared to Figure 2 except that the synchronization
condition in theawait statement is simplified. The program
appears shorter than Figure 3 because the long complex code
for maintaining the data structureds is not included; it is in
fact similar to Figure 3 except thatds is used and maintained
instead ofearlier andcount1.

The program in Figure 4 is still a drastic improvement
over the original program in Figure 2, with the synchroniza-
tion condition reduced toO(1) time and withreceived re-
moved, just as in Figure 3. The difference is that maintaining
ds for incrementalizingmin under element addition to and
deletion fromq takesO(log |s|) time, as opposed toO(1)
time for maintainingearlier andcount1 in Figure 3.

Simplifications to the original algorithm. Consider the
original algorithm in Figure 2. Note that incrementalization
determined that there is no need for a process to update
auxiliary values for its own request, in both Figures 3 and 4.
Based on this, we discovered, manually, that updates toq for
a process’s own request do not affect the two uses ofq, on
lines 9 and 35, in Figure 3 and the only use ofq, on line 30,
in Figure 4. So we can remove them in Figures 3 and 4. In
addition, we can remove them on lines 9 and 14 in Figure 2
and remove the test(c2,p2) != (c,self), which becomes
always true, in the synchronization condition, yielding a
simplified original algorithm.

Furthermore, note that the remaining updates toq in Fig-
ure 2 merely maintain pending requests by others, so we can
remove lines 4, 17, 20, 21, and the entirereceive definition

11 2016/1/8



1 class P extends Process:
2 def setup(s):
3 self.s = s
4 self.total = size(s) # total num of other procs
5 self.q = {}
6 self.ds = new DS() # data structure for maint

# requests by other procs
7 def cs(task):
8 -- request
9 self.c = logical_clock()

10 self.responded = {} # set of responded procs
11 self.count = 0 # num of responded procs
12 send (’request’, c, self) to s
13 q.add((’request’, c, self))
14 await (ds.is_empty() or (c,self) < ds.min())

and count == total # use maintained results
15 task()
16 -- release
17 q.del((’request’, c, self))
18 send (’release’, logical_clock(), self) to s

19 receive (’request’, c2, p2):
20 ds.add((c2,p2)) # add to data structure
21 q.add((’request’, c2, p2))
22 send (’ack’, logical_clock(), self) to p2

23 receive (’ack’, c2, p2): # new message handler
24 if c2 > c: # comparison in conjunct 2
25 if p2 in s: # membership in conjunct 2
26 if p2 not in responded: # if not responded already
27 responded.add(p2) # add to responded
28 count += 1 # increment count

29 receive (’release’, _, p2):
30 for (’request’, c2, =p2) in q:
31 ds.del((c2,p2)) # remove from data structure
32 q.del((’request’, c2, p2))

Figure 4. Optimized program with use ofmin after incre-
mentalization. Definitions ofrun andmain are as in Figure 2.

for release messages, by using, for the first conjunct in the
await statement,

each received(’request’,c2,p2) |

not (some received(’release’,c3,=p2) | c3 > c2)

implies (c,self) < (c2,p2)

Figure 5 shows the resulting simplified algorithm. Incre-
mentalizing this program yields essentially the same pro-
grams as in Figures 3 and 4, except that it needs to use the
property that when a message is added toreceived, no mes-
sage from the same process inreceived has a larger times-
tamp, and all messages from the same process inreceived

have a smaller timestamp. This property follows from the
use of logical clock and FIFO channels. The incremental-
ization rules for maintaining the result of the new condition
incorporate this property in a similar way as described for
Figure 3, except it could be facilitated with also a data-flow
analysis that determines the component of a received mes-
sage holding the sender of the message.

6. Implementation and experiments
We have developed a prototype implementation of the com-
piler and optimizations for DistAlgo and evaluated it in im-
plementing a set of well-known distributed algorithms, as
described previously [53]. We have also used DistAlgo in
teaching distributed algorithms and distributed systems,and

1 class P extends Process:
2 def setup(s):
3 self.s = s

4 def cs(task):
5 -- request
6 self.c = logical_clock()
7 send (’request’, c, self) to s
8 await each received(’request’,c2,p2) |

not (some received(’release’,c3,=p2) | c3 > c2)
implies (c,self) < (c2,p2)

9 and each p2 in s |
some received(’ack’,c2,=p2) | c2 > c

10 task()
11 -- release
12 send (’release’, logical_clock(), self) to s

13 receive (’request’, _, p2):
14 send (’ack’, logical_clock(), self) to p2

Figure 5. Simplified algorithm. Definitions ofrun andmain
are as in Figure 2.

students used the language and system in programming as-
signments and course projects. We summarize results from
the former and describe experience with the latter, after an
overview and update about the implementation.

Our DistAlgo implementation takes DistAlgo programs
written in extended Python, applies analyses and optimiza-
tions, especially to the high-level queries, and generatesex-
ecutable Python code. It optionally interfaces with an in-
crementalizer to apply incrementalization before generating
code. Applying incrementalization uses the methods and im-
plementation from previous work: a library of incremental-
ization rules was developed, manually but mostly following
a systematic method [48, 50], and applied automatically us-
ing InvTS [31, 51]. A set of heuristics are currently used to
select the best program generated from incrementalizing dif-
ferently converted aggregate queries.

A more extensive implementation of DistAlgo than the
first prototype [53] has been released and is being gradu-
ally improved [23]. Improved methods and implementation
for incrementalization are also being developed, to replace
manually written incrementalization rules, and to better se-
lect the best transformed programs.

Evaluation in implementing distributed algorithms. We
have used DistAlgo to implement a variety of well-known
distributed algorithms, including twelve different algorithms
for distributed mutual exclusion, leader election, and atomic
commit, as well as Paxos, Byzantine Paxos, and multi-
Paxos, as summarized previously [53]; results of evaluation
using these programs are as follows:

• DistAlgo programs are consistently small, ranging from
22 to 160 lines, and are much smaller than specifications
or programs written in other languages, mostly 1/2 to
1/5 of the size; also we were able to find only a few of
these algorithms written in other languages. Our own best
effort to write Lamport’s distributed mutual exclusion in
programming languages resulted in 272 lines in C, 216

12 2016/1/8



lines in Java, 122 lines in Python, and 99 lines in Erlang,
compared with 32 lines in DistAlgo.

• Compilation times without incrementalization are all un-
der 0.05 seconds on an Intel Core-i7 2600K CPU with
16GB of memory; and incrementalization times are all
under 30 seconds. Generated code size ranges from 1395
to 1606 lines of Python, including 1300 lines of fixed li-
brary code.

• Execution time and space confirm the analyzed asymp-
totic time and space complexities. For example, for Lam-
port’s distributed mutual exclusion, total CPU time is lin-
ear in the number of processes for the incrementalized
program, but superlinear for the original program; for a
fixed number of processes, the memory usage is constant
for the incremental program, but grows linearly with the
number of requests for the original program.

• Compared with running times of our best, manually writ-
ten programs in programming languages, our generated
DistAlgo takes about twice as long as our Python ver-
sion, which takes about twice as long as our Java version,
which takes about twice as long as our C version, which
takes about four times as long as our Erlang version.

Python is well known to be slow compared Java and C, and
we have not focused on optimizing constant factors. Erlang
is significantly faster than C and the rest because of its use
of light-weight threads that is made possible by its being
a functional language. However, among our programs for
Lamport’s distributed mutual exclusion, Erlang is the only
one besides un-incrementalized DistAlgo whose memory
usage for a fixed number of processes grows linearly with
the number of requests.

Programming distributed algorithms at a high level has
also allowed us to discover several improvements to correct-
ness and efficiency aspects of some of the algorithms [52].
For example, in the pseudocode for multi-Paxos [77], in pro-
cessesCommander, waiting forp1b messages containing bal-
lot b from a majority ofacceptors is expressed by start-
ing with awaitfor set initialized toacceptors and then, in
a for ever loop, repeatedly updatingwaitfor and testing
|waitfor| < |acceptors|/2 as eachp1b message contain-
ing ballotb arrives. The test is incorrect if implemented di-
rectly in commonly used languages such as Java, and even
Python until Python 3, because/ is integer division, discard-
ing any fractional result; for example, test1 < 3/2 becomes
false but should betrue. In DistAlgo, the entire code can
simply be written as

await size({a: received((’p2b’,=b) from a)}) >

size(acceptors)/2

using the standard majority test, and it is correct whether/

is for integer or float.

Experience in teaching distributed algorithms. DistAlgo
has also helped us tremendously in teaching distributed

algorithms, because it makes complex algorithms com-
pletely clear, precise, and directly executable. Studentslearn
DistAlgo quickly through even a small programming assign-
ment, despite that most did not know Python before, thanks
to the power and clarity of Python.

In particular, students in distributed systems courses have
used DistAlgo in dozens of course projects, implementing
the core of network protocols and distributed graph algo-
rithms [55]; distributed coordination services Chubby [16]
and Zookeeper [35]; distributed hash tables Kademlia [57],
Chord [74], Pastry [69], Tapestry [82], and Dynamo [22];
distributed file systems GFS [30] and HDFS [73]; dis-
tributed databases Bigtable [17], Cassandra [39], and Mega-
store [12]; distributed processing platform MapReduce [21];
and others.

All distributed programming features were used exten-
sively in students’ programs—easy process creation and
setup and sending of messages, high-level control flows
with receive definitions as well asawait for synchro-
nization, and declarative configurations—with the excep-
tion of queries over message histories, because students had
been trained in many courses to handle events imperatively;
we have not evaluated incrementalization on students’ pro-
grams, because execution efficiency has not been a problem.
Overall, students’ experience helps confirm that DistAlgo
allows complex distributed algorithms and services to be
implemented much more easily than commonly used lan-
guages such as C++ and Java. We summarize two specific
instances below.

In a graduate class in Fall 2012, most of the 28 stu-
dents initially planned to use Java or C++ for their course
projects, because they were familiar with those and wanted
to strengthen their experience of using them instead of using
DistAlgo in implementing distributed systems. However, af-
ter doing one programming assignment using DistAlgo, all
those students switched to DistAlgo for their course projects,
except for one student, who had extensive experience with
C++, including several years of internship at Microsoft Re-
search programming distributed systems.

• This student wrote about 3000 lines of C++, compared
to about 300 lines of DistAlgo written by several other
students who chose the same project of implementing
multi-Paxos and several optimizations. His C++ program
was incomplete, lacking some optimizations that other
students’ DistAgo programs included.

• The student did a re-implementation in DistAlgo quickly
after the course1, confirming that it took about 300 lines.
His biggest surprise was that his C++ program was an
order of magnitude slower than his DistAlgo program.
After several weeks of debugging, he found that it was
due to an improper use of some C++ library function.

1 The student wanted to do research on DistAlgo and so was askedto re-
implement his project in DistAlgo.

13 2016/1/8



The main contrast that the student concluded was the huge
advantage of DistAlgo over C++ in ease of programming
and program understanding, not to mention the unexpected
performance advantage.

In a graduate class in Fall 2014, each team of two students
first implemented a fault-tolerant banking service in two lan-
guages: DistAlgo and another language of their choice other
than Python. We excluded Python as the other language, be-
cause implementing the same service in such closely related
languages would be less educational. The service uses chain
replication [78] to tolerate crash failures. The service offers
only a few simple banking operations (get balance, deposit,
withdrawal, intra-bank transfer, inter-bank transfer), so most
of the code is devoted to distributed systems aspects. The
numbers of teams that chose various other languages are:
Java 15, C++ 3, Go 3, Erlang 2, Node.js 2, Elixir (a variant
of Erlang) 1, JavaScript 1.

• In the last assignment, teams implemented an extension
to the banking service in one language of their choice.
59% of the teams chose DistAlgo for this, even though
most students (about 80%) did not know Python, and
none knew DistAlgo, at the beginning of the class. In
other words, a majority of students decided that imple-
mentation of this type of system is better in DistAlgo,
even compared to languages with which they had more
experience and that are more widely used.

• We asked each team to compare their experiences with
the two languages. Teams consistently reported that de-
velopment in DistAlgo was faster and easier than devel-
opment in the other language (even though most students
did not know Python before the project), and that the
DistAlgo code was significantly shorter. It is no surprise
that Java and C++ require more code, even when students
used existing networking libraries, which they were en-
couraged to do. Comparison with Erlang and Go is more
interesting, because they are high-level languages de-
signed to support distributed programming. For the teams
that chose Erlang, the average DistAlgo and Erlang code
sizes, measured as non-empty non-comment line of code,
are 586 and 1303, respectively. For the teams that chose
Go, the average DistAlgo and Go code sizes are 465 and
1695, respectively.

7. Related work and conclusion
A wide spectrum of languages and notations have been used
to describe distributed algorithms, e.g., [7, 27, 38, 41, 42,
55, 65–67, 76]. At one end, pseudocode with English is
used, e.g., [38], which gives a high-level flow of the algo-
rithms, but lacks the details and precision needed for a com-
plete understanding. At the other end, state machine based
specification languages are used, e.g., I/O automata [36, 55],
which is completely precise, but uses low-level control flows
that make it harder to write and understand the algorithms.

There are also many notations in between these extremes,
some being much more precise or completely precise while
also giving a high-level control flow, e.g., Raynal’s pseu-
docode [65–67] and Lamport’s PlusCal [42]. However, all
of these languages and notations lack concepts and mecha-
nisms for building real distributed applications, and mostof
the languages are not executable.

Many programming languages support programming of
distributed algorithms and applications. Most support dis-
tributed programming through messaging libraries, ranging
from relatively simple socket libraries to complex libraries
such as MPI [58]. Many support Remote Procedure Call
(RPC) or Remote Method Invocation (RMI), which allows
a process to call a subroutine in another process without the
programmer coding the details for this. Many also support
asynchronous method invocation (AMI), which allows the
caller to not block and get the reply later. Some program-
ming languages, such as Erlang [24, 43], based on the ac-
tor model [2], have support for message passing and process
management built into the language. There are also other
well-studied languages for distributed programming, e.g.,
Argus [44], Lynx [71], SR [5], Concert/C [8], and Emer-
ald [15]. These languages all lack constructs for expressing
control flows and complex synchronization conditions at a
much higher level; such high-level constructs are extremely
difficult to implement efficiently. DistAlgo’s construct for
declaratively and precisely specifying yield points for han-
dling received messages is a new feature that we have not
seen in other languages. So is DistAlgo’s support of history
variables in high-level synchronization conditions in non-
deterministicawait in a programming language. Our sim-
ple combination of synchronousawait and asynchronous
receive allows distributed algorithms to be expressed eas-
ily and clearly.

There has been much work on producing executable im-
plementations from formal specifications, e.g., from process
algebras [34], I/O automata [29], Unity [32], and Seuss [37],
as well as from more recently proposed high-level lan-
guages for distributed algorithms, e.g., Datalog-based lan-
guages Meld [6], Overlog [4], and Bloom [13], a Prolog-
based language DAHL [54], and a logic-based language
EventML [14, 62]. An operational semantics was studied
recently for a variant of Meld, called Linear Meld, that al-
lows updates to be encoded more conveniently than Meld
by using linear logic [20]. Compilation of DistAlgo to ex-
ecutable implementations is easy because it is designed to
be so and DistAlgo is given an operational semantics. High-
level queries and quantifications used for synchronization
conditions can be compiled into loops straightforwardly, but
they may be extremely inefficient. None of these prior works
study powerful optimizations of quantifications. Efficiency
concern is a main reason that similar high-level language
constructs, whether for queries or assertions, are rarely used,
if supported at all, in commonly used languages.

14 2016/1/8



Incrementalization has been studied extensively, e.g., [45,
64], both for doing it systematically based on languages, and
in applying it in an ad hoc fashion to specific problems.
However, all systematic incrementalization methods based
on languages have been for centralized sequential programs,
e.g., for loops [3, 28, 49], set languages [33, 50, 60], recur-
sive functions [1, 46, 63], logic rules [47, 70], and object-
oriented languages [48, 59, 68]. This work is the first to ex-
tend incrementalization to distributed programs to support
high-level synchronization conditions. This allows the large
body of previous work on incrementalization, especially on
sets and sequences, to be used for optimizing distributed pro-
grams.

Quantifications are the centerpiece of first-order logic,
and are dominantly used in writing synchronization condi-
tions and assertions in specifications, but there are few re-
sults on generating efficient implementations of them. In
the database area, despite extensive work on efficient imple-
mentation of high-level queries, efficient implementationof
quantification has only been studied in limited scope or for
extremely restricted query forms, e.g., [9–11, 18]. In logic
programming, implementations of universal quantification
are based on variants of brute-force Lloyd-Topor transfor-
mations, e.g., [26, 61]; even state-of-the-art logic program-
ming systems, e.g., [75], do not support universal quantifica-
tion. Our method is the first general and systematic method
for incrementalizing arbitrary quantifications. Althoughthey
are much more challenging to optimize than set queries, our
method combines a set of general transformations to trans-
form them into aggregate queries that can be most efficiently
incrementalized using the best previous methods.

To conclude, this article presents a powerful language and
method for programming and optimizing distributed algo-
rithms. There are many directions for future work, from for-
mal verification on the theoretical side, to generating codein
lower-level languages on the practical side, with many ad-
ditional analyses and optimizations in between. In particu-
lar, a language with a high level of abstraction also facili-
ates formal verification, of not only the high-level programs,
but also the generated efficient implementations when they
are generated through systematic optimizations. Besides de-
veloping systematic optimizations, we have started to study
formal verification of distributed algorithms and their imple-
mentations by starting with their high-level, concise descrip-
tions in DistAlgo.

APPENDIX

A. Semantics of DistAlgo
We give an abstract syntax and operational semantics for a
core language for DistAlgo. The operational semantics is a
reduction semantics with evaluation contexts [72, 81].

A.1 Abstract Syntax

The abstract syntax is defined in Figures 6 and 7. We use
some syntactic sugar in sample code, e.g., we use infix nota-
tion for some binary operators, such asand andis.

Notation.

• A symbol in the grammar is a terminal symbol if it starts
with a lower-case letter.

• A symbol in the grammar is a non-terminal symbol if it
starts with an upper-case letter.

• In each production, alternatives are separated by a line-
break.

• * after a non-terminal means “0 or more occurrences”.

• + after a non-terminal means “1 or more occurrences”.

• tθ denotes the result of applying substitutionθ to t. We
represent substitutions as functions from variables to ex-
pressions.

Well-formedness requirements on programs.

1. The top-level method in a program must be named
main. It gets executed in an instance of the pre-defined
Process class when the program starts.

2. Each label used in areceive definition must be the label
of some statement that appears in the same class as the
receive definition.

3. Invocations of methods defined usingdef appear only in
method call statements. Invocations of methods defined
usingdefun appear only in method call expressions.

Constructs whose semantics is given by translation.

1. Constructors for all classes, andsetup() methods for
process classes, are eliminated by translation into ordi-
nary methods that assign to the fields of the objects.

2. A method call or field assignment that does not explicitly
specify the target object is translated into a method call
or field assignment, respectively, onself.

3. An await statement without an explicitly specified
label—in other words, the associated label is the empty
string—is translated into anawait statement with an ex-
plicitly specified label, by generating a fresh label name
ℓ, replacing the empty label in thatawait statement with
ℓ, and insertingℓ in everyat clause in the class contain-
ing theawait statement.

4. The Boolean operatorsand andeach are eliminated as
follows: e1 and e2 is replaced withnot(not(e1) or

not(e2)), andeach iter | e is replaced withnot(some
iter | not(e)).

5. An aggregate is eliminated by translation into a compre-
hension followed by afor loop that iterates over the set

15 2016/1/8



Program ::= Configuration ProcessClass* Method

ProcessClass ::= class ClassName extendsClassName : Method* ReceiveDef *

ReceiveDef ::= receive ReceivePattern+ at Label+ : Statement

receive ReceivePattern+ : Statement

ReceivePattern ::= Pattern from InstanceVariable

Method ::= defMethodName(Parameter*) Statement

defunMethodName(Parameter*) Expression

Statement ::=
InstanceVariable = Expression

InstanceVariable = new ClassName

InstanceVariable = { Pattern : Iterator* | Expression }

Statement ; Statement

if Expression: Statement else: Statement

for Iterator: Statement

while Expression: Statement

Expression.MethodName(Expression*)
send Tuple to Expression

Label await Expression : Statement AnotherAwaitClause*
Label await Expression : Statement AnotherAwaitClause* timeout Expression

skip

Expression ::= Literal

Parameter

InstanceVariable

Tuple

Expression.MethodName(Expression*)
UnaryOp(Expression)

BinaryOp(Expression,Expression)

isinstance(Expression,ClassName)

and(Expression,Expression) / / conjunction (short-circuiting)
or(Expression,Expression) / / disjunction (short-circuiting)
each Iterator | Expression

some Iterator | Expression

Tuple ::= (Expression*)

Figure 6. Abstract syntax, Part 1.

returned by the comprehension. Thefor loop updates an
accumulator variable using the aggregate operator.

6. Iterators containing tuple patterns are rewritten as itera-
tors without tuple patterns, as follows.

• Consider the existential quantificationsome (e1, . . . , en)

in s | b. Let x be a fresh variable. Letθ be the
substitution that replacesei with select(x,i) for
eachi such thatei is a variable not prefixed with
“=”. Let {j1, . . . , jm} contain the indices of the
constants and the variables prefixed with “=” in
(e1, . . . , en). Let ēj denoteej after removing the “=”

prefix, if any. The quantification is rewritten assome
x in s | isTuple(x) and len(x) is n and

(select(x,j1), . . ., select(x,jm)) is (ēj1,

. . ., ējm) and bθ.

• Consider the loopfor (e1, . . . , en) in e : s. Let
x andS be fresh variables. Let{i1, . . . , ik} contain
the indices in(e1, . . . , en) of variables not prefixed
with “=”. Let θ be the substitution that replacesei
with select(x,i) for each i in {i1, . . . , ik}. Let
{j1, . . . , jm} contain the indices in(e1, . . . , en) of
the constants and the variables prefixed with “=”. Let

16 2016/1/8



UnaryOp ::= not / / Boolean negation
isTuple / / test whether a value is a tuple
len / / length of a tuple

BinaryOp ::= is / / identity-based equality
plus / / sum
select / / select(t,i) returns thei’th component of tuplet

Pattern ::= InstanceVariable

TuplePattern

TuplePattern ::= (PatternElement*)

PatternElement ::= Literal

InstanceVariable

=InstanceVariable

Iterator ::= Pattern in Expression

AnotherAwaitClause ::= or Expression : Statement

Configuration ::= configurationChannelOrder ChannelReliability ...
ChannelOrder ::= fifo

unordered

ChannelReliability ::= reliable

unreliable

ClassName ::= ...
MethodName ::= ...
Parameter ::= ...
InstanceVariable ::= Expression .Field
Field ::= ...
Label ::= ...
Literal ::= BooleanLiteral

IntegerLiteral

...
BooleanLiteral ::= true

false

IntegerLiteral ::= ...

Figure 7. Abstract syntax, Part 2. Ellipses (“...”) are used for common syntactic categories whose details are unimportant.

ēj denoteej after removing the “=” prefix, if any.
Note thate may denote a set or sequence, and dupli-
cate bindings for the tuple of variables(ei1 , . . . , eik)
are filtered out ife is a set but not ife is a sequence.
The loop is rewritten as the code in Figure 8.

7. Comprehensions in which some variables are prefixed
with = are translated into comprehensions without such
prefixing. Specifically, for a variablex prefixed with=
in a comprehension, replace occurrences of=x in the
comprehension with occurrences of a fresh variabley,
and add the conjuncty=x to the Boolean condition.

8. Comprehensions are statically eliminated as follows. The
comprehensionℓ x = { e | x1 in e1, . . ., xn in

en | b }, whereℓ is a label and eachxi is a pattern,
is replaced with

ℓ x = new Set

for x1 in e1:

...

for xn in en:

if b:

x.add(e)

17 2016/1/8



S = e

if isinstance(S,Set):

S = { x : x in S | isTuple(x) and len(x) is n

and (select(x,j1), . . ., select(x,jm)) is (ēj1, . . ., ējm) }

for x in S:

sθ

else: / / S is a sequence
for x in S:

if (isTuple(x) and len(x) is n

and (select(x,j1), . . ., select(x,jm)) is (ēj1, . . ., ējm):

sθ

else:

skip

Figure 8. Translation offor loop to eliminate tuple pattern.

9. Wildcards are eliminated from tuple patterns by replacing
each occurrence of wildcard with a fresh variable.

10. Remote method invocation, i.e., invocation of a method
on another process after that process has been started, is
translated into message communication.

Notes.

1. ClassName must includeProcess. Process is a pre-
defined class; it should not be defined explicitly.Process

has fieldssent and received, and it has a method
start.

2. The grammar allowsreceive definitions to appear in
classes that do not extendProcess, but suchreceive
definitions are useless, so it would be reasonable to make
them illegal.

3. The grammar does not allow labels on statements other
thanawait. A labelℓ on a statements other thanawait
is treated as syntactic sugar for labelℓ on await true

: skip followed by statements.

4. ClassName must includeSet andSequence. Sets and
sequences are treated as objects, because they are mu-
table. These are predefined classes that should not be
defined explicitly. Methods ofSet include add, del,
contains, min, max, andsize. Methods ofSequence
includeadd (which adds an element at the end of the se-
quence),contains, andlength. We give the semantics
explicitly for a few of these methods; the others are han-
dled similarly.

5. Tuples are treated as immutable values, not as mutable
objects.

6. All expressions are side-effect free. For simplicity, we
treat quantifications as expressions, so existential quan-
tifications do not have the side-effect of binding vari-
ables to a witness. Such existential quantifications could
be added as a new form of statement.

7. Object creation and comprehension are statements, not
expressions, because they have side-effects. Comprehen-
sion has the side-effect of creating a newSet.

8. Parameter must includeself. The values of method pa-
rameters cannot be updated (e.g., using assignment state-
ments). For brevity, local variables of methods are omit-
ted from the core language. Consequently, assignment is
allowed only for instance variables.

9. Semantically, thefor loop copies the contents of a (mu-
table) sequence or set into an (immutable) tuple before
iterating over it, to ensure that changes to the sequence
or set by the loop body do not affect the iteration. An
implementation could use optimizations to achieve this
semantics without copying when possible.

10. For brevity, among the standard arithmetic operations (+,
-, *, etc.), we include only one representative operation
in the abstract syntax and semantics; others are handled
similarly.

11. The semantics below does not model real-time, so time-
outs in await statements are simply allowed to occur
non-deterministically.

12. We omit the concept of node (process location) from
the semantics, and we omit the node argument of the
constructor when creating instances of process classes,
because process location does not affect other aspects of
the semantics.

13. We omit configure handling statements from the
syntax. The semantics is forconfigure handling =

all. Semantics for otherconfigure handling options
can easily be added.

14. To support initialization of a process by its parent, a
process can access fields of another process and invoke
methods on another process before the latter process is
started.

15. We require that all messages are tuples. This is an
inessential restriction; it slightly simplifies the specifica-

18 2016/1/8



tion of pattern matching between messages andreceive

patterns.

16. A process’ssent sequence contains pairs of the form
(m, d), wherem is a message sent by the process to
destinationd. A process’sreceived sequence contains
pairs of the form(m, s), wherem is a message received
by the process from senders.

A.2 Semantic Domains

The semantic domains are defined in Figure 9.

Notation.

• D∗ contains finite sequences of values from domainD.

• Set(D) contains finite sets of values from domainD.

• D1 ⇀ D2 contains partial functions fromD1 to D2.
dom(f) is the domain of a partial functionf .

Bool = {true, false}

Int = ...

Address = ...

ProcessAddress = ...

Tuple = Val∗

Val = Bool ∪ Int ∪Address ∪ Tuple

SetOfVal = Set(Val)

SeqOfVal = Val∗

Object = (Field ⇀ Val) ∪ SetOfVal ∪ SeqOfVal

HeapType = Address ⇀ ClassName

LocalHeap = Address ⇀ Object

Heap = ProcessAddress ⇀ LocalHeap

ChannelStates = ProcessAddress × ProcessAddress

⇀ Tuple∗

MsgQueue = (Tuple × ProcessAddress)∗

State = (ProcessAddress ⇀ Statement)

×HeapType ×Heap × ChannelStates

×(ProcessAddress ⇀ MsgQueue)

Figure 9. Semantic domains. Ellipses are used for semantic
domains of primitive values whose details are standard or
unimportant.

Notes.

• We requireProcessAddress ⊆ Address .

• For a ∈ ProcessAddress andh ∈ Heap, h(a) is the
local heap of processa. For a ∈ Address and ht ∈
HeapType, ht(a) is the type of the object with address
a. For convenience, we use a single (global) function for

HeapType in the semantics, even though the information
in that function is distributed in the same way as the heap
itself in an implementation.

• The MsgQueue associated with a process by the last
component of a state contains messages, paired with the
sender, that have arrived at the process but have not yet
been handled by matchingreceive definitions.

A.3 Extended Abstract Syntax

Section A.1 defines the abstract syntax of programs that can
be written by the user. Figure 10 extends the abstract syntax
to include additional forms into which programs may evolve
during evaluation. Only the new productions are shown here;
all of the productions given above carry over unchanged.

Expression ::= Address
Address.Field

Statement ::= for Variableintuple Tuple: Statement

Figure 10. Extensions to the abstract syntax.

The statementfor v intuple t: s iterates over the
elements of tuplet, in the obvious way.

A.4 Evaluation Contexts

Evaluation contexts, also called reduction contexts, are used
to identify the next part of an expression or statement to be
evaluated. An evaluation context is an expression or state-
ment with a hole, denoted[], in place of the next sub-
expression or sub-statement to be evaluated. Evaluation con-
texts are defined in Figure 11.

A.5 Transition Relations

The transition relation for expressions has the formht : h ⊢
e → e′, wheree ande′ are expressions,ht ∈ HeapType ,
andh ∈ LocalHeap. The transition relation for statements
has the formσ → σ′ whereσ ∈ State andσ′ ∈ State.

Both transition relations are implicitly parameterized by
the program, which is needed to look up method definitions
and configuration information. The transition relation for
expressions is defined in Figure 12. The transition relation
for statements is defined in Figures 13–14.

Notation and auxiliary functions.

• In the transition rules,a matches an address;v matches a
value (i.e., an element ofVal ); andℓ matches a label.

• For an expression or statemente, e[x := y] denotese
with all occurrences ofx replaced withy.

• A function matches the patternf [x → y] if f(x) equals
y.

• For a functionf , f [x := y] denotes the function that is
the same asf except that it mapsx to y.

19 2016/1/8



Val ::= Literal

Address

(Val*)
C ::= []

(Val*,C ,Expression*)
C .MethodName(Expression*)
Address .MethodName(Val*,C ,Expression*)
UnaryOp(C )
BinaryOp(C ,Expression)
BinaryOp(Val ,C )
isinstance(C ,ClassName)
or(C ,Expression)
some Pattern in C | Expression

C .Field = Expression

Address .Field = C

InstanceVariable = C

C ; Statement

if C: Statement else: Statement

for InstanceVariable in C: Statement

for InstanceVariable intuple Tuple: C

send C to Expression

send Val to C

await Expression : Statement AnotherAwaitClause*
timeout C

Figure 11. Evaluation contexts.

• f0 denotes the empty partial function, i.e., the partial
function whose domain is the empty set.

• For a (partial) functionf , f ⊖ a denotes the function that
is the same asf except that it has no mapping fora.

• Sequences are denoted with angle brackets, e.g.,〈0, 1, 2〉 ∈
Int∗.

• s@t is the concatenation of sequencess andt.

• tail(s) is the tail of sequences, i.e., the sequence ob-
tained by removing the first element ofs.

• first(s) is the first element of sequences.

• length(s) is the length of sequences.

• extends(c1, c2) holds iff classc1 is a descendant of class
c2 in the inheritance hierarchy.

• Forc ∈ ClassName, new(c) returns a new instance ofc.

new(c) =






{} if c = Set

〈〉 if c = Sequence

f0 otherwise

• Form ∈ MethodNameandc ∈ ClassName,methodDef (c,
m, def ) holds if (1) classc defines methodm, anddef is
the definition ofm in c, or (2) c does not definem, and
def is the definition ofm in the nearest ancestor ofc in
the inheritance hierarchy that definesm.

• For h, h̄, h̄′ ∈ LocalHeap andht, ht′ ∈ HeapType and
v, v̄ ∈ Val , isCopy (v, h, h̄, ht, v̄, h̄′, ht′) holds if (1)v is
a value in a process with local heaph (i.e., addresses in
v are evaluated with respect toh), (2) v̄ is a copy ofv for
a process whose local heap wash̄ beforev was copied
into it and whose local heap is̄h′ afterv is copied into it,
i.e., v̄ is the same asv except that, instead of referencing
objects inh, it references newly created copies of those
objects inh̄′, and (3)h̄′ andht′ are versions of̄h and
ht updated to reflect the creation of those objects. As an
exception, because process addresses are used as global
identifiers, process addresses inv are copied unchanged
into v̄, and new copies of process objects are not created.
We give auxiliary definitions and then a formal definition
of isCopy .

For v ∈ Val , let addrs(v, h) denote the set of addresses
that appear inv or in any objects or values reachable from
v with respect to local heaph; formally,

a ∈ addrs(v, h) =
(v ∈ Address ∧ v = a)
∨ (v ∈ dom(h) ∧ h(v) ∈ Field ⇀ Val

∧ (∃f ∈ dom(h(v)).a ∈ addrs(h(v)(f), h)))
∨ (v ∈ dom(h) ∧ h(v) ∈ SetOfVal ∪ SeqOfVal

∧ (∃v′ ∈ h(v).a ∈ addrs(v′, h)))
∨ (∃v1, . . . , vn ∈ Val . v = (v1, . . . , vn)

∧ ∃i ∈ [1..n]. a ∈ addrs(vi, h))

Forv, v̄ ∈ Val andf ∈ Address ⇀ Address , subst(v, v̄, f)
holds if v is obtained fromv̄ by replacing each occur-
rence of an addressa in dom(f) with f(a) (informally,
f maps addresses of new objects inv̄ to addresses of
corresponding old objects inv); formally,

subst(v, v̄, f) =
(v ∈ Bool ∪ Int ∪ (Address \ dom(f)) ∧ v̄ = v)
∨ (v ∈ dom(f) ∧ f(v̄) = v)
∨ (∃v1, . . . , vn, v̄1, . . . , v̄n.

v = (v1, . . . , vn) ∧ v̄ = (v̄1, . . . , v̄n)
∧ (∀i ∈ [1..n]. subst(vi, v̄i, f)))

Similarly, for o, ō ∈ Object and f ∈ Address ⇀

Address , subst(o, ō, f) holds if o is obtained from̄o by
replacing each occurrence of an addressa in dom(f)

with f(a). For setsS andS′, let S
1−1
→ S′ be the set of

bijections betweenS andS′.

20 2016/1/8



Finally, isCopy is defined as follows (intuitively,A con-
tains the addresses of the newly allocated objects):

isCopy (v, h, h̄, ht, v̄, h̄′, ht′) =
∃A ⊂ Address \ ProcessAddress .

∃f ∈ A
1−1
→ (addrs(v, h) \ ProcessAddress).

A ∩ dom(ht) = ∅
∧ dom(ht′) = dom(ht) ∪A

∧ dom(h̄′) = dom(h̄) ∪ A

∧ (∀a ∈ dom(ht). ht′(a) = ht(a))
∧ (∀a ∈ dom(h̄). h̄′(a) = h̄(a))
∧ (∀a ∈ A. ht′(a) = ht(f(a))

∧ subst(h(a), h̄′(a), f))

• For m ∈ Val , a ∈ ProcessAddress , ℓ ∈ Label ,
h ∈ LocalHeap, and areceive definition d, if mes-
sagem can be received froma at label ℓ by a pro-
cess with local heaph usingreceive definitiond, then
matchRcvDef (m, a, ℓ, h, d) returns the appropriately in-
stantiated body ofd. Specifically, if (1) eitherd lacks an
at clause, ord has anat clause that includesℓ, and
(2) d contains areceive patternP from x such that
there exists a substitutionθ such that (2a)m = Pθ

and (2b)θ(y) = h(y) for every variabley prefixed with
“=” in P , then, lettingθ be the substitution obtained us-
ing the firstreceive pattern ind for which (2) holds,
matchRcvDef (m, a, ℓ, h, d) returnssθ[x := a], where
s is the body ofd (i.e., the statement that appears ind).
Otherwise,matchRcvDef (m, a, ℓ, h, d) returns⊥.

• For m ∈ Val , a ∈ ProcessAddress , ℓ ∈ Label , c ∈
ClassName, andh ∈ LocalHeap, if messagem can be
received froma at labelℓ in classc by a process with
local heaph, thenreceiveAtLabel((m, a), ℓ, c, h) returns
a statement that should be executed when receivingm in
that context.

Specifically, if classc contains areceive definition d

such thatmatchRcvDef (m, a, ℓ, h, d) is not⊥, then, let-
ting d1, . . . , dn be thereceive definitionsd in c such
that matchRcvDef (m, a, ℓ, h, d) is not ⊥, and letting
si = matchRcvDef (m, a, ℓ, h, di), receiveAtLabel((m, a), ℓ,
c, h) returns{s1, . . . , sn}. Otherwise,receiveAtLabel((m, a), ℓ,
c, h) returnsskip.

A.6 Executions

An execution is a sequence of transitionsσ0 → σ1 → σ2 →
· · · such thatσ0 is an initial state. The set of initial states
is defined in Figure 15. Intuitively,ap is the address of the
initial process,ar is the address of thereceived sequence
of the initial process, andas is the address of thesent
sequence of the initial process.

Informally, execution of the statement initially associated
with a process may eventually (1) terminate (i.e., the state-
ment associated with the process becomesskip, indicating
that there is nothing left for the process to do), (2) get stuck

Init =
{(P, ht, h, ch,mq) ∈ State |
∃ ap ∈ ProcessAddress ,

ar ∈ Address \ ProcessAddress ,
as ∈ Address \ ProcessAddress .
ar 6= as
∧ P = f0[ap := ap.main()]
∧ht=f0[ap :=Process, ar :=Sequence, as :=Sequence]
∧ h = f0[ap := ha]
∧ ch=(λ(a1, a2)∈ProcessAddress×ProcessAddress. 〈〉)
∧mq = (λa ∈ ProcessAddress . 〈〉)
whereha = f0[ap := op, ar := 〈〉, as := 〈〉]

op = f0[received := ar, sent := as]}

Figure 15. Initial states.

(i.e., the statement associated with the process is notskip,
and the process has no enabled transitions) due to an unsatis-
fiedawait statement or an error (e.g., the statement contains
an expression that tries to select a component from a value
that is not a tuple, or the statement contains an expression
that tries to read the value of a non-existent field), or (3) run
forever due to an infinite loop or infinite recursion.

Acknowledgments
We thank Michael Gorbovitski for supporting the use of
InvTS for automatic incrementalization of DistAlgo pro-
grams. We are grateful to the following people for their
helpful comments and discussions: Ken Birman, Andrew
Black, Jon Brandvein, Wei Chen, Ernie Cohen, John Field,
Georges Gonthier, Leslie Lamport, Nancy Lynch, Lambert
Meertens, Stephan Merz, Don Porter, Michel Raynal, John
Reppy, Emin Gün Sirer, Doug Smith, Gene Stark, Robbert
van Renesse, and anonymous reviewers.

References
[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive func-

tional programming. ACM Transactions on Programming
Languages and Systems, 28(6):990–1034, 2006.

[2] G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986.

[3] F. E. Allen, J. Cocke, and K. Kennedy. Reduction of operator
strength. In S. S. Muchnick and N. D. Jones, editors,Program
Flow Analysis, pages 79–101. Prentice-Hall, 1981.

[4] P. Alvaro, T. Condie, N. Conway, J. Hellerstein, and R. Sears.
I do declare: Consensus in a logic language.ACM SIGOPS
Operating Systems Review, 43(4):25–30, 2010.

[5] G. R. Andrews and R. A. Olsson.The SR Programming
Language: Concurrency in Practice. Benjamin Cummings,
1993.

[6] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai,and
J. D. Campbell. A language for large ensembles of indepen-

21 2016/1/8



/ / field access
ht : h ⊢ a.f → h(a)(f) if a ∈ dom(h) ∧ f ∈ dom(h(a))

/ / invoke method in user-defined class
ht : h ⊢ a.m(v1, . . . , vn) → e[self := a, x1 := v1, . . . , xn := vn]
if a ∈ dom(h) ∧methodDef (ht(a),m, defunm(x1, . . . , xn) e)

/ / invoke method in pre-defined class (representative examples)
ht : h ⊢ a.contains(v1) → true if a ∈ dom(h) ∧ ht(a) = Set ∧ v1 ∈ h(a)
ht : h ⊢ a.contains(v1) → false if a ∈ dom(h) ∧ ht(a) = Set ∧ v1 6∈ h(a)

/ / unary operations
ht : h ⊢ not(true)→ false

ht : h ⊢ not(false)→ true

ht : h ⊢ isTuple(v) → true if v is a tuple
ht : h ⊢ isTuple(v) → false if v is not a tuple
ht : h ⊢ len(v) → n if v is a tuple withn components

/ / binary operations
ht : h ⊢ is(v1, v2) → true if v1 andv2 are the same value

ht : h ⊢ plus(v1, v2) → v3 if v1 ∈ Int ∧ v2 ∈ Int ∧ v3 = v1 + v2

ht : h ⊢ select(v1, v2) → v3
if v2 ∈ Int ∧ v2 > 0 ∧ (v1 is a tuple with at leastv2 components)∧ (v3 is thev2’th component ofv1)

/ / isinstance
ht : h ⊢ isinstance(a, c) → true if ht(a) = c

ht : h ⊢ isinstance(a, c) → false if ht(a) 6= c

/ / disjunction
ht : h ⊢ or(true, e) → true

ht : h ⊢ or(false, e) → e

/ / existential quantification
ht : h ⊢ some x in a | e → e[x := v1] or · · · or e[x := vn]
if (ht(a) = Sequence∧ h(a) = 〈v1, . . . , vn〉) ∨ (ht(a) = Set ∧ 〈v1, . . . , vn〉 is a linearization ofh(a))

Figure 12. Transition relation for expressions.

dently executing nodes. InProceedings of the 25th Inter-
national Conference on Logic Programming, pages 265–280.
Springer, 2009.

[7] H. Attiya and J. Welch.Distributed Computing: Fundamen-
tals, Simulations, and Advanced Topics. Wiley, 2nd edition,
2004.

[8] J. S. Auerbach, A. P. Goldberg, G. S. Goldszmidt, A. S. Gopal,
M. T. Kennedy, J. R. Rao, and J. R. Russell. Concert/C:
A language for distributed programming. InProceedings
of the USENIX Winter 1994 Technical Conference. USENIX
Association, 1994.

[9] A. Badia. Question answering and database querying: Bridg-
ing the gap with generalized quantification.Journal of Applied
Logic, 5(1):3–19, 2007.

[10] A. Badia, M. Gyssens, and D. Van Gucht. Query languages
with generalized quantifiers. In R. Ramakrishnan, editor,
Applications of Logic in Databases. Kluwer Academic, 1994.

[11] A. Badia, B. Debes, and B. Cao. An implementation of a
query language with generalized quantifiers. InProceedings
of the 27th International Conference on Conceptual Model-
ing, pages 547–548. Springer, 2008.

[12] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Lar-
son, J.-M. Léon, Y. Li, A. Lloyd, and V. Yushprakh. Megas-
tore: Providing scalable, highly available storage for interac-
tive services. InProceedings of the Conference on Innovative
Database Research, pages 223–234, 2011.

[13] Berkeley Orders of Magnitude. Bloom Programming Lan-
guage.http://www.bloom-lang.net, 2013. Last released

22 2016/1/8



/ / field assignment
(P [a → a′.f = v], ht, h[a → ha[a′ → o]], ch,mq)
→ (P [a := skip], ht, h[a := ha[a′ := o[f := v]]], ch,mq)

/ / object creation
(P [a → a′.f = new c], ht, h[a → ha[a′ → o]], ch,mq)
→ (P [a := skip], ht[a′ := c], h[a := ha[a′ := o[f := ac], ac := new(c)]], ch,mq)
if ac 6∈ dom(ht) ∧ ac ∈ Address ∧ (ac ∈ ProcessAddress ⇐⇒ extends(c, Process))

/ / sequential composition
(P [a → skip;s], ht, h, ch,mq) → (P [a := s], ht, h, ch,mq)

/ / conditional statement
(P [a → if true : s1 else : s2], ht, h, ch,mq) → (P [a := s1], ht, h, ch,mq)

(P [a → if false : s1 else : s2], ht, h, ch,mq) → (P [a := s2], ht, h, ch,mq)

/ / for loop
(P [a → for x in a′: s], ht, h, ch,mq) → (P [a := for x intuple (v1, . . . , vn) : s], ht, h, ch,mq)
if ((ht(a) = Sequence∧ h(a)(a′) = 〈v1, . . . , vn〉) ∨ (ht(a) = Set ∧ 〈v1, . . . , vn〉 is a linearization ofh(a)(a′)))

(P [a → for x intuple (v1, . . . , vn) : s], ht, h, ch,mq)
→ (P [a := s[x := v1]; for x intuple (v2, . . . , vn) : s], ht, h, ch,mq)

(P [a → for x intuple () : s], ht, h, ch,mq) → (P [a := skip], ht, h, ch,mq)

/ / while loop
(P [a → while e: s], ht, h, ch,mq) → (P [a := if e: (s; while e: s) else : skip], ht, h, ch,mq)

/ / invoke method in user-defined class
(P [a → a′.m(v1, . . . , vn)], ht, h, ch,mq)
→ (P [a := s[self := a, x1 := v1, . . . , xn := vn]], ht, h, ch,mq)
if a′ ∈ dom(h(a))
∧ ht(a′) 6∈ {Process, Set, Sequence} ∧methodDef (ht(a′),m, defm(x1, . . . , xn) s)

/ / invoke method in pre-defined class (representative examples)

/ / Process.start allocates a local heap andsent andreceived sequences for the new process,
/ / and moves the started process to the new local heap.
(P [a → a′.start()], ht, h[a → ha[a′ → o], ch,mq)
→ (P [a := skip, a′ := a′.run()], ht[as := Sequence, ar := Sequence],

h[a := ha⊖ a′, a′ := f0[a
′ → o[sent := as, received := ar], ar := 〈〉, as := 〈〉]], ch,mq)

if extends(ht(a′), Process) ∧ (ht(a′) inheritsstart from Process)∧ ar 6∈ dom(ht) ∧ as 6∈ dom(ht)
∧ ar ∈ Address \ ProcessAddress ∧ as ∈ Address \ ProcessAddress

/ / invoke method in pre-defined class (representative examples, continued)
(P [a → a′.add(v1)], ht, h[a → ha], ch,mq)
→ (P [a := skip], ht, h[a := ha[a′ := ha(a′) ∪ {v1}]], ch,mq)
if a′ ∈ dom(ha) ∧ ht(a′) = Set

(P [a → a′.add(v1)], ht, h[a → ha], ch,mq)
→ (P [a := skip], ht, h[a := ha[a′ := ha(a′)@〈v1〉]], ch,mq)
if a′ ∈ dom(ha) ∧ ht(a′) = Sequence

Figure 13. Transition relation for statements, Part 1.

23 2016/1/8



/ / send a message to one process. create copies of the messagefor the sender’ssent sequence
/ / and the receiver.
(P [a → send v to a2], ht, h[a → ha, a2 → ha2], ch,mq)
→ (P [a := skip], ht′′, h[a := ha′[as := ha(as)@〈(v1, a2)〉], a2 := ha′

2
],

ch[(a, a2) := ch((a, a2))@〈v2〉],mq)
if a2 ∈ ProcessAddress ∧ as = ha(a)(sent) ∧ isCopy(v, ha, ha, ht, v1, ha

′, ht′)
∧ isCopy (v, ha′, ha2, ht

′, v2, ha
′

2
, ht′′)

/ / send to a set of processes
(P [a → send v to a′], ht, h[a → ha], ch,mq)
→ (P [a := for x in a′: send v to x], ht, h[a := ha[as := ha(as)@〈(v, a′)〉]], ch,mq)
if ht(a′) = Set ∧ as = ha(a)(sent) ∧ (x is a fresh variable)

/ / message reordering
(P, ht, h, ch[(a, a′) → q],mq) → (P, ht, h, ch[(a, a′) := q′],mq)
if (channel order isunordered in the program configuration)∧ (q′ is a permutation ofq)

/ / message loss
(P, ht, h, ch[(a, a′) → q],mq) → (P, ht, h, ch[(a, a′) := q′],mq)
if (channel reliability isunreliable in the program configuration)∧ (q′ is a subsequence ofq)

/ / arrival of a message from processa at processa′. remove message from channel, and append
/ / (message, sender) pair to message queue.
(P, ht, h, ch[(a, a′) → q],mq)
→ (P, ht, h, ch[(a, a′) := tail(q)],mq[a′ := mq(a′)@〈(first(q), a)〉])
if length(q) > 0

/ / handle a message at a yield point. remove the (message, sender) pair from the message
/ / queue, append a copy to thereceived sequence, and prepare to run matching receive
/ / handlers associated withℓ, if any.s has a label hence must beawait.
(P [a → ℓ s], ht, h[a → ha], ch,mq[a → q])
→ (P [a := s′[self := a]; ℓ s], ht′, h[a → ha′[ar → ha(ar)@〈copy〉]], ch,mq[a := tail(q)])
if length(q) > 0 ∧ ar = ha(a)(received) ∧ isCopy(first(q), ha, ha, ht, copy, ha′, ht′)
∧ receiveAtLabel(first(q), ℓ, ht(a), ha′) = S ∧ s′ is a linearization ofS

/ / await without timeout clause
(P [a → ℓ await e1:s1 or · · · or en:sn], ht, h, ch,mq) → (P [a := si], ht, h, ch,mq)
if length(mq(a)) = 0 ∧ i ∈ [1..n] ∧ h(a) : ht ⊢ ei → true

/ / await with timeout clause, terminated by true condition
(P [a → ℓ await e1:s1 or · · · or en:sn timeout v:s], ht, h, ch,mq) → (P [a := si], ht, h, ch,mq)
if length(mq(a)) = 0 ∧ i ∈ [1..n] ∧ h(a) : ht ⊢ ei → true

/ / await with timeout clause, terminated by timeout (occursnon-deterministically)
(P [a → ℓ await e1:s1 or · · · or en:sn timeout v:s], ht, h, ch,mq) → (P [a := s], ht, h, ch,mq)
if length(mq(a)) = 0 ∧ h(a) : ht ⊢ e1 → false∧ · · · ∧ h(a) : ht ⊢ en → false

/ / context rule for expressions
h(a) : ht ⊢ e → e′

(P [a → C[e]], ht, h, ch,mq) → (P [a := C[e′]], ht, h, ch,mq)

/ / context rule for statements
(P [a → s], ht, h, ch,mq) → (P [a := s′], ht′, h′, ch′,mq′)

(P [a → C[s]], ht, h, ch,mq) → (P [a := C[s′]], ht′, h′, ch′,mq′)

Figure 14. Transition relation for statements, Part 2.
24 2016/1/8



April 23, 2013. Accessed December 20, 2015.

[14] M. Bickford. Component specification using event classes.
In Proceedings of the 12th International Symposium on
Component-Based Software Engineering, pages 140–155.
Springer, 2009.

[15] A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The
development of the Emerald programming language. InPro-
ceedings of the 3rd ACM SIGPLAN Conference on History of
Programming Languages, pages 11–1–11–51, 2007.

[16] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. InProceedings of the 7th Symposium on
Operating Systems Design and Implementation, pages 335–
350. USENIX Association, 2006.

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A distributed storage system for structured data.ACM Trans-
actions on Computer Systems, 26(2):4, 2008.

[18] J. Claußen, A. Kemper, G. Moerkotte, and K. Peithner. Opti-
mizing queries with universal quantification in object-oriented
and object-relational databases. InProceedings of the 23rd
International Conference on Very Large Data Bases, pages
286–295. Morgan Kaufman, 1997.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[20] F. Cruz, R. Rocha, S. C. Goldstein, and F. Pfenning. A lin-
ear logic programming language for concurrent programming
over graph structures.Theory and Practice of Logic Program-
ming, 14:493–507, 7 2014.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters.Communications of the ACM, 51(1):
107–113, 2008.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store.ACM SIGOPS Operating Systems Review, 41(6):
205–220, 2007.

[23] DistAlgo. DistAlgo: A Language for Distributed Algo-
rithms. http://sourceforge.net/projects/distalgo,
2014. Beta release September 27, 2014, latest release Septem-
ber 2015.

[24] Erlang. Erlang Programming Language.http://www.
erlang.org/, 2015. Last released December 18, 2015.

[25] C. J. Fidge. Timestamps in message-passing systems that
preserve the partial ordering. InProceedings of the 11th
Australian Computer Science Conference, pages 56–66, 1988.

[26] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Program
transformation for development, verification, and synthesis of
programs.Intelligenza Artificiale, 5(1):119–125, 2011.

[27] V. K. Garg. Elements of Distributed Computing. Wiley, 2002.

[28] Gautam and S. Rajopadhye. Simplifying reductions. InCon-
ference Record of the 33rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 30–41,
2006. ISBN 1-59593-027-2.

[29] C. Georgiou, N. A. Lynch, and P. M. andJoshua A. Tauber.
Automated implementation of complex distributed algorithms

specified in the IOA language.International Journal on Soft-
ware Tools for Technology Transfer, 11(2):153–171, 2009.

[30] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system.ACM SIGOPS Operating Systems Review, 37(5):29–
43, 2003.

[31] M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel, and
T. Tekle. Alias analysis for optimization of dynamic lan-
guages. InProceedings of the 6th Symposium on Dynamic
Languages, pages 27–42. ACM Press, 2010.

[32] A. Granicz, D. M. Zimmerman, and J. Hickey. Rewriting
UNITY. In Proceedings of the 14th International Conference
on Rewriting Techniques and Applications, pages 138–147.
Springer, 2003.

[33] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintain-
ing views incrementally. InProceedings of the 1993 ACM
SIGMOD International Conference on Management of Data,
pages 157–166, 1993.

[34] D. Hansel, R. Cleaveland, and S. A. Smolka. Distributed
prototyping from validated specifications.Journal of Systems
and Software, 70(3):275–298, 2004.

[35] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for internet-scale systems. InUSENIX
Annual Technical Conference, 2010.

[36] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.The
Theory of Timed I/O Automata. Morgan & Claypool, 2nd
edition, 2010.

[37] I. H. Krüger. An experiment in compiler design for a con-
current object-based programming language. Master’s thesis,
The University of Texas at Austin, 1996.

[38] A. Kshemkalyani and M. Singhal.Distributed Computing:
Principles, Algorithms, and Systems. Cambridge University
Press, 2008.

[39] A. Lakshman and P. Malik. Cassandra: A decentralized struc-
tured storage system.ACM SIGOPS Operating Systems Re-
view, 44(2):35–40, 2010.

[40] L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Communications of the ACM, 21:558–565,
1978.

[41] L. Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-
Wesley, 2002.

[42] L. Lamport. The PlusCal algorithm language. InProceedings
of the 6th International Colloquium on Theoretical Aspectsof
Computing, pages 36–60. Springer, 2009.

[43] J. Larson. Erlang for concurrent programming.Communica-
tions of the ACM, 52(3):48–56, 2009.

[44] B. Liskov. Distributed programming in Argus.Communica-
tions of the ACM, 31(3):300–312, Mar. 1988.

[45] Y. A. Liu. Systematic Program Design: From Clarity To
Efficiency. Cambridge University Press, 2013.

[46] Y. A. Liu and S. D. Stoller. Dynamic programming via static
incrementalization. Higher-Order and Symbolic Computa-
tion, 16(1–2):37–62, 2003.

25 2016/1/8



[47] Y. A. Liu and S. D. Stoller. From Datalog rules to efficient
programs with time and space guarantees.ACM Transactions
on Programming Languages and Systems, 31(6):1–38, 2009.

[48] Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and
Y. E. Liu. Incrementalization across object abstraction. In
Proceedings of the 20th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
473–486, 2005.

[49] Y. A. Liu, S. D. Stoller, N. Li, and T. Rothamel. Optimizing
aggregate array computations in loops.ACM Transactions on
Programming Languages and Systems, 27(1):91–125, 2005.

[50] Y. A. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng,
Y. Zhao, and J. Zhang. Core role-based access control: Effi-
cient implementations by transformations. InProceedings of
the ACM SIGPLAN 2006 Workshop on Partial Evaluation and
Program Manipulation, pages 112–120, 2006.

[51] Y. A. Liu, M. Gorbovitski, and S. D. Stoller. A language and
framework for invariant-driven transformations. InProceed-
ings of the 8th International Conference on Generative Pro-
gramming and Component Engineering, pages 55–64. ACM
Press, 2009.

[52] Y. A. Liu, S. D. Stoller, and B. Lin. High-level executable
specifications of distributed algorithms. InProceedings of
the 14th International Symposium on Stabilization, Safety,
and Security of Distributed Systems, pages 95–110. Springer,
2012.

[53] Y. A. Liu, S. D. Stoller, B. Lin, and M. Gorbovitski. From
clarity to efficiency for distributed algorithms. InProceedings
of the 27th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages
395–410, 2012.

[54] N. P. Lopes, J. A. Navarro, A. Rybalchenko, and A. Singh.
Applying prolog to develop distributed systems.Theory and
Practice of Logic Programming, 10(4-6):691–707, July 2010.
ISSN 1471-0684. doi: 10.1017/S1471068410000360. URL
http://dx.doi.org/10.1017/S1471068410000360.

[55] N. A. Lynch. Distributed Algorithms. Morgan Kaufman,
1996.

[56] F. Mattern. Virtual time and global states of distributed
systems. InProceedings of the International Workshop on
Parallel and Distributed Algorithms, pages 120–131. North-
Holland, 1989.

[57] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer
information system based on the XOR metric. InPeer-to-Peer
Systems, pages 53–65, 2002.

[58] MPI. Message Passing Interface Forum.http://www.
mpi-forum.org/, 2015. Last released June 4, 2015.

[59] H. Nakamura. Incremental computation of complex object
queries. InProceedings of the 16th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, pages 156–165, 2001.

[60] R. Paige and S. Koenig. Finite differencing of computable
expressions.ACM Transactions on Programming Languages
and Systems, 4(3):402–454, 1982.

[61] V. Petukhin. Programs with universally quantified embedded
implications. InProceedings of the 4th International Confer-

ence on Logic Programming and Nonmonotonic Reasoning,
pages 310–324. Springer, 1997.

[62] PRL Project. EventML. http://www.nuprl.org/

software/#WhatisEventML, 2012. Last released Septem-
ber 21, 2012.

[63] W. Pugh and T. Teitelbaum. Incremental computation via
function caching. InConference Record of the 16th Annual
ACM Symposium on Principles of Programming Languages,
pages 315–328, 1989.

[64] G. Ramalingam and T. Reps. A categorized bibliography
on incremental computation. InConference Record of the
20th Annual ACM Symposium on Principles of Programming
Languages, pages 502–510, 1993.

[65] M. Raynal. Distributed Algorithms and Protocols. Wiley,
1988.

[66] M. Raynal. Communication and Agreement Abstractions for
Fault-Tolerant Asynchronous Distributed Systems. Morgan &
Claypool, 2010.

[67] M. Raynal.Distributed Algorithms for Message-Passing Sys-
tems. Springer, 2013.

[68] T. Rothamel and Y. A. Liu. Generating incremental imple-
mentations of object-set queries. InProceedings of the 7th
International Conference on Generative Programming and
Component Engineering, pages 55–66. ACM Press, 2008.

[69] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peersys-
tems. InProceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms, Middleware 2001,
pages 329–350. Springer, 2001.

[70] D. Saha and C. R. Ramakrishnan. Incremental evaluation
of tabled logic programs. InProceedings of the 19th Inter-
national Conference on Logic Programming, pages 392–406.
Springer, 2003.

[71] M. L. Scott. The Lynx distributed programming language:
Motivation, design, and experience.Computer Languages, 16
(3):209–233, 1991.

[72] T. F. Serbanuta, G. Rosu, and J. Meseguer. A rewriting
logic approach to operational semantics.Information and
Computation, 207:305–340, 2009.

[73] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop distributed file system. InProceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies, pages 1–10. IEEE CS Press, 2010.

[74] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. Kaashoek, F. Dabek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup protocol for internet applica-
tions. IEEE/ACM Transactions on Networking, 11(1):17–32,
2003.

[75] T. Swift, D. S. Warren, et al.The XSB System Version 3.6.x,
Apr. 2015. http://xsb.sourceforge.net. Accessed De-
cember 20, 2015.

[76] G. Tel. Introduction to Distributed Algorithms. Cambridge
University Press, 2nd edition, 2000.

[77] R. Van Renesse and D. Altinbuken. Paxos made moderately
complex.ACM Comput. Surv., 47(3):42:1–42:36, Feb. 2015.

26 2016/1/8



[78] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. InProceedings
of the Sixth Symposium on Operating Systems Design and
Implementation, pages 91–104. USENIX Association, 2004.

[79] D. E. Willard. Efficient processing of relational calculus ex-
pressions using range query theory. InProceedings of the
1984 ACM SIGMOD International Conference on Manage-
ment of Data, pages 164–175, 1984.

[80] D. E. Willard. An algorithm for handling many relational
calculus queries efficiently.Journal of Computer and System
Sciences, 65:295–331, 2002.

[81] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness.Information and Computation, 115:38–94, 1994.

[82] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment.IEEE Journal on Selected
Areas in Communications, 22(1):41–53, 2004.

27 2016/1/8


