arXiv:1412.8461v3 [cs.PL] 6 Jan 2016

From Clarity to Efficiency for Distributed Algorithms *

Yanhong A. Liu Scott D. Stoller Bo Lin

Computer Science Department, Stony Brook University, $&nook, NY 11794, USA
{liu,stoller,bolin}@cs.stonybrook.edu

Abstract 1. Introduction

This article describes a very high-level language for clear Distributed algorithms are at the core of distributed syste
description of distributed algorithms and optimizatioesn Yet, developing practical implementations of distributdd
essary for generating efficient implementations. The lan- gorithms with correctness and efficiency assurances reamain
guage supports high-level control flows where complex syn- a challenging, recurring task.

chronization conditions can be expressed using high-level
gueries, especially logic quantifications, over message hi
tory sequences. Unfortunately, the programs would be ex-
tremely inefficient, including consuming unbounded mem-
ory, if executed straightforwardly.

We present new optimizations that automatically trans-
form complex synchronization conditions into incremen- ® At the same time, programming of distributed systems
tal updates of necessary auxiliary values as messages are has mainly been concerned with program efficiency and
sent and received. The core of the optimizations is the first has relied mostly on the use of low-level or complex
general method for efficient implementation of logic quan- libraries and to a lesser extent on built-in mechanisms in
tifications. We have developed an operational semantics of ~ restricted programming models.

the language, implemented a prototype of the compiler andWhat’s lacking is (1) a simple and powerful language that

the optimizations, and successfully used the language and,5, express distributed algorithms at a high level and yet
implementation on a variety of important distributed algo- 55 5 clear semantics for precise execution as well as for

rithms. verification, and is fully integrated into widely used pro-
gramming languages for building real distributed systems,
together with (2) powerful optimizations that can transfor
high-level algorithm descriptions into efficient implenten
tions.

This article describes a very high-level language, Distilg
for clear description of distributed algorithms, combipin
advantages of pseudocode, formal specification languages,
and programming languages.

¢ Study of distributed algorithms has relied on either pseu-
docode with English, which is high-level but imprecise,
or formal specification languages, which are precise but
harder to understand, lacking mechanisms for building
real distributed systems, or not executable at all.

Categories and Subject Descriptors D.1.3 [Programming
Techniques Concurrent Programming—Distributed pro-
gramming; D.3.2 Programming Languagés Language
Classifications—Very high-level languages; D.3.Rrd-
gramming LanguagésProcessors—Code generation, Com-
pilers, Optimization; F.3.1logics and Meanings of Pro-
gramg: Specifying and Verifying and Reasoning about
Programs—Specification techniques; F.3.Rodics and
Meanings of Progranjs Semantics of Programming Lan- e The main control flow of a process, including sending

guages—Operational semantics; |.Z2&mputing Method- messages and waiting on conditions about received mes-
ologieg: Knowledge Representation Formalisms and Meth- ~ sages, can be stated directly as in sequential programs;
ods—Predicate logic yield points where message handlers execute can be spec-

ified explicitly and declaratively.

General Terms Algorithms, Design, Languages, Perfor- o complex synchronization conditions can be expressed
mance using high-level queries, especially quantifications,rove

o))) message history sequences, without manually writing
Keywords distributed algorithms, high-level queries and message handlers that perform low-level incremental up-
updates, incrementalization, logic quantifications, $yoe dates and obscure control flows.

nization conditions, yield points . o)
DistAlgo supports these features by building on an object-
- - o by NSE und - oriented programming language. We also developed an op-
*This work was supported in part by under grants - : : : .
1414078, CCF-1248184, CCF-0964196, CNS-0831298 and CCE- erational semantics for the language. The result is that dis

0613913; and ONR under grants N000141512208, Nooo140a1a68 tributed algorithms can be expressed in DistAlgo clearly at
N000140710928. high level, like in pseudocode, but also precisely, likedn f

1 2016/1/8

http://arxiv.org/abs/1412.8461v3

mal specification languages, facilitating formal verifioat We have implemented a prototype of the compiler and
and be executed as part of real applications, as in program-the optimizations and experimented with a variety of im-
ming languages. portant distributed algorithms, including Paxos, Byzaati
Unfortunately, programs containing control flows with Paxos, and multi-Paxos. Our experiments strongly confirm
synchronization conditions expressed at such a high levelthe benefits of the language and the effectiveness of the op-
are extremely inefficient if executed straightforwardlgck timizations.
guantifier will cause a linear factor in running time, and any ~ This article is a revised version of Liu et al. [53]. The
use of the history of messages sent and received will causemain changes are revised and extended descriptions of the
space usage to be unbounded. language and the optimization method, a new formal opera-
We present new optimizations that allow efficient imple- tional semantics, an abridged and updated descriptioreof th
mentations to be generated automatically, extending previ implementation, and a new description of our experience of
ous optimizations to distributed programs and to the most using DistAlgo in teaching.
challenging quantifications.

e Our method transforms sending and receiving of mes- 2. Expressing distributed algorithms

sages into updates to message history sequences, iNngyen when a distributed algorithm appears simple at a high
crementally maintains the truth values of synchroniza- |eyel, it can be subtle when necessary details are considere
tion conditions and necessary auxiliary values as thosemaking it difficult to understand how the algorithm works
sequences are updated, and finally removes those seprecisely. The difficulty comes from the fact that multiple
quences as dead code when appropriate. processes must coordinate and synchronize to achieve globa

e To incrementally maintain the truth values of general goals, but at the same time, delays, failures, and attacks ca
quantifications, our method first transforms them into ag- occur. Even determining the ordering of events is nontiivia
gregate queries. In general, however, translating nestedwhich is why Lamport’s logical clock [40] is so fundamental
quantifications simply into nested queries can incur for distributed systems.

asymptotically more space and time overhead than nec-pynning example. We use Lamport's distributed mutual
essary. Our trgnsformanons minimize the nesting of the oyqusion algorithm [40] as a running example. Lamport de-
resulting queries. veloped it to illustrate the logical clock he invented. The

¢ Quantified order comparisons are used extensively in problem is that: processes access a shared resource, and
nontrivial distributed algorithms. They can be incremen- need to access it mutually exclusively, in what is called a
talized easily when not mixed with other conditions or critical section (CS), i.e., there can be at most one process
with each other. We systematically extract single quanti- in a critical section at a time. The processes have no shared
fied order comparisons and transform them into efficient memory, so they must communicate by sending and receiv-

incremental operations. ing messages. Lamport’s algorithm assumes that communi-
o . _ ~ cation channels are reliable and first-in-first-out (FIFO).
Overall, our method significantly improves time complexi- Figure 1 contains Lamport’s original description of the

ties and reduces the unbounded space used for message higigorithm, except with the notatior instead of—s in
tory sequences to the auxiliary space needed for increinentarule 5 (for comparing pairs of timestamps and process ids
computation. Systematic incrementalization also alldwes t ysing standard pair comparisots,b) < (a2,b2) iff a<a2
time and space complexity of the generated programs to beor a=a2 and b<b2) and with the word “acknowledgment”
analyzed easily. added in rule 5 (for simplicity when omitting a commonly
There has been a significant amount of related researchomitted [27, 55] small optimization mentioned in a foot-
as discussed in Section 7. Our work contains three mainnote). This description is the most authoritative, is atghhi
contributions: level, and uses the most precise English we found.
]] . The algorithm satisfies safety, liveness, and fairness, and
* A simple and powerful language for expressing dis- has a message complexity &z — 1). It is safe in that at
tributed algorithms with high-level control flows and syn- 65t one process can be in a critical section at a time. It
chronization conditions, an operational semantics, and s jive in that some process will be in a critical section if
fullintegration into an object-oriented language. there are requests. It is fair in that requests are servéein t
¢ A systematic method for incrementalizing complex syn- order of the logical timestamps of the request messages. Its
chronization conditions with respect to all sending and message complexity &(n — 1) in that3(n — 1) messages
receiving of messages in distributed programs. are required to serve each request.

¢ A general and systematic method for generating effi- Challenges.To understand how this algorithm is carried out
cient implementations of arbitrary logic quantifications precisely, one must understand how each ofithgocesses
together with general high-level queries. acts as bothP; and P; in interactions with all other pro-

2 2016/1/8

The algorithm is then defined by the following five rules. For ~ Figure 1; the simplified algorithm can be expressed using
convenience, the actions defined by each rule are assumed tobasically twosend statements, @eceive definition, and an
form a single event. await Statement.

1. To request the resource, proce’dssends the message Figure 2 shows Lamport’s original algorithm expressed
T P; requests resourct every other process, and puts that in DistAlgo; it also includes configuration and setup for
message on its request queue, whgreis the timestamp of the running of 50 processes each trying to enter critical sactio
message.) at some point during its execution. Figures 3 and 4 show two

2. When procesg’; receives the message,.: I requests alternative optimized programs after incrementalizatih
resource it places it on its request queue and sends a (times- lines with comments are new except thatheit statement

tamped) acknowledgment messagé’o S o - b o .
3. To release the resource, procdasremoves anyln: P; is simplified. Figure 5 shows the simplified algorithm.

requests resourcenessage from its request queue and sends)
a (timestamped); releases resourcenessage to every other 3. DistAlgo Language
process.

4. When proces®; receives &; releases resourceessage To support distributed programming at a high level, four

it removes anyT’,,: P; requests resourcenessage from its rer m‘_"“n concepts Car,‘ be added to commonly used ObJeCt'_
quest queue. oriented programming languages, such as Java and Python:

5. Process; is granted the resource when the following two (1) processes as objects, and sending of messages, (2) yield

conditions are satisfied: (i) There i<f3,: P; requests resource¢ Points and waits for control flows, and handling of received
message in its request queue which is ordered before any pthe messages, (3) synchronization conditions using hight-leve
request in its queue by the relatien (To define the relatior: gueries and message history sequences, and (4) configura-

for messages, we identify a message with the event of sending tion of processes and communication mechanisms. DistAlgo
it (ii) P; has received an acknowledgment message from every supports these concepts, with options and generalizétions
other process timestamped later tHian. ease of programming, as described below. A formal opera-

Note that conditions (i) and (ii) of rule 5 are tested locally tional semantics for DistAlgo is presented in Appendix A.
Pi.

Processes and sending of messagd3istributed processes
Figure 1. Original description in English. are like threads except that each process has its private mem
ory, not shared with other processes, and processes commu-
icate by message passing. Three main constructs are used,
or defining processes, creating processes, and sending mes

cesses. Each process must have an order of handling all th
events according to the five rules, trying to reach its owr goa
of entering and exiting a critical section while also resgon Sages. o .)

ing to messages from other processes. It must also keep test- A process definition is Of. the following form. It defines a
ing the complex condition in rule 5 as events happen. type P of processes, by d_efmmg a claBdhat ext_er_1c_is class

State machine based formal specifications have been usetﬁrocess‘ Theprocess_body is a set of method definitions and
to fill in such details precisely, but at the same time, they ar andler definitions, to be described.
lower-level and harder to understand. For example, a formal class P extends Process:
specification of Lamport’s algorithm in 1/O automata [55, process_body
pages 647-648] occupies about one and a fifth pages, mos
of which is double-column.

To actually implement distributed algorithms, details
for many additional aspects must be added, for example,
creating processes, letting them establish communication
channels with each other, incorporating appropriate kgic
clocks (e.g., Lamport clock or vector clock [56]) if needed,
guaranteeing the specified channel properties (e.g.blelia
FIFO), and integrating the algorithm with the application
(e.g., specifying critical section tasks and invoking tbhee
for the algorithm as part of the overall application). Ferth
more, how to do all of these in an easy and modular fashion?

B special methodetup may be defined iprocess_body for
initially setting up data in the process before the prosess’
execution starts. A special metheeh () must be defined in
process_body for carrying out the main flow of execution,
and a calktart () starts the execution of the methagh O).
A special variableelf refers to the current process.

A statement for process creation is of the following form.
It creates: new processes of typ, and assigns the single
new process or set of new processes to variajgapression
node_exp evaluates to a node (a host name or IP address plus
a port number) or a set of nodes, specifying where the new
processes will be created.
Our approach. We address these challenges with the
DistAlgo language, compilation to executable programd, an
especially optimization by incrementalization of expgasi The numbern and theat clause are optional; the defaults are
synchronizations, described in Sections 3, 4, and 5, respec 1 and the local node, respectively.
tively. An unexpected result is that incrementalizatiarie A statement for sending messages is of the following
discover simplifications of Lamport’s original algorithm i ~ form. It sends the message that is the value of expression

v = n new P at node_exp

3 2016/1/8

mexp to the process or set of processes that is the value of await bexp

expressiopexp. A general, nondeterministizrait statement is of the follow-

send mexp to pexrp ing form. It waits for any of the values of expressidasp,
...,bexpy to become true or a timeout after time pertodnd
then nondeterministically selects one of statemenist;,

..., stmty, stmt whose corresponding conditions are satis-
fied to execute. Ther andtimeout clauses are optional.

A message can be any value but is by convention a tuple
whose first componentis a string, called a tag, indicatieg th
kind of the message.

Control flows and handling of received messagesThe

key idea is to use labels to specify program points where
control flow can yield to handling of messages and resume
afterwards. Three main constructs are used, for specifying

yield points, handling of received messages, and synchro-) o
nization. An avait statement must be preceded by a yield point; if a

A yield point preceding a statement is of the following Yield point is not specified explicitly, the default is that a

form, where identifief is a label. It specifies that point in ~Message handlers can be executed at this point.
the program as a place where control yields to handling of ~ These few constructs make it easy to specify any process

messages. It is also easy to specify any process that only

responds to messages, for example, by writingjeséive
The label1 is optional; it can be omitted when this yield —definitions and aun method containing onlywait false.

point is not explicitly referred to in any handler definitn gynchronization conditions using high-level queriesSyn-

await bexpi: stmit;
or ...

or bexpir: stmity
timeout t: stmt

-1

defined next. . o chronization conditions and other conditions can be ex-
the following form. It handles, at yield points label&d ..., hensions, and aggregations—over sets of processes and se-

l;, un-handled messages that match semep,. sent from quences of messages. High-level queries are used commonly
pexpy, wheremexp, andpexpy, are parts of a tuple pattern; in distributed algorithms because (1) they make complex
variables in a pattern are bound to the corresponding compO-synchronization conditions clearer and easier to write, an
nents in the value matched. Thendler_body is a sequence (2) the complexity of distributed algorithms is measured by
of statements to be executed for the matched messages. gund complexity and message complexity, not time com-

receive mexp; from pexpi, ..., mexp; from perp; plexity of local processing.
at Iy, ..., Ij: Quantifications are especially common because they di-
handler _body rectly capture the truth values of synchronization condsgi

We discovered a number of errors in our initial programs that
were written using aggregations in place of quantifications
(kj)efore we developed the method to systematically optimize
guantifications. For example, we regularly expresseds”
larger than all elements &f asv>max(s) and either forgot
to handle the case thatis empty or handled it in an ad hoc
fashion. Naive use of aggregate operationstikemay also
hinder generation of more efficient implementations.

We define operations on sets; operations on sequences are
the same except that elements are processed in order, and
square brackets are used in place of curly braces.

The from andat clauses are optional; the defaults are any
process and all yield points, respectively. If them clause

is used, each message automatically includes the process i
of the sender. A tuple pattern is a tuple in which each com-
ponent is a non-variable expression, a variable possilgy pr
fixed with "=", a wildcard, or recursively a tuple pattern.
A non-variable expression or a variable prefixed wigi “
means that the corresponding component of the tuple being
matched must equal the value of the non-variable expres-
sion or the variable, respectively, for pattern matchinguto-
ceed. A variable not prefixed witlk-" matches any value and
becomes bound to the corresponding component of the tu- e A quantification is a query of one of the following two

ple being matched. A wildcard, written as’; matches any forms, called existential and universal quantificatioss, r
value. Support foreceive mimics common usage in pseu- spectively, plus a set of parameters—variables whose val-
docode, allowing a message handler to be associated with ues are bound before the query. For a query to be well-
multiple yield points without using method definition and formed, every variable in it must be reachable from a
invocations. As syntactic sugarraceive that is handled at parameter—be a parameter or recursively be the left-
only one yield point can be written at that point. side variable of a membership clause whose right-side
Synchronization and associated actions can be expressed variables are reachable. Given values of parameters, the
using general, nondeterministigait statements. A simple query returngrue iff for some or all, respectively, com-
await Statement is of the following form. It waits for the binations of values of variables that satisfy all member-
value of Boolean-valued expressitixp to become true. ship clauses; in sexp;, expressiorbexp evaluates to

4 2016/1/8

true. When an existential quantification returise, all
variables in the query are also bound to a combination of
values, called a witness, that satisfy all the membership
clauses and conditidirezp.

, Vg in sexpr | bexp
, Vg in sexpr | bexp

some v; in sexpi, ...
each v1 in sexpi, ...

For example, the following query returrsue iff each
elementirs is greater than each elementiin

each x in S, yin T | x >y

For another example, the following query, containing a
nested quantification, returrsue iff some element irs

is greater than each elementinAdditionally, when the
guery returns true, variableis bound to a withess—an
element irs that is greater than each elementin

some x in S | each yin T | x > y

A comprehension is a query of the following form plus a

e Sequenceeceived is updated only at yield points; af-
ter a message arrives, it will be handled when execu-
tion reaches the next yield point, by adding the mes-
sage toreceived and running matchingeceive defi-
nitions, if any, associated with the yield point. We use
received(m from p) as a shorthand fof from p in
received; from p iS optional, but when specified, each
message ifreceived automatically includes the process
id of the sender.

Sequenceent is updated at eackend statement; each
message sent to a process is addedetx. We use
sent(m to p) as a shorthand fak to p in sent; to p
is optional, but when specified,is the process to which
m was sent as specified in thend statement.

If implemented straightforwardlyseceived and sent can
create a huge memory leak, because they can grow unbound-
edly, preventing their use in practical programming. Our
method can remove them by maintaining only auxiliary val-
ues that are needed for incremental computation.

set of parameters. Given values of parameters, the queryConfiguration. One can specify channel types, handling of

returns the set of values @efcp for all combinations of
values of variables that satisfy all membership clauses
in sexp; and conditiorbexp.

{exp: vi in sexpr, ..., vr in sexpr| bexpl}

For example, the following query returns the set of prod-
ucts ofx in s andy in T wherex is greater thag.

{x*y: x in S, yin T | x > y}

We abbreviatdv: v in sexp | bexp} as{v in sexp |
bexpl.

An aggregation is of the forrgg (sexp) , whereagg is an
operation, such asize, sum, Or max, specifying the kind
of aggregate operations over the set valuecap.

In the query forms above, eaah can also be a tuple
patternt;. Variables int; are bound to the corresponding
components in the matched elements of the value of
sexp;. We omit| bexp whenbexp is true.

We use{} for empty set; use.add(x) ands.del(x) for
element addition and deletion, respectively; anduse s
andx not in s for membership test and its negation, re-

messages, and other configuration items. Such specifisation
are declarative, so that algorithms can be expressed withou
unnecessary implementation details. We describe a few basi
kinds of configuration items.

First, one can specify the types of channels for passing
messages. For example, the following statement configures
all channels to be FIFO.

configure channel = fifo

Other options for channel typesincluglg iable and{reliable,
fifo}. When eithemreliable oOr fifo is specified, TCP is
used for communication; otherwise, UDP is used. In general,
separate channel types can be specified for communication
among any set of processes; the default is for communication
among all processes.

One can specify how much effort is spent processing
messages at yield points. For example,

configure handling = all

means that all arrived messages that are not yet handled
must be handled before execution of the main flow of control
continues past any yield point. For another example, one can
specify a time limit. One can also specify different hanglin

spectively. We assume that hashing is used in implementing€effort for different yield points.

sets, and the expected time of set initialization, elemédita
tion and removal, and membership tesbid). We consider
operations that involve iterations over sets and sequences

be expensive; each iteration over a set or sequence incurs a

cost that is linear in the size of the set or sequence. All guan
tifications, comprehensions, and aggregations are camside
expensive.

DistAlgo has built-in sequencegceived andsent, con-

Logical clocks [25, 40, 56] are used in many distributed
algorithms. One can specify the logical clock, e.g., Lamhpor
clock, that is used:

configure clock = Lamport

It configures sending and receiving of messages to update
the clock appropriately. A cailogical_clock() returns the
current value of the clock.

taining all messages received and sent, respectively, by aOther language constructs. For other constructs, we use

process.

those in high-level object-oriented languages. We mostly

2016/1/8

use Python syntax (indentation for scoping,for separa-
tion, '#' for comments, etc.), for succinctness, except with a
few conventions from Java (uppercase initial letter fossla
names, keywordxtends for subclass, keywordew for ob-
ject creation, and omission eé1f, the equivalent ofhis in
Java, when there is no ambiguity), for ease of reading.

Example. Figure 2 shows Lamport’s algorithm expressed
in DistAlgo. The algorithm in Figure 1 corresponds to the
body ofcs and the twareceive definitions, 16 lines total; the
rest of the program, 14 lines total, shows how the algorithm
is used in an application. The execution of the application
starts with methodain, which configures the system to run
(lines 25-30). Methods and the twareceive definitions are
executed when needed and follow the five rules in Figure 1
(lines 5-21). Recall that there is an implicit yield poinfde
theawait Statement.

Note that Figure 2 is not meant to replace Figure 1,
but to realize Figure 1 in a precisely executable manner.
Figure 2 is meant to be high-level, compared with lower-
level specifications and programs.

1 class P extends Process:

2 def setup(s):

3 self.s = s # set of all other processes

4 self.q = {} # set of pending requests

5 def cs(task): # for calling task() in CS

6 -- request

7 self.c = logical_clock() # 1 in Fig 1
8 send (’request’, c, self) to s #

9 q.add((’request’, c, self)) #

wait for own req < others in q
and for acks from all in s
await each (’request’,c2,p2) in q | # 5 in Fig 1
(c2,p2) !'= (c,self) implies (c,self) < (c2,p2)
and each p2 in s | #
some received(’ack’,c2,=p2) | c2 > ¢
critical section

10

task()

-- release
q.del((’request’, c, self))

send (’release’, logical_clock(), self) to s

3 in Fig 1
#

receive (’request’, c2, p2):
q.add((’request’, c2, p2))
send (Pack’, logical_clock(), self) to p2

2 in Fig 1
#
#

receive (’release’, _, p2):
for (’request’, c2, =p2) in q:
q.del((’request’, c2, p2))

4 in Fig 1
#
#

22 def run(): # main method for the process
. # may do non-CS tasks of the proc
23 def task(): ... # define critical section task
24 cs(task) # call cs to do task in CS
may do non-CS tasks of the proc

def main(): # main method for the application
other tasks of the application
{reliable, fifo}
use reliable and FIFO channel
configure clock = Lamport # use Lamport clock
ps = 50 new P # create 50 processes of P class
for p in ps: p.setup(ps-{p}) # pass to each proc other procs
for p in ps: p.start() # start each proc, call method run
e # other tasks of the application

configure channel =

Figure 2. Original algorithm (lines 6-21) in a complete pro-
gram in DistAlgo.

4. Compiling to executable programs

Compilation generates code to create processes on the spec-
ified machine, take care of sending and receiving messages,
and realize the specified configuration. In particular, it in
serts appropriate message handlers at each yield point.

Processes and sending of messageBrocess creation is
compiled to creating a process on the specified or default
machine and that has a private memory space for its fields.
Each process is implemented using two threads: a main
thread that executes the main flow of control of the process,
and a helper thread that receives and enqueues messages sent
to this process. Constructs involving a set of processes, su
asn new P, can easily be compiled into loops.

Sending a messagdo a processg is compiled into calls
to a standard message passing API. If the sequeage
is used in the program, we also inseéht.add(m to p).
Calling a method on a remote process object is compiled
into a remote method call.

Control flows and handling of received messagesEach
yield point1 is compiled into a call to a message handler
method1() that updates the sequengeceived, if it is
used in the program, and executes the bodies afdbeive
definitions whoset clause includes. Precisely:

1. Eachreceive definition is compiled into a method that
takes a message as argument, matchesagainst the
message patterns in theceive clause, and if the match-
ing succeeds, binds the variables in the matched pattern
appropriately, and executes the statement in the body of
thisreceive definition.

. Method1 () compiled for yield point. does the follow-
ing: for each newly arrived messagefrom p in the
gueue of messages, (1) exectuteeived.add(m from
p) If received is used in the program, (2) call the meth-
ods generated from theeceive definitions whoseat
clause includes, and (3) removen from the message
queue.

An await Statement can be compiled into a synchroniza-
tion using busy-waiting or blocking. For example, for busy-
waiting, a statementwait bexp that immediately follows a
label 1 is compiled into a callb () followed bywhile not
bexp: 10.

Configuration. Configuration options are taken into ac-
count during compilation in a straightforward way. Libesi

and modules are used as much as possible. For example,
whenfifo Or reliable channel is specified, the compiler
can generate code that uses TCP sockets.

5. Incrementalizing expensive synchronizations

Incrementalization transforms expensive computatiotts in

efficient incremental computations with respect to updates
to the values on which the computations depend. It (1) iden-
tifies all expensive queries, (2) determines all updates tha

2016/1/8

may affect the query result, and (3) transforms the queries Table 1 shows general rules for converting single quantifi-
and updates into efficient incremental computations. Much cations into equivalent queries that use aggregate oparati
of incrementalization has been studied previously, as dis- size. For converting universal quantifications, either rule 2
cussed in Section 7. or 3 could be used. The choice does not affect the asymp-
The new method here is for (1) systematic handling of totic cost, but only small constant factors: rule 2 requires
guantifications for synchronization as expensive queegs, maintainingsize(s), and rule 3 requires computingt; the
pecially nested alternating universal and existentiahtjfia latter is generally faster unlessze (s) is already needed for
cations and quantifications containing complex order com- other purposes, and is certainly faster whet bexp can be
parisons and (2) systematic handling of updates caused bysimplified, e.g., whebexp is a negation. The rules in Table 1
all sending, receiving, and handling of messages in the sameare general becausexp can be any Boolean expression, but
way as other updates in the program. The result is a drasticthey are for converting single quantifications. Nested guan

reduction of both time and space complexities. tifications can be converted one at a time from inside out, but
Expensive computations using quantifications. Expen- ::he resultslmay be much more complicated than necessary.
or example,

sive computations in general involve repetition, inclugin
loops, recursive functions, comprehensions, aggregstion each x in s|some y in t | bexp
and quantifications over collections. Optimizations were
studied most for loops, less for recursive functions, com-
prehensions, and aggregations, and least for quantifitatio
basically corresponding to how frequently these consdruct and then using rule 2 to
have traditionally been used in programming. However,
high-level queries are increasingly used in programming,
and quantifications are dominantly used in writing synchro-
nization conditions and assertions in specifications amgl ve
high-level programs. Unfortunately, if implemented sitai
forwardly, each quantification incurs a cost factor that is Quantification Aggregation

would be converted using rule 1 to

each x in s|size({y in t | bexp})!= 0

size({x in s|size({y in t | bexp}) != 0})
== size(s)

A simpler conversion is possible for this example, using a
rule in Table 2, described next.

linear in the size of the collection quantified over. 1|some x in s | bexp|size({x in s |bexp}) !'= 0
Optimizing expensive quantifications in general is diffi- 2 _ b size({x in s | bexp}) == size(s)
cult, which is a main reason that they are not used in prac- 3|°2<" * % S PeXPr37cx in s [not bexpl) ==

tical programs, not even logic programs, and programmers
manually write more complex and error-prone code. The
difficulty comes from expensive enumerations over collec-
tions and complex combinations of join conditions. We ad-
dress this challenge by converting quantifications into ag-
gregate queries that can be optimized systematically us-
ing previously studied methods. However, a quantification
can be converted into multiple forms of aggregate queries.
Which one to use depends on what kinds of updates must

be handled, and on how the query can be mcrementallzedof the same quantifier, and rules 2 and 3 generalize to any

qnder. those updates. Direct conversion of nested quantifica number of quantifiers with one alternation. We have not en-
tions into nested aggregate queries can lead to much more

. . ; countered more complicated quantifications than thess. It i
complex incremental computation code and asymptotically

; - R . well known that more than one alternation is rarely used, so
worse time and space complexities for maintaining the inter -
. commonly used quantifications can all be converted to non-
mediate query results.

. . e .. hested aggregate queries. For example, in twelve different
Note that, for an existential quantification, we convert it ggregate q b

to a more efficient aggregate query if a witness is not needed'aIlgorithms expressed in DistAlgo [53], there are a total of
) . . ggregate query '50 quantifications but no occurrence of more than one alter-
if a witness is needed, we incrementally compute the set of

Table 1. Rules for converting single quantifications.

Table 2 shows general rules for converting nested quan-
tifications into equivalent, but non-nested, queries tts& u
aggregate operatiogize. These rules yield much simpler
results than repeated use of the rules in Table 1. For exam-
ple, rule 2 in this table yields a much simpler result than
using two rules in Table 1 in the previous example. More
significantly, rules 1, 4, and 5 generalize to any number

. nation.
witnesses. Table 3 shows general rules for converting single quan-
Converting quantifications to aggregate queries. We tifications with a single order comparison, for any linear or

present all converted forms here and describe which formsder, into equivalent queries that use aggregate operatians
to use after we discuss the updates that must be handledandmin. These rules are useful because andmin can in
The correctness of all rules presented have been proved usgeneral be maintained incrementallydr{log n) time with

ing first-order logic and set theory. These rules ensure thatO(n) space overhead. Additionally, when there are only el-
the value of a resulting query expression equals the value ofement additionsnax andmin can be maintained most effi-
the original quantified expression. ciently inO(1) time and space.

7 2016/1/8

Nested Quantifications Aggregation
l|some x in s | some y in t | bexp| size({(x,y): x in s, y in t | bexp}) != 0
2|each x in s | some y in t | bexp| size({x: x in s, y in t | bexp}) == size(s)
3|some x in s | each y in t | bexp| size({x: x in s, y in t | not bexp}) != size(s)
ieach xins | each y in t | bexp s::Lze({(x,y): X :?.n s, y :?.n t | bexp}) == size({(x,y): x in s, y in t})
5 size({(x,y): x in s, y in t | not bexpl}) ==
Table 2. Rules for converting nested quantifications.
Existential Aggregation Quantification Decomposed Quantifications
1 i <= i
Some X :!.n s 1y s = {} andy <= max(s) 1| some x im s not each x in s | e
2 | some x in s | x >=y | not e
3 |some xins | y >=x some x in s some x in {x in s | el}
1= >= mi 2
4 | some x ins | x <=y s {} andy min(s) | el and e2 | e2
5| some xins | y <x some x in s (some x in s | el) or
1= < 3 .
6 |some x ins | x > y s {} andy < max(s) | el or e2 (some x in s | e2)
7 | some x ins | y > x - 0 > min(s) 4| some x in s (some x in s | not el) or
8 | some x ins | x <y s = andy > min(s | el implies e2 | (some x in s | e2)
5 each x in s X
Universal Aggregation | not e not some x in s | e
9 | each x ?n s | y<=x s == {} ory <= min(s) 6 each x in s (each x in s | el) and
10|each x ins | x >= y | el and e2 (each x in s | e2)
1ll|each x in s | y >= x s == {} ory >= max(s) 7 each x in s each x in {x in s | not el}
12| each x in s | x <=y | el or e2 | e2
13| each x in s | y < x s == {} ory < min(s) 8 each x in s each x in {x in s | el}
14| each x ins | x > y | el implies e2 | | e2
15| each x in s | y > x . - —
6 each xins | x<y | ° {} ory > max(s) Table 4. Rules for decomposing conditions to extract quan-

tified comparisons.
Table 3. Rules for single quantified order comparison.

) parameter. Other updates are to objects and collectioms use
Table 4 shows general rules for decomposing Boolean jn the query. For objects, all updates can be expressedas fiel
combinations of conditions in quantifications, to obtain assignments;.t = exp. For collections, all updates can be

quantifications with simpler conditions. In particular@ean expressed as initialization to empty and element additions
combinations of order comparisons and other conditions cangnd removalss . add (x) ands. del (x).

be transformed to extract quantifications each with a sin- For distributed algorithms, a distinct class of important

g'? order comparison, so _the_ rules In Table 3 can b? ap-updates are caused by message passing. Updates are caused
plied, and Boolean combinations of inner quantifications iy two ways:

and other conditions can be transformed to extract directly

nested quantifications, so the rules in Table 2 can be applied 1- Sending and receiving messages updates the sequences
For example sent andreceived, respectively. Before incrementaliza-

tion, code is generated, as described in Section 4, to ex-
plicitly perform these updates.

can be converted using rule 8 in Table 4 to 2. Handling of messages by code #aceive definitions
each x in {x in s |bexp} |y < x updates variables that are parameters of the queries for

computing synchronization conditions, or that are used
to compute the values of these parameters.

each x in s | bexp implies y < x

which can then be converted using rule 13 of Table 3 to

x in slbexp} == {} or y < min({x in s |bexp}) Once these are established, updates can be determined using

Updates caused by message passin@ecall that the pa- previously studied analysis methods, e.g., [31, 48].

rameters of a query are variables in the query whose val- Incremental computation. Given expensive queries and
ues are bound before the query. Updates that may affect theupdates to the query parameters, efficient incremental com-
query result include not only updates to the query parame- putations can be derived for large classes of queries and up-
ters but also updates to the objects and collections re&echab dates based on the language constructs used in them or by
from the parameter values. The most basic updates are asusing a library of rules built on existing data structure8, [4
signments to query paramete¥ss exp, wherev is a query 50, 51, 60].

8 2016/1/8

For aggregate queries converted from quantifications, al- e In general, multiple ways of conversion may be possible,

gebraic properties of the aggregate operations are eggloit besides small constant-factor differences between rules 2
to efficiently handle possible updates. In particular, e&eh and 3 in Table 1 and rules 4 and 5 in Table 2. In particular,
sulting aggregate query result can be obtaine@ () time for nested quantifications with two or more alternations,
and incrementally maintained i®(1) time per update to one must choose which two alternating quantifiers to

the sets maintained and affected plus the time for evaluat- transform first, using rule 2 or 3 in Table 2. We have not
ing the conditions in the aggregate query once per update. encountered such queries and have not studied this aspect
The total maintenance time at each element addition or dele- further. Our general method is to transform in all ways
tion to a query parameter is at least a linear factor smaller possible, obtain the time and space complexities for each

than computing from scratch. Additionally, if aggregate op result, and choose one with the best time and then space.
erationsnax andmin are used and there are only elementad- Complexities are calculated using the cost model of the
ditions, the space overheadi§1). Note that ifmax andmin set operations given in Section 3. The number of possible
are used naively when there are element deletions, there may ways is exponential in the worst case in the size of the
be an unnecessary overheadxf) space and(logn) up- query, but the query size is usually a small constant.

date time from using more sophisticated data structures t0rable 5 summarizes well-known incremental computation

maintain thenax or min under element deletion [19, 79, 80]. 04445 for these aggregate queries. The methods are ex-
: Incremer_wtal computation IMproves time (_:om_plexny only pressed as incrementalization rules: if a query in the rogr

if the total time OT repeated EXpensive queries _|s_largem tha matches the query form in the table, and each update to a pa-
that of r_epeated mcr_e_mental maintenance. Th's IS ge.ﬁ'era” rameter of the query in the program matches an update form
true for incrementalizing EXpensive synchromzatlon dond in the table, then transform the query into the correspond-
tions, for two reasons: (1) expensive queries in the synchro ing replacement and insert at each update the corresponding

nization conditions need to be eva!uated rep_eatedly at _e_""d}naintenance; fresh variables are introduced for eachrdiffe
relevant update to the message history, until the condition ent query to hold the query results or auxiliary data struc-

becomes true, and (2) incremental maintenance at each suclﬂJres In the third ruleds stores the argument sefof max
update is always at least a linear factor faster than comguti and éupports priority queue operations

from scratch.

To allow the most efficient incremental computation un- Query Replacement Cost
der all given updates, our method transforms each top-level size(s) | count O(1)
guantification as follows: Updates Inserted Maintenance Cost

s = {} count = 0 o(1)

s.add(x) | if x not in s: count += 1 o(1)

* For non-nested quantifications, if the conditions contain _s-de1(x) | if x in s: count -= 1 o)
no order comparisons or there are deletions from the sets

or sequences whose elements are compared, the rules in __QUuery Replacement Cost

Table 1 are used. The space overhead is linear in the sizes _x(s) | maximum o)

of the sets maintained and being aggregated over. Updates Inserted Maintenance Cost

. . - . s = {x} | maximum = x o(1)
* For non-nested quantifications, if the conditions contain ——— 3777~ - o)

order comparisons and there are only additions to the
sets or sequences whose elements are compared, the rules

) - " Query Replacement Cost
in Table 4 are used to extract single quantified order — - 7oy ds.max0) o)
comparisons, and then the rules in Table 3 are used to Updates r<oriod Mamienance | Cost

convert the extracted quantifications. In this case, the ———5 T35 = 1ew DSO o
space overhead is reduced to constant. s = {x} | ds = new DSQ); ds.add(x) | O(1)

¢ For nested quantifications with one level of nesting, the ~ s.add(x) | if x not in s: ds.add(x) | O(log]s|)
rules in Table 4 are used to extract directly nested quan- _s.del(x) | if x in s: ds.del(x) O(log|s|)

tifications, and then the rules in Table 2 are used. If the re-
sulting incremental maintenance has constant-time over-
head maintaining a linear-space structure, we are done. If
it is linear-time overhead maintaining a quadratic-space The overall incrementalization algorithm [48, 50, 60]
structure, and if the conditions contain order compar- introduces new variables to store the results of expensive
isons, then the rules in Table 4 are used to extract sin- queries and subqueries, as well as appropriate additional
gle quantified order comparisons, and then the rules in values, forming a set of invariants, transforms the queries
Table 3 are used. This can reduce the overhead to loga-and subqueries to use the stored query results and additiona
rithmic time and linear space. values, and transforms updates to query parameters to also

Table 5. Incrementalization rules farize and formax. The
rule formin is similar to the rule fomax.

9 2016/1/8

do incremental maintenance of the stored query results and
additional values.

In particular, if queries are nested, inner queries arestran
formed before outer queries. Note that a comprehension
such adx in s | bexp} is incrementalized with respect to
changes to parameters of Boolean expressiap as well
as addition and removal of elementsfif vexp contains
nested subqueries, then after the subqueries are traresform
incremental maintenance of their query results become ad-
ditional updates to the enclosing query.

At the end, variables and computations that are dead in
the transformed program are eliminated. In particular, se-
guencesreceived and sent Will be eliminated when ap-
propriate, because queries using them have been compiled
into message handlers that only store and maintain values
needed for incremental evaluation of the synchronization
conditions.

Example. In the program in Figure 2, three quantifications
are used in the synchronization condition in gheit State-
ment, and two of them are nested. The condition is copied
below, except that’ack’,c2,p2) in received iS used in
place Ofreceived(’ack’,c2,p2).

each (’request’,c2,p2) in q |

(c2,p2) !'= (c,self) implies (c,self) < (c2,p2)
and each p2 in s |

some (’ack’,c2,=p2) in received | c2 > c

Converting quantifications into aggregate queries as de-
scribed using Tables 1 through 4 proceeds as follows. In the
first conjunct, the universal quantification is converteidgs

assigned a new value, lekrlier be q and letcount1

be its size, taking)(|earlier|) time, amortized ta)(1)
time when each request iarlier is served; when a
request is added tq, if c is defined and(c,self) >
(c2,p2) holds, add the request éarlier and increment
countl by 1, takingO(1) time; similarly for deletion
from q. A test of definedness, here!'= undefined, IS
inserted for any variable that might not be defined in the
scope of the maintenance code.

Note that when(’request’,c,self) in particular is
added to or removed from, earlier and countl are
not updated, because,self) > (c,self) is trivially
false.

¢ For the second conjunct, store the set value and the two

size values in three variables, sagsponded, count2,
andtotal, respectively, so the conjunct becomesnt2

== total; wWhens is initialized in setup, assigntotal
the size of, takingO(|s|) time, done only once for each
process; wher is assigned a new value, leésponded

be {3, and letcount2 be 0, takingO(1) time; when an
ack message is added teceived, if the associated con-
ditions hold, incrementount2 by 1, takingO(1) time.

A test of definedness af is omitted in the maintenance
for receivingack messages, becausés always defined
there; this small optimization is incorporated in an incre-
mentalization rule, but it could be done with a data-flow
analysis that covers distributed data flows.

Note that incrementalization uses basic properties about

rule 2 or 3 in Table 1, because it contains an order compari- primitives and libraries. These properties are incorpgatat

son with elements of and there are element deletions from

in incrementalization rules. For the running example, the

q; rule 3 is used here because it is slightly simpler after the property used is that a call togical_clock() returns a
negated condition is simplified. In the second conjunct, the timestamp larger than all existing timestamp values, and
nested quantification is converted using rule 2 in Table 2. thus at the assignment to in methodcs, we have that

The resulting expression is:

size({(’request’,c2,p2) in q |

(c,self) > (c2,p2)}) == 0

and

size({p2: p2 in s, (’ack’,c2,p2) in received |
c2 > c}) == size(s)

Updates to parameters of the first conjunct are additions
and removals of requests to and frgrand also assignment
to c. Updates to parameters of the second conjunct are ad-
ditions of ack messages toeceived, and assignment te,
after the initial assignment ta

Incremental computation [48, 50, 51, 60] introduces vari-
ables to store the values of all three aggregations in the con
verted query, transforms the aggregations to use the intro-
duced variables, and incrementally maintains the storkd va
ues at each of the updates, as follows, yielding Figure 3.

¢ For the first conjunct, store the set value and thge
value in two variables, sagarlier andcounti, respec-
tively, so first conjunct becomesunt1 == 0; whenc is

10

earlier IS q andresponded is {}. S0, an incrementaliza-
tion rule for maintainingearlier specifies that at update
= logical_clock(), the maintenance isrlier =
larly for maintainingresponded. These simplifications could
be facilitated with data-flow analyses that determine vari-
ables holding logical-clock values and sets holding certai
element types. Incrementalization rules can use any pmogra
analysis results as conditions [51].

q; Simi-

Figure 3 shows the optimized program after incremental-

ization of the synchronization condition on lines 10-11 in
Figure 2. All lines with comments are new except that the
synchronization condition in thewait statement is simpli-
fied. The synchronization condition now tak€g1) time,
compared withO(|s|?) if computed from scratch. The trade-
off is the amortized)(1) time overhead at updates ¢and

q and on receiving odck messages.

Note that the sequenagceived used in the synchro-

nization condition in Figure 2 is no longer used after incre-
mentalization. All values needed for evaluating the syaehr
nization condition are stored in new variables introduced:

2016/1/8

earlier, countl, responded, count2, andtotal, a drastic One might have written the following instead, because it
space improvement from unbounded fekeived to linear seems natural, especially if universal quantification is no

in the number of processes. supported:
1 class P extends Process: (C’Self) < min({(c2,p2) : (,requeSt,:CQ’p2) in q
2 def setup(s): | (c2,p2) !'= (c,self)})
3 self.s = s
‘; Sei-totﬁ; size(s) # total num of other procs However, that is incorrect, because the argumeninimay
self.q =
be empty, in which casein is undefined.
f; det °S<taski: Instead of resorting to commonly used special values,
-- reques . . .
8 self.c = logical_clock() such asnaxint, which is ad hoc and error prone in general,
9 self.earlier = q _ # set of pending earlier regs the empty case can be added as the first disjunct of a disjunc-
10 self.countl = size(earlier) # num of pending earlier regs . i
11 self.responded = {} # set of responded procs tion:
12 self.count2 = 0 # num of responded procs
13 send (’request’, c, self) to s {(c2,p2) : (’request’,c2,p2) in q
14 q.add((’request’, c, self)) | (C2,p2) '= (c,self)} == {}
15 await countl ==
and count2 == total # use maintained results or
16 task() (c,self) < min({(c2,p2) : (’request’,c2,p2) in q
17 -- release 1=
18 q.del((’request’, c, self)) I (c2,p2) 1= (c,selD)})
19 d (Prel >, logical_clock(), 1f) t .. . g . . .
Send Trreteaser, toghealt-clockll, st to s In fact, the original universal quantification in the firstneo
§<1> re?gi“,(’re(‘}“‘ft’é €2, p2): 4 it e is defined junctin theawait statement can be converted exactly to this
22 if (c,melf) > (¢2,p2): # comparison in conjumct 1 disjunction by using rule 8 in Table 4 and then rule 13 in Ta-
52 it oieques;;&?,p?) not inzear;)ifn z iiant in . ble 3. Our method does not consider this conversion because
5 . b t?, , t i . .
. oty g rednesEn, & P o e o .1 itleads to a worse resulting program.
gg q~a:d§<’r§que;t’, c’;’, 52)10 i , Figure 4 shows the resulting program after incremental-
’ ’, i - s t " .
send facky, fogleat-clockll, seill top ization of the synchronization condition that uses the dis-
28 receive (ack’, c2, p2): # new message handler junction above, wheres stores the argument setmfifn and
29 if c2 > c: # comparison in conjunct 2 t iorit {i All ted li
30 if p2 in s: # membership in conjunct 2 Suppor S prlon y que_ue Opera Ions. commente In@ a_r
31 if p2 not in responded: # if not responded already new compared to Figure 2 except that the synchronization
2 responded-add(p2) # add to responded condition in theawait statement is simplified. The program
33 count2 += 1 # increment count2 .
a4 v (reloase’ » appears shorter than Figure 3 because the long complex code
35 for (requests. e2, =p2) inm q: for maintaining the data structuge is not included:; it is in
gf; if c é= unclliiinec(hz ” i if ¢ is defined . fact similar to Figure 3 except thas is used and maintained
it (e, > e2.02) > Je et _
38 ’ ifc(f:equest’fc;:p” in :Z:Eei\:;?on ;ni;milimel:rlier instead okarlier andcounti.
39 earlier.del((’request’, c2, p2)) # delete it The program in Figure 4 is still a drastic improvement
40 countl -= 1 # decrement countl
a1 q.de1((’request’, c2, p2)) over the original program in Figure 2, with the synchroniza-

tion condition reduced t@(1) time and withreceived re-
moved, just as in Figure 3. The difference is that maintgnin
ds for incrementalizingnin under element addition to and
deletion fromgq takesO(log |s|) time, as opposed tO(1)
Example with naive use of aggregate operation minNote time for maintainingearlier andcount1 in Figure 3.

that the resulting program in Figure 3 does not need to usegjmyjiications to the original algorithm. Consider the

a queue at all, even though a queue is used in the originalyriginal algorithm in Figure 2. Note that incrementalipati

description in Figure 1; the variablgis simply a set, and getermined that there is no need for a process to update

thus element addition and removal tak§l) time. __auxiliary values for its own request, in both Figures 3 and 4.
We show that ifmin is used naively, @ more sophisti- gased on this, we discovered, manually, that updateddo

cated data structure [19, 79, 80] supporting priority queue 4 process’s own request do not affect the two uses oh

is needed, incurring a@(log n) time update instead of the ihas 9 and 35, in Figure 3 and the only useyobn line 30,

Figure 3. Optimized program after incrementalization. Def-
initions of run andmain are as in Figure 2.

O(1) time in Figure 3. Additionally, for a query usingn to in Figure 4. So we can remove them in Figures 3 and 4. In
be correct, special care must be taken to deal with the case,ygition. we can remove them on lines 9 and 14 in Figure 2
when the argument t@in is empty, because thefin is un- and remove the tegt2,p2) '= (c,self), which becomes
defined.

always true, in the synchronization condition, yielding a

_ C_onsider the first conjupct i.n the synch.ronization condi- simplified original algorithm.
tion in theawait statementin Figure 2, copied below: Furthermore, note that the remaining updategitoFig-
each (’request’,c2,p2) in q | ure 2 merely maintain pending requests by others, so we can
(c2,p2) '= (c,self) implies (c,self) < (c2,p2) remove lines 4, 17, 20, 21, and the entisgeive definition

11 2016/1/8

1 class P extends Process:
2 def setup(s):
3 self.s = s
4 self.total = size(s) # total num of other procs
5 self.q = {}
6 self.ds = new DSQ) # data structure for maint
requests by other procs
7 def cs(task):
8 -- request
9 self.c = logical_clock()
10 self.responded = {} # set of responded procs
11 self.count = 0 # num of responded procs
12 send (’request’, c, self) to s
13 q.add((’request’, c, self))
14 await (ds.is_empty() or (c,self) < ds.min())
and count == total # use maintained results
15 task()
16 -- release
17 q.del((’request’, c, self))
18 send (’release’, logical_clock(), self) to s
19 receive (’request’, c2, p2):
20 ds.add((c2,p2)) # add to data structure
21 q.add((’request’, c2, p2))
22 send (Pack’, logical_clock(), self) to p2
23 receive (’ack’, c2, p2): # new message handler
24 if c2 > c: # comparison in conjunct 2
25 if p2 in s: # membership in conjunct 2
26 if p2 not in responded: # if not responded already
27 responded.add(p2) # add to responded
28 count += 1 # increment count
29 receive (’release’, _, p2):
30 for (’request’, c2, =p2) in q:
31 ds.del((c2,p2)) # remove from data structure
32 q.del((’request’, c2, p2))

Figure 4. Optimized program with use afin after incre-
mentalization. Definitions afun andmain are as in Figure 2.

for release messages, by using, for the first conjunct in the
await statement,

each received(’request’,c2,p2) |
not (some received(’release’,c3,=p2) |
implies (c,self) < (c2,p2)

c3 > c2)

Figure 5 shows the resulting simplified algorithm. Incre-
mentalizing this program yields essentially the same pro-

grams as in Figures 3 and 4, except that it needs to use thg

property that when a message is addetkt@ived, N0 mes-
sage from the same processristeived has a larger times-
tamp, and all messages from the same processdéiived
have a smaller timestamp. This property follows from the
use of logical clock and FIFO channels. The incremental-
ization rules for maintaining the result of the new conditio
incorporate this property in a similar way as described for

1 class P extends Process:
2 def setup(s):
3 self.s s

def cs(task):
-- request
self.c logical_clock()
send (’request’, c, self) to s
await each received(’request’,c2,p2) |
not (some received(’release’,c3,=p2) | c3 > c2)
implies (c,self) < (c2,p2)
and each p2 in s |
some received(’ack’,c2,=p2) | c2 > ¢

4
5
6
7
8

task()
-- release
send (’release’, logical_clock(), self) to s

receive (’request’, _, p2):
send (’ack’, logical_clock(), self) to p2

Figure 5. Simplified algorithm. Definitions afun andmain
are as in Figure 2.

students used the language and system in programming as-
signments and course projects. We summarize results from
the former and describe experience with the latter, after an

overview and update about the implementation.

Our DistAlgo implementation takes DistAlgo programs
written in extended Python, applies analyses and optimiza-
tions, especially to the high-level queries, and genemates
ecutable Python code. It optionally interfaces with an in-
crementalizer to apply incrementalization before gemagat
code. Applying incrementalization uses the methods and im-
plementation from previous work: a library of incremental-
ization rules was developed, manually but mostly following
a systematic method [48, 50], and applied automatically us-
ing InvTS [31, 51]. A set of heuristics are currently used to
select the best program generated from incrementalizing di
ferently converted aggregate queries.

A more extensive implementation of DistAlgo than the
first prototype [53] has been released and is being gradu-
ally improved [23]. Improved methods and implementation
or incrementalization are also being developed, to replac
manually written incrementalization rules, and to better s
lect the best transformed programs.

Evaluation in implementing distributed algorithms. We
have used DistAlgo to implement a variety of well-known
distributed algorithms, including twelve different algbms
for distributed mutual exclusion, leader election, andrato

Figure 3, except it could be facilitated with also a data-flow COmmit, as well as Paxos, Byzantine Paxos, and multi-
analysis that determines the component of a received mes>ax0s, as summarized previously [53]; results of evalnatio

sage holding the sender of the message.

6. Implementation and experiments

We have developed a prototype implementation of the com-
piler and optimizations for DistAlgo and evaluated it in im-
plementing a set of well-known distributed algorithms, as
described previously [53]. We have also used DistAlgo in
teaching distributed algorithms and distributed systeand,

12

using these programs are as follows:

¢ DistAlgo programs are consistently small, ranging from
22 to 160 lines, and are much smaller than specifications
or programs written in other languages, mostly 1/2 to
1/5 of the size; also we were able to find only a few of
these algorithms written in other languages. Our own best
effort to write Lamport’s distributed mutual exclusion in
programming languages resulted in 272 lines in C, 216

2016/1/8

lines in Java, 122 lines in Python, and 99 lines in Erlang, algorithms, because it makes complex algorithms com-
compared with 32 lines in DistAlgo. pletely clear, precise, and directly executable. Studeats

« Compilation times without incrementalization are all un- PiStAIgo quickly through even a small programming assign-
der 0.05 seconds on an Intel Core-i7 2600K CPU with Ment, despite that most did not know Python before, thanks
16GB of memory; and incrementalization times are all t© the power and clarity of Python.
under 30 seconds. Generated code size ranges from 1395 In particular, students in distributed systems courses hav

to 1606 lines of Python, including 1300 lines of fixed li- USed DistAlgo in dozens of course projects, implementing
brary code. the core of network protocols and distributed graph algo-

. i rithms [55]; distributed coordination services Chubby][16
Execution time and space confirm the analyzed asymp- 5n4 7gokeeper [35]; distributed hash tables Kademlia [57],
totic time and space complexities. For example, for Lam- =g [74], Pastry [69], Tapestry [82], and Dynamo [22]:
port’s distributed mutual exclusion, total CPU time is lin- qictributed file systems GFS [30] and HDFS [73]: dis-
ear in the number of processes for the incrementalized ip ;ted databases Bigtable [17], Cassandra [39], and Mega

program, but superlinear for the original program; for a gi4re [12]; distributed processing platform MapReducé;[21
fixed number of processes, the memory usage is constant, 4 others.

for the incremental program, but grows linearly with the
number of requests for the original program.

All distributed programming features were used exten-
sively in students’ programs—easy process creation and
e Compared with running times of our best, manually writ- setup and sending of messages, high-level control flows

ten programs in programming languages, our generatedwith receive definitions as well aswait for synchro-

DistAlgo takes about twice as long as our Python ver- nization, and declarative configurations—with the excep-

sion, which takes about twice as long as our Java version,tion of queries over message histories, because studehts ha

which takes about twice as long as our C version, which been trained in many courses to handle events imperatively;
takes about four times as long as our Erlang version. we have not evaluated incrementalization on students’ pro-
d grams, because execution efficiency has not been a problem.

Overall, students’ experience helps confirm that DistAlgo
allows complex distributed algorithms and services to be
implemented much more easily than commonly used lan-
guages such as C++ and Java. We summarize two specific
instances below.

In a graduate class in Fall 2012, most of the 28 stu-
nts initially planned to use Java or C++ for their course
projects, because they were familiar with those and wanted
to strengthen their experience of using them instead ofjusin
DistAlgo in implementing distributed systems. However, af
ter doing one programming assignment using DistAlgo, all
those students switched to DistAlgo for their course pitsjec
except for one student, who had extensive experience with
C++, including several years of internship at Microsoft Re-
search programming distributed systems.

Python is well known to be slow compared Java and C, an
we have not focused on optimizing constant factors. Erlang
is significantly faster than C and the rest because of its use
of light-weight threads that is made possible by its being
a functional language. However, among our programs for
Lamport’s distributed mutual exclusion, Erlang is the only
one besides un-incrementalized DistAlgo whose memory de
usage for a fixed number of processes grows linearly with
the number of requests.

Programming distributed algorithms at a high level has
also allowed us to discover several improvements to correct
ness and efficiency aspects of some of the algorithms [52].
For example, in the pseudocode for multi-Paxos [77], in pro-
cesseSommander, Waiting forpib messages containing bal-
lot b from a majority ofacceptors is expressed by start-
ing with awaitfor set initialized toacceptors and then, in

a for ever loop, repeatedly updatingaitfor and testing ¢ This student wrote about 3000 lines of C++, compared
Iwaitfor| < |acceptors|/2 as eaclpib message contain- to about 300 lines of DistAlgo written by several other
ing ballotb arrives. The test is incorrect if implemented di- students who chose the same project of implementing
rectly in commonly used languages such as Java, and even multi-Paxos and several optimizations. His C++ program
Python until Python 3, becaugés integer division, discard- was incomplete, lacking some optimizations that other
ing any fractional result; for example, test 3/2 becomes students’ DistAgo programs included.

false but should berue. In DistAlgo, the entire code can

; X e The student did a re-implementation in DistAlgo quickly
simply be written as

after the coursk confirming that it took about 300 lines.

await size({a: received((’p2b’,=b) from a)}) > His biggest surprise was that his C++ program was an
size(acceptors)/2 order of magnitude slower than his DistAlgo program.

After several weeks of debugging, he found that it was

using the standard majority test, and it is correct whether due to an improper use of some C++ library function.

is for integer or float.

Experience in teaching distributed algorithms._ DiStAng 1The student wanted to do research on DistAlgo and so was dsked
has also helped us tremendously in teaching distributedimplement his project in DistAlgo.

13 2016/1/8

The main contrast that the student concluded was the hugeThere are also many notations in between these extremes,
advantage of DistAlgo over C++ in ease of programming some being much more precise or completely precise while
and program understanding, not to mention the unexpectedalso giving a high-level control flow, e.g., Raynal's pseu-
performance advantage. docode [65-67] and Lamport’'s PlusCal [42]. However, all
In a graduate class in Fall 2014, each team of two studentsof these languages and notations lack concepts and mecha-
firstimplemented a fault-tolerant banking service intwo-la nisms for building real distributed applications, and nafst
guages: DistAlgo and another language of their choice otherthe languages are not executable.
than Python. We excluded Python as the other language, be- Many programming languages support programming of
cause implementing the same service in such closely relateddistributed algorithms and applications. Most support dis
languages would be less educational. The service uses chaitributed programming through messaging libraries, raggin
replication [78] to tolerate crash failures. The service i from relatively simple socket libraries to complex libesi
only a few simple banking operations (get balance, deposit, such as MPI [58]. Many support Remote Procedure Call
withdrawal, intra-bank transfer, inter-bank transfeo)nsost (RPC) or Remote Method Invocation (RMI), which allows
of the code is devoted to distributed systems aspects. Thea process to call a subroutine in another process without the
numbers of teams that chose various other languages areprogrammer coding the details for this. Many also support
Java 15, C++ 3, Go 3, Erlang 2, Node.js 2, Elixir (a variant asynchronous method invocation (AMI), which allows the
of Erlang) 1, JavaScript 1. caller to not block and get the reply later. Some program-
. . . _ming languages, such as Erlang [24, 43], based on the ac-
* In the last a_SS|gnme_nt, _teams implemented an_exten_smntor model [2], have support for message passing and process
to ('ghe banking service in one Ianguage_of their choice. management built into the language. There are also other
59% of the teams chose D'StA.IgO for this, even though well-studied languages for distributed programming,,e.g.
most student§ (about 80%) did .not. know Python, and Argus [44], Lynx [71], SR [5], Concert/C [8], and Emer-
none knew DlstAIgo,_ at the beginning pf the cla_ss. In" aig [15]. These languages all lack constructs for exprgssin
other V_/ords, a majority of student_s deudeq th"f‘t imple- o htrol flows and complex synchronization conditions at a
mentation of this type of SVSte”_‘ IS b?tter in DistAlgo, much higher level; such high-level constructs are extrgmel
even (_:ompared to languages W'th which they had more e 10 implement efficiently. DistAlgo’s construct fo
experience and that are more widely used. declaratively and precisely specifying yield points fonha
e We asked each team to compare their experiences withdling received messages is a new feature that we have not
the two languages. Teams consistently reported that de-seen in other languages. So is DistAlgo’s support of history
velopment in DistAlgo was faster and easier than devel- variables in high-level synchronization conditions in non
opmentin the other language (even though most studentsdeterministicawait in a programming language. Our sim-
did not know Python before the project), and that the ple combination of synchronousait and asynchronous
DistAlgo code was significantly shorter. It is no surprise receive allows distributed algorithms to be expressed eas-
that Java and C++ require more code, even when studentsly and clearly.
used existing networking libraries, which they were en- There has been much work on producing executable im-
couraged to do. Comparison with Erlang and Go is more plementations from formal specifications, e.g., from pssce
interesting, because they are high-level languages de-algebras [34], I/O automata [29], Unity [32], and Seuss [37]
signed to support distributed programming. For the teams as well as from more recently proposed high-level lan-
that chose Erlang, the average DistAlgo and Erlang code guages for distributed algorithms, e.g., Datalog-basad la
sizes, measured as non-empty non-commentline of code guages Meld [6], Overlog [4], and Bloom [13], a Prolog-
are 586 and 1303, respectively. For the teams that chosebased language DAHL [54], and a logic-based language
Go, the average DistAlgo and Go code sizes are 465 andEventML [14, 62]. An operational semantics was studied
1695, respectively. recently for a variant of Meld, called Linear Meld, that al-
lows updates to be encoded more conveniently than Meld
7 Related work and conclusion by using !inear logic [_20]. (_Zompilation of Di_stAIgo tq ex-
ecutable implementations is easy because it is designed to
A wide spectrum of languages and notations have been usete so and DistAlgo is given an operational semantics. High-
to describe distributed algorithms, e.g., [7, 27, 38, 41, 42 |eyel queries and quantifications used for synchronization
55, 65-67, 76]. At one end, pseudocode with English is conditions can be compiled into loops straightforwardiy, b
used, e.g., [38], which gives a high-level flow of the algo- they may be extremely inefficient. None of these prior works
rithms, but lacks the details and precision needed for a Com-study powerfu| Optimizations of quantifications_ Eﬂ‘|c|gnc
plete understanding. At the other end, state machine basedoncern is a main reason that similar high-level language
specification languages are used, e.g., I/O automata [36, 55 constructs, whether for queries or assertions, are raselg,u

which is completely precise, but uses low-level control Bow if supported at all, in commonly used languages.
that make it harder to write and understand the algorithms.

14 2016/1/8

Incrementalization has been studied extensively, e.§,,[4 A.1 Abstract Syntax
64], both for doing it systematically based on languages, an e apstract syntax is defined in Figures 6 and 7. We use

in applying it in an ad hoc fashion to specific problems. g,me syntactic sugar in sample code, e.g., we use infix nota-
However, all systematic incrementalization methods based;q for some binary operators, suchaast andis.

on languages have been for centralized sequential programs i
e.g., for loops [3, 28, 49], set languages [33, 50, 60], recur Notation.
sive functions [1, 46, 63], logic rules [47, 70], and object-
oriented languages [48, 59, 68]. This work is the first to ex-
tend incrementalization to distributed programs to suppor
high-level synchronization conditions. This allows thegka * A symbol in the grammar is a non-terminal symbol if it
body of previous work on incrementalization, especially on Starts with an upper-case letter.

sets and sequences, to be used for optimizing distributed pr e In each production, alternatives are separated by a line-
grams. break.

Quantifications are the centerpiece of first-order logic,
and are dominantly used in writing synchronization condi- _
tions and assertions in specifications, but there are few re- ® * after a non-terminal means “1 or more occurrences”.
sults on generating efficient implementations of them. In e ¢4 denotes the result of applying substitutiémo t. We
the database area, despite extensive work on efficientimple represent substitutions as functions from variables to ex-
mentation of high-level queries, efficient implementatidn pressions.
guantification has only been studied in limited scope or for
extremely restricted query forms, e.g., [9-11, 18]. Intogi \vell-formedness requirements on programs.
programming, implementations of universal quantification
are based on variants of brute-force Lloyd-Topor transfor- 1. The top-level method in a program must be named

¢ A symbol in the grammar is a terminal symbol if it starts
with a lower-case letter.

e x after a non-terminal means “0 or more occurrences”.

mations, e.g., [26, 61]; even state-of-the-art logic pangr main. It gets executed in an instance of the pre-defined
ming systems, e.g., [75], do not support universal quaatific Process class when the program starts.

tion. Our method is the first general and systematic method » Each label used ingeceive definition must be the label

for incrementalizing arbitrary quantifications. Althoutiiey of some statement that appears in the same class as the

are much more challenging to optimize than set queries, our
method combines a set of general transformations to trans-
form them into aggregate queries that can be most efficiently 3.
incrementalized using the best previous methods.

To conclude, this article presents a powerful language and
method for programming and optimizing distributed algo-
rithms. There are many directions for future work, from for- Constructs whose semantics is given by translation.
mal verification on the theoretical side, to generating dode
lower-level languages on the practical side, with many ad-
ditional analyses and optimizations in between. In pafticu
lar, a language with a high level of abstraction also facili-
ates formal verification, of not only the high-level proggm 2. A method call or field assignment that does not explicitly
but also the generated efficient implementations when they ~ Specify the target object is translated into a method call
are generated through systematic optimizations. Besigdes d or field assignment, respectively, ealf.

veloping systematic optimizations, we have started toystud 3. An await statement without an explicitly specified

receive definition.

Invocations of methods defined usigf appear only in
method call statements. Invocations of methods defined
usingdefun appear only in method call expressions.

1. Constructors for all classes, asdtup() methods for
process classes, are eliminated by translation into ordi-
nary methods that assign to the fields of the objects.

formal verification of distributed algorithms and their itep label—in other words, the associated label is the empty
mentations by starting with their high-level, concise digsc string—is translated into amwait statement with an ex-
tions in DistAlgo. plicitly specified label, by generating a fresh label name

¢, replacing the empty label in thavait statement with
¢, and insertind in everyat clause in the class contain-
ing theawait statement.

APPENDIX 4. The B(?olean opera_\tocmd and each are eliminated as
follows: e; and ey is replaced withnot (not (e;) or
A. Semantics of DistAlgo not (e3)),andeach iter | eisreplaced withot (some

We give an abstract syntax and operational semantics fora Itef | not(e)).

core language for DistAlgo. The operational semantics is a 5. An aggregate is eliminated by translation into a compre-
reduction semantics with evaluation contexts [72, 81]. hension followed by &or loop that iterates over the set

15 2016/1/8

Program ::= Configuration ProcessClass* Method
ProcessClass := class ClassName extends ClassName: Method* ReceiveDef*

ReceiveDef ::= receive ReceivePattern+ at Label+ : Statement
receive ReceivePattern+t : Statement

RecetvePattern .= Pattern from Instance Variable

Method ::= def MethodName (Parameter*) Statement
defun MethodName (Parameter*) Expression

Statement 1=
InstanceVariable = Expression
Instance Variable = new ClassName
Instance Variable = { Pattern : Iterator* | Ezxpression }
Statement ; Statement
if FEzpression: Statement else: Statement
for Iterator: Statement
while Fxpression: Statement
Ezxpression . MethodName (Expression*)
send Tuple to Fxpression
Label await Expression : Statement AnotherAwaitClause*
Label await Expression : Statement AnotherAwaitClause* timeout Fxpression
skip

Ezxpression ;= Literal
Parameter
Instance Variable
Tuple
Ezxpression . MethodName (Expression*)
UnaryOp (Ezpression)
BinaryOp (Expression , Expression)
isinstancé Expression,ClassName)
and (Fxpression, Expression)
or (Expression, Expression)
each lterator | Fxpression
some [terator | Fxpression

/1 conjunction (short-circuiting)
/1 disjunction (short-circuiting)

Tuple .= (Ezxpression*)

Figure 6. Abstract syntax, Part 1.

prefix, if any. The quantification is rewritten asme

returned by the comprehension. Ther loop updates an
accumulator variable using the aggregate operator.

6. Iterators containing tuple patterns are rewritten asite
tors without tuple patterns, as follows.

¢ Consider the existential quantificatisbme (eq,...,e,)
in s | b. Let x be a fresh variable. Lef be the
substitution that replaces with select(x,i) for
eachi such thate; is a variable not prefixed with
“=". Let {j1,...,Jm} contain the indices of the
constants and the variables prefixed with” “in

(e1,...,en). Lete; denotee; after removing the=

16

z in s | isTuple(x) and len(x) is n and
(select(x,j1), ..., select(z,jn)) is (g;,
..., €;,.) and b.

¢ Consider the loogor (ey,...,e,) in e : s. Let
x and S be fresh variables. Lefiy, ..., i;} contain
the indices in(ey,...,e,) of variables not prefixed
with “=". Let 0 be the substitution that replaces
with select(x,:) for eachi in {iy,...,ix}. Let
{j1,-..,Jm} contain the indices irley,...,e,) of
the constants and the variables prefixed with Let

2016/1/8

UnaryOp ::=not /1 Boolean negation
isTuple //testwhether a valueis a tuple

len /1'length of a tuple
BinaryOp ::=is /I identity-based equality
plus //'sum

select //select(t,) returns the’th component of tuple

Pattern .= Instance Variable
TuplePattern

TuplePattern ::= (PatternElement*)

PatternElement .= Literal
InstanceVariable
=Instance Variable

Iterator := Pattern in FExpression
AnotherAwaitClause := or Expression : Statement

Configuration ::= configuration ChannelOrder ChannelReliability ...
ChannelOrder .= fifo
unordered
ChannelReliability ::= reliable
unreliable

ClassName ::= ...

MethodName = ...

Parameter ::= ...

InstanceVariable ::= Fxpression.Field

Field = ...

Label = ...

Literal ::= BooleanLiteral
IntegerLiteral

BooleanLiteral ::= true
false
IntegerLiteral ::= ...

Figure 7. Abstract syntax, Part 2. Ellipses.(*.”) are used for common syntactic categories whose detalsi@mportant.

€; denotee; after removing the £” prefix, if any. 8. Comprehensions are statically eliminated as followg. Th
Note thate may denote a set or sequence, and dupli- comprehensiod x = { e | z; in ey, ..., x, in
cate bindings for the tuple of variablés;, , ..., e;,) en | b}, where/ is a label and each; is a pattern,
are filtered out ife is a set but not it is a sequence. is replaced with

The loop is rewritten as the code in Figure 8.

7. Comprehensions in which some variables are prefixed ¢ = = new Set
with = are translated into comprehensions without such for z; in e;:
prefixing. Specifically, for a variable prefixed with= e
in a comprehension, replace occurrences=ofin the for x, in ey:

comprehension with occurrences of a fresh variaple if b:
and add the conjungt=x to the Boolean condition. x.add(e)

17 2016/1/8

S =ce
if isinstance(S,Set):
S={2:2in S | isTuple(z) and len(x) is
and (select(z,j1), ..
for x in S:
s6
else: //Sisasequence
for x in S:
if (isTuple(z) and len(z) is n
and (select(x,j1), ..
s6
else:
skip

., select(z,jn)) is (gj,

., select(w,jn)) is (&, ..

n

L)}

s éjwn) :

Figure 8. Translation offor loop to eliminate tuple pattern.

9. Wildcards are eliminated from tuple patterns by replgcin 7.

each occurrence of wildcard with a fresh variable.

10. Remote method invocation, i.e., invocation of a method
on another process after that process has been started, i8.
translated into message communication.

Notes.

1. ClassName must includeProcess. Process is a pre-
defined class; it should not be defined expliciétlyocess
has fieldssent and received, and it has a method
start.

. The grammar allowseceive definitions to appear in
classes that do not exte®docess, but suchreceive
definitions are useless, so it would be reasonable to maké'o'
them illegal.

. The grammar does not allow labels on statements other
thanawait. A label? on a statemend other thamwait
is treated as syntactic sugar for lalfedn await true
: skip followed by statement.

11.

. ClassName must includeSet andSequence. Sets and
sequences are treated as objects, because they are mie-
table. These are predefined classes that should not be
defined explicitly. Methods oBet include add, del,
contains, min, max, andsize. Methods ofSequence
includeadd (which adds an element at the end of the se-
guence)contains, andlength. We give the semantics
explicitly for a few of these methods; the others are han-
dled similarly.

13.

. Tuples are treated as immutable values, not as mutable
objects. 14.

. All expressions are side-effect free. For simplicity, we
treat quantifications as expressions, so existential quan-
tifications do not have the side-effect of binding vari-
ables to a witness. Such existential quantifications could15.
be added as a new form of statement.

18

Object creation and comprehension are statements, not
expressions, because they have side-effects. Comprehen-
sion has the side-effect of creating a n&wt.

Parameter mustincludeself. The values of method pa-
rameters cannot be updated (e.g., using assignment state-
ments). For brevity, local variables of methods are omit-
ted from the core language. Consequently, assignment is
allowed only for instance variables.

. Semantically, théor loop copies the contents of a (mu-

table) sequence or set into an (immutable) tuple before
iterating over it, to ensure that changes to the sequence
or set by the loop body do not affect the iteration. An
implementation could use optimizations to achieve this
semantics without copying when possible.

For brevity, among the standard arithmetic operatiens (

-, ¥, etc.), we include only one representative operation
in the abstract syntax and semantics; others are handled
similarly.

The semantics below does not model real-time, so time-
outs inawait statements are simply allowed to occur
non-deterministically.

We omit the concept of node (process location) from
the semantics, and we omit the node argument of the
constructor when creating instances of process classes,
because process location does not affect other aspects of
the semantics.

We omit configure handling statements from the
syntax. The semantics is fafonfigure handling =
all. Semantics for otheronfigure handling options
can easily be added.

To support initialization of a process by its parent, a
process can access fields of another process and invoke
methods on another process before the latter process is
started.

We require that all messages are tuples. This is an
inessential restriction; it slightly simplifies the specifi

2016/1/8

tion of pattern matching between messagesman@ive Heap Type in the semantics, even though the information
patterns. in that function is distributed in the same way as the heap

16. A process'ssent sequence contains pairs of the form Itselfin animplementation.

(m,d), wherem is a message sent by the process to e The MsgQueue associated with a process by the last

destinationd. A process'sreceived sequence contains component of a state contains messages, paired with the
pairs of the form'm, s), wherem is a message received sender, that have arrived at the process but have not yet
by the process from sender been handled by matching.ceive definitions.
A.2 Semantic Domains A.3 Extended Abstract Syntax
The semantic domains are defined in Figure 9. Section A.1 defines the abstract syntax of programs that can
Notation. belwritten by th_e user. Figqre 10 e_xtends the abstract syntax
. o) to include additional forms into which programs may evolve
* D contains finite sequences of values from domain during evaluation. Only the new productions are shown here;
¢ Set(D) contains finite sets of values from domdn all of the productions given above carry over unchanged.

e D1 — D2 contains partial functions fronb; to Ds.

dom(f) is the domain of a partial functiofi Egpression ::= Address

AddressField

Statement ::= for Variableintuple Tuple: Statement
Bool = {true,false}

Int = Figure 10. Extensions to the abstract syntax.
Address =
ProcessAddress — .. The statemenfor v intuple t¢: s iterates over the
Tuple = Val® elements of tuple, in the obvious way.
Val = Bool U Int U Address U Tuple A.4 Evaluation Contexts
SetOfVal = Set(Val) Evaluation contexts, also called reduction contexts, aeglu
SeqOfVal = Val* to identify the next part of an expression or statement to be

Object = (Field — Val) U SetOfVal U SeqOfVal evaluatgd. An evaluation context is an expression or state-

ment with a hole, denoted], in place of the next sub-
expression or sub-statement to be evaluated. Evaluation co
LocalHeap = Address — Object texts are defined in Figure 11.

Heap = ProcessAddress — LocalHeap

HeapType = Address — ClassName

A5 T ition Relati
ChannelStates = ProcessAddress x ProcessAddress ransttion refations

The transition relation for expressions has the férm h +

— Tuple e — ¢/, wheree ande’ are expressiongit € HeapType,
MsgQueue = (Tuple x ProcessAddress)” andh € LocalHeap. The transition relation for statements
State = (ProcessAddress — Statement) has the formr — o’ whereo € State ando’ € State.
x Heap Type x Heap x ChannelStates Both transition relations are implicitly parameterized by

the program, which is needed to look up method definitions
and configuration information. The transition relation for
expressions is defined in Figure 12. The transition relation
for statements is defined in Figures 13-14.

X (ProcessAddress — MsgQueue)

Figure 9. Semantic domains. Ellipses are used for semantic

domains of primitive values whose details are standard or

unimportant. ¢ In the transition rules; matches an addressmatches a
value (i.e., an element dfal); and/ matches a label.

Notation and auxiliary functions.

Notes. e For an expression or statemente[x := y] denotese

* We requireProcessAddress C Address. with all occurrences af replaced withy.

® Fora € ProcessAddress andh € Heap, h(a) is the * A function matches the pattetfiz — y] if f(z) equals

local heap of process. Fora € Address and ht € Y-
HeapType, ht(a) is the type of the object with address e For a functionf, f[z := y] denotes the function that is
a. For convenience, we use a single (global) function for ~ the same ag except that it maps to y.

19 2016/1/8

Val ::= Literal
Address
(Val*)
C =

(Val*, C,Expression*)
C.MethodName(Expression*)
Address.MethodName(Val*, C,Expression*)
UnaryOp(C)
BinaryOp(C,Expression)
BinaryOp(Val,C)
isinstance(C,ClassName)
or(C,Expression)
some Pattern in C' | Ezpression
C.Field = Expression
Address.Field = C
Instance Variable = C
C'; Statement
if C': Statement else: Statement
for InstanceVariable in C': Statement
for InstanceVariable intuple Tuple: C
send C to Fxpression
send Val to C
await Ezpression :

timeout C

Statement AnotherAwaitClause*

Figure 11. Evaluation contexts.

¢ fo denotes the empty partial function, i.e., the partial
function whose domain is the empty set.

e For a (partial) functioryf, f © a denotes the function that
is the same ag except that it has no mapping for

e Sequences are denoted with angle brackets,(8,d.,2) €
Int*.
e 5@t is the concatenation of sequeneeandt.

e tail(s) is the tail of sequence, i.e., the sequence ob-
tained by removing the first element af

e first(s) is the first element of sequenge
e length(s) is the length of sequence

e extends(c1, c2) holds iff classe; is a descendant of class
¢ in the inheritance hierarchy.

e Forc € ClassName, new(c) returns a new instance of

new(c) =
{} ifc=Set
() if c=Sequence
fo otherwise

e Form € MethodName andc € ClassName, methodDef (c,
m, def) holds if (1) class: defines methodh, anddefis
the definition ofm in ¢, or (2) ¢ does not definen, and
defis the definition ofm in the nearest ancestor ofin
the inheritance hierarchy that defines

20

e Forh,h,h’ € LocalHeap andht, ht' € HeapType and

v, € Val, isCopy(v, h, h, ht, v, b’ ht") holds if (1)v is

a value in a process with local heagi.e., addresses in

v are evaluated with respectt), (2) v is a copy ofv for

a process whose local heap wadeforev was copied
into it and whose local heap I afterv is copied into it,
i.e.,v is the same as except that, instead of referencing
objects inh, it references newly created copies of those
objects ink/, and (3)h’ and ht’ are versions of, and

ht updated to reflect the creation of those objects. As an
exception, because process addresses are used as global
identifiers, process addressewiare copied unchanged
into v, and new copies of process objects are not created.
We give auxiliary definitions and then a formal definition
of isCopy.

Forv € Val, let addrs(v, h) denote the set of addresses
that appear im or in any objects or values reachable from
v With respect to local healp; formally,

a € addrs(v,h) =

(v € Address Nv = a)

V (v € dom(h) A h(v) € Field — Val
A (3f € dom(h(v)).a € addrs(h(v)(f),h)))

V (v € dom(h) A h(v) € SetOfVal U SeqOfVal
A (T € h(v).a € addrs(v', h)))

V (Fv,...,o € Val.v = (v1,...,0,)
A i € [1..n]. a € addrs(v;, h))

Forv,v € Valandf € Address — Address, subst(v, v, f)
holds if v is obtained fromz by replacing each occur-
rence of an addressin dom/(f) with f(a) (informally,

f maps addresses of new objectsuirio addresses of
corresponding old objects i); formally,

subst(v, v, f) =
(v € Bool U Int U (Address \ dom(f)) AT =v)
V(v e dom(f)N f(v) =v)
vV (301,...,1)71,’(_)1,...,’5".
v=(V1,...,00) AT = (U1,...,Dp)

A (Vi € [1..n]. subst(v;,v;, f)))

Similarly, for 0,06 € Object and f € Address —
Address, subst(o, 0, f) holds if o is obtained fronb by
replacing each occurrence of an addresi® dom(f)
with f(a). For setsS andS’, let S 5! S be the set of
bijections betweers and.5’.

2016/1/8

Finally, isCopy is defined as follows (intuitivelyd con-
tains the addresses of the newly allocated objects):

isCopy (v, h, h, ht, v, h', ht') =
JA C Address \ ProcessAddress.
fea’s (addrs(v, h) \ ProcessAddress).
AN dom(ht) =10
A dom(ht') = dom(ht) U A
A dom(h') = dom(h) U A
A (Va € dom(ht). ht'(a) = ht(a))
A (Ya € dom(h). W (a) = h(a))
A (Va € A. ht'(a) = ht(f(a))
A subst(h(a), h'(a), f))

eForm € Val, a € ProcessAddress, ¢ € Label,
h € LocalHeap, and areceive definition d, if mes-
sagem can be received frona at label/ by a pro-
cess with local heap usingreceive definitiond, then
matchRcvDef (m, a, £, h, d) returns the appropriately in-
stantiated body ofl. Specifically, if (1) eithew lacks an
at clause, ord has anat clause that includeg, and
(2) d contains areceive patternP from z such that
there exists a substitutiof such that (2ayn = P#¢
and (2b)d(y) = h(y) for every variabley prefixed with
“="1in P, then, lettingd be the substitution obtained us-
ing the firstreceive pattern ind for which (2) holds,
matchRcvDef (m, a, £, h,d) returnssfz := a], where
s is the body ofd (i.e., the statement that appearsiin
OtherwisematchRcvDef (m, a, ¢, h,d) returnsL.

e Form € Val, a € ProcessAddress, { € Label, ¢ €
ClassName, andh € LocalHeap, if messagen can be
received froma at label/ in classc by a process with
local heaph, thenreceiveAtLabel((m, a), ¢, ¢, h) returns
a statement that should be executed when receivirng
that context.

Specifically, if classc contains areceive definition d
such thatnatchRcvDef (m, a, ¢, h,d) is not_L, then, let-
ting di, . ..,d, be thereceive definitionsd in ¢ such
that matchRcvDef (m, a, ¢, h,d) is not L, and letting

s; = matchRcvDef (m, a, £, h,d;), receiveAtLabel((m, a), £,
., Sn }. Otherwiseyeceive AtLabel((m, a), £,

¢, h) returns{sy, . .
¢, h) returnsskip.

A.6 Executions

An execution is a sequence of transitians— o1 — o2 —

- such thatog is an initial state. The set of initial states
is defined in Figure 15. Intuitivelyy, is the address of the
initial processg,. is the address of theeceived sequence
of the initial process, and; is the address of theent
sequence of the initial process.

Informally, execution of the statement initially assoeit
with a process may eventually (1) terminate (i.e., the state
ment associated with the process becogiey, indicating
that there is nothing left for the process to do), (2) getlstuc

21

Init =
{(P, ht, h,ch, mq) € State |
Ja, € ProcessAddress,
a, € Address \ ProcessAddress,
as € Address \ ProcessAddress.
(€28 7é Qs
AP = folap := ap.main()]
Aht= fola,:=Process, a, :=Sequence, a, :=Sequence]
Ah = folap := hal
A ch=(A(a1, az) € ProcessAddress x ProcessAddress. ())
Amq = (Aa € ProcessAddress. ())
whereha = fola, := 0y, ar := (), as == ()]
op = folreceived := a,, sent := a4|}

Figure 15. Initial states.

(i.e., the statement associated with the process iski,

and the process has no enabled transitions) due to an unsatis
fiedawait statement or an error (e.g., the statement contains
an expression that tries to select a component from a value
that is not a tuple, or the statement contains an expression
that tries to read the value of a non-existent field), or (8) ru
forever due to an infinite loop or infinite recursion.

Acknowledgments

We thank Michael Gorbovitski for supporting the use of
InvTS for automatic incrementalization of DistAlgo pro-
grams. We are grateful to the following people for their
helpful comments and discussions: Ken Birman, Andrew
Black, Jon Brandvein, Wei Chen, Ernie Cohen, John Field,
Georges Gonthier, Leslie Lamport, Nancy Lynch, Lambert
Meertens, Stephan Merz, Don Porter, Michel Raynal, John
Reppy, Emin Gin Sirer, Doug Smith, Gene Stark, Robbert
van Renesse, and anonymous reviewers.

References

[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive func-
tional programming. ACM Transactions on Programming
Languages and Systen28(6):990-1034, 2006.

[2] G. Agha. Actors: A Model of Concurrent Computation in
Distributed SystemaMIT Press, 1986.

[3] F. E. Allen, J. Cocke, and K. Kennedy. Reduction of oparat
strength. In S. S. Muchnick and N. D. Jones, editBregram
Flow Analysis pages 79-101. Prentice-Hall, 1981.

[4] P. Alvaro, T. Condie, N. Conway, J. Hellerstein, and RaiSe
| do declare: Consensus in a logic languageCcM SIGOPS
Operating Systems Revig$8(4):25-30, 2010.

[5] G. R. Andrews and R. A. Olsson.The SR Programming
Language: Concurrency in PracticeBenjamin Cummings,
1993.

[6] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pilkid
J. D. Campbell. A language for large ensembles of indepen-

2016/1/8

/1 field access
ht:hta.f— h(a)(f) ifacdom(h)Afe dom(h(a))

/1 invoke method in user-defined class
ht:hbEam(vy,...,v,) — e[self :=a,x1 :=v1,...,2, = U]
if a € dom(h) A methodDef (ht(a), m,defun m(z1,...,x,) €)

/1 invoke method in pre-defined class (representative eleshp
ht : ht a.contains(v1) — true if a € dom(h) A ht(a) = Set Avy € h(a)
ht: ht a.contains(v1) — false if a € dom(h) A ht(a) = Set Avy & h(a)

/1 unary operations

ht : h - not(true) — false

ht : h F not(false) — true

ht: h b isTuple(v) — true if visatuple

ht: h isTuple(v) — false if visnotatuple
ht:ht len(v) — n if visatuple withn components

/1 binary operations
ht : h - is(vy,vs) — true if v; andv, are the same value

ht: h plus(vi,ve) = w3 if vy € Int Avg € Int Avg = v1 + vg

ht : h - select(vi,v2) — vs
if vo € Int Avs > 0 A (v is a tuple with at least, components)\ (vs is thevs'th component ofy,)

/lisinstance
ht : h - isinstance(a,c) — true if ht(a) =c¢
ht : h isinstance(a,c) — false if ht(a) # ¢

/1 disjunction
ht : h - or(true,e) — true
ht: hl or(false,e) = e

/I existential quantification
ht:ht somexina|e — e[z:=wv1]or -+ ore[x :=v,]
if (ht(a) = Sequence A h(a) = (v1,...,v,)) V (ht(a) = Set A (v1,...,v,) is a linearization of.(a))

Figure 12. Transition relation for expressions.

dently executing nodes. IRroceedings of the 25th Inter- [10] A. Badia, M. Gyssens, and D. Van Gucht. Query languages

national Conference on Logic Programmingages 265-280. with generalized quantifiers. In R. Ramakrishnan, editor,
Springer, 2009. Applications of Logic in DatabaseKluwer Academic, 1994.
[7] H. Attiya and J. Welch.Distributed Computing: Fundamen- [11] A. Badia, B. Debes, and B. Cao. An implementation of a
tals, Simulations, and Advanced Topicdd/iley, 2nd edition, query language with generalized quantifiers.Phoceedings
2004. of the 27th International Conference on Conceptual Model-

[8] J.S. Auerbach, A. P. Goldberg, G. S. Goldszmidt, A. S.&pp ing, pages 547-548. Springer, 2008.
M. T. Kennedy, J. R. Rao, and J. R. Russell. Concert/C: [12] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,al-

A language for distributed programming. Proceedings son, J.-M. Léon, Y. Li, A. Lloyd, and V. Yushprakh. Megas-
of the USENIX Winter 1994 Technical ConferendSENIX tore: Providing scalable, highly available storage foeiat-
Association, 1994. tive services. IrProceedings of the Conference on Innovative

[9] A. Badia. Question answering and database queryingigBri Database Researcpages 223-234, 2011.
ing the gap with generalized quantificatidournal of Applied [13] Berkeley Orders of Magnitude. Bloom Programming Lan-
Logic, 5(1):3-19, 2007. guage.http://www.bloom-lang.net, 2013. Last released

22 2016/1/8

/1 field assignment
(Pla — o'.f = v], ht, hla — hal[d’ — 0]], ch, mq)
— (Pla := skip|, ht, h[a := hala’ := o[f := v]]], ch, mq)

/1 object creation

(Pla — &'.f = new ¢], ht, hla — hala’ — 0]], ch, mq)

— (P[a := skip], ht[a’ := ¢, hla := hald’ := o[f := ac, ac := new(c)]], ch, mq)

if ac & dom(ht) A a. € Address A (a. € ProcessAddress <= extends(c,Process))

/1 sequential composition
(Pla — skip;s|, ht, h,ch,mq) — (Pla := s], ht, h, ch, mq)

/1 conditional statement
(Pla — if true: s1 else: s], ht, h,ch,mq) = (Pla := $1], ht, h, ch, mq)

(Pla — if false: s1 else: so|, ht, h,ch,mq) — (Pla := sa], ht, h, ch, mq)

/1 for loop
(Pla — for x in a': s8], ht, h,ch, mq) — (Pla := for x intuple (v1,...,v,) :], ht, h, ch,mq)
if ((ht(a) = Sequence A h(a)(a’) = (v1,...,v,)) V (ht(a) = Set A (v1,...,v,) is alinearization ofi(a)(a’)))

(Pla — for x intuple (v1,...,vy,) : 8|, ht, h, ch,mq)
— (Pla := s[z := v1]; for x intuple (va,...,v,) :], ht, h, ch, mq)

(Pla — for x intuple () : s|, ht, h, ch,mq) — (Pla := skip], ht, h, ch, mq)

/1 while loop
(Pla — while e: s|, ht, h,ch,mq) — (Pla := if e: (s; while e: s) else : skip], ht, h, ch, mq)

/1invoke method in user-defined class
(Pla — o .m(vy,...,vn)], ht, h,ch,mq)
— (Pla := s[self :=a,x1 :=v1,..., Ty := v,]], ht, h, ch,mq)
if ' € dom(h(a))
A ht(a') € {Process, Set, Sequence} A methodDef (ht(a'), m,def m(x1,...,zy) S)

/1 invoke method in pre-defined class (representative eleshp

/] Process.start allocates a local heap ardnt andreceived sequences for the new process,
/1 and moves the started process to the new local heap.
(Pla — o .start()], ht, hla — hala’ — o], ch, mq)
— (Pla := skip, da’ := d’/.run()], ht[as := Sequence, a, := Sequence],
hla:=ha©d,d = fola’ — o[sent := a4, received := a,],a, := (), as := (}]], ch,mq)
if extends(ht(a’),Process) A (ht(a’) inheritsstart fromProcess) A a, € dom(ht) A as & dom(ht)
A ay € Address \ ProcessAddress N\ as € Address \ ProcessAddress

/1 invoke method in pre-defined class (representative el@snpontinued)
(Pla — d’.add(v1)], ht, hla — ha], ch, mq)

— (Pla := skip], ht, h[a := hala’ := ha(a’) U {v1}]], ch, mq)

if ' € dom(ha) A ht(a') = Set

(Pla — d’.add(v1)], ht, hla — hal], ch,mq)
— (Pla := skip], ht, h[a := hala’ := ha(a’)Q(v1)]], ch, mq)
if ' € dom(ha) A ht(a') = Sequence

Figure 13. Transition relation for statements, Part 1.

23 2016/1/8

/1 send a message to one process. create copies of the migshgesender'sent sequence
/1 and the receiver.
(Pla — send v to ag], ht, hla — ha,az — has], ch, mq)
— (Pla := skip|, ht”, hla := hd'[as := ha(as)Q{(v1,a2))], az := hal)],
chl(a, az) := ch((a, a2))@(vz)], mq)
if ag € ProcessAddress N\ as = ha(a)(sent) A isCopy(v, ha, ha, ht,v1, ha', ht')
A isCopy (v, ha', hag, ht' va, hab, ht'")

/1 send to a set of processes

(Pla — send v to d'], ht, hla — ha], ch, mq)

— (P[a := for x in a’: send v to x|, ht, h[a := halas := ha(as)Q((v,a’))]], ch, mq)
if ht(a’) = Set A as = ha(a)(sent) A (z is a fresh variable)

/1 message reordering
(P, ht, h,ch[(a,a’) = q],mq) = (P, ht, h,ch|[(a,a’) := ¢'],mq)
if (channel order issmordered in the program configuration) (¢’ is a permutation of)

/]l message loss
(P, ht, h,ch[(a,a’) = q],mq) = (P, ht, h,ch|[(a,a’) = ¢'],mq)
if (channel reliability isunreliable in the program configuration) (¢’ is a subsequence of

/1 arrival of a message from procesat process’. remove message from channel, and append
/1 (message, sender) pair to message queue.

(P, ht, h,ch[(a,a’) = q],mq)

— (P, ht, h, chl(a,a’) := tail(q)], mg[a’ := mq(a’)Q((first(q),a))])

if length(q) >0

/1 handle a message at a yield point. remove the (messagkerd@air from the message
/1 queue, append a copy to theceived sequence, and prepare to run matching receive
/1 handlers associated withif any. s has a label hence must beait.
(Pla — £ 8], ht, hla — ha], ch,mqla — q])
— (Pla := s'[self := a];{ s], ht’, hla — ha'[a, — ha(a,)Q{copy)]], ch, mgla := tail(q)])
if length(q) > 0 A a, = ha(a)(received) A isCopy(first(q), ha, ha, ht, copy, ha', ht')

A recewveAtLabel(first(q), ¢, ht(a), ha') = S A s’ is a linearization o5

/1 await without timeout clause
(Pla — £ await e1:81 or --- OT ey:Sy], ht, h,ch,mq) — (Pla := s;], ht, h, ch, mq)
if length(mgq(a)) =0Ai € [l.n] Ah(a): ht - e; — true

/1 await with timeout clause, terminated by true condition
(Pla — £ await e:81 or --- Or ey:S, timeout v:s], ht, h, ch, mq) — (Pla := s;], ht, h, ch, mq)
if length(mg(a)) =0Ai € [1..n] A h(a): ht - e; — true

/] await with timeout clause, terminated by timeout (ocaws-deterministically)
(Pla — ¢ await e1:81 or -+ or e,:S, timeout v:s|, ht, h,ch,mq) — (Pla := s], ht, h, ch,mq)
if length(mq(a)) =0Ah(a): ht+e; — falseA---Ah(a): htte, — false

/1 context rule for expressions
h(a):htke—¢
(Pla — Clel]l, ht, h,ch,mq) — (Pla := Cle']], ht, h, ch,mq)

/1 context rule for statements
(Pla — s],ht, h,ch,mq) — (Pla := §'], ht', ', ch’, mq")
(Pla — C|[s]], ht, h,ch,mq) — (Pla := C[s']], ht', h', ch’,mq’)

Figure 14. Transition relation for statements, Part 2.
24 2016/1/8

April 23, 2013. Accessed December 20, 2015. specified in the 10A languagénternational Journal on Soft-

[14] M. Bickford. Component specification using event cézss ware Tools for Technology Transfeir1(2):153-171, 2009.

In Proceedings of the 12th International Symposium on [30] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
Component-Based Software Engineeyingages 140-155. system.ACM SIGOPS Operating Systems Reyig#(5):29—
Springer, 2009. 43, 20083.

[15] A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The [31] M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel, dn
development of the Emerald programming languagePri T. Tekle. Alias analysis for optimization of dynamic lan-
ceedings of the 3rd ACM SIGPLAN Conference on History of guages. InProceedings of the 6th Symposium on Dynamic
Programming Languagepages 11-1-11-51, 2007. Languagespages 27—42. ACM Press, 2010.

[16] M. Burrows. The Chubby lock service for loosely-couple [32] A. Granicz, D. M. Zimmerman, and J. Hickey. Rewriting
distributed systems. IRroceedings of the 7th Symposium on UNITY. In Proceedings of the 14th International Conference
Operating Systems Design and Implementatjmages 335- on Rewriting Techniques and Applicationsages 138-147.
350. USENIX Association, 2006. Springer, 2003.

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A distributed storage system for structured d&&&M Trans-
actions on Computer Systen2§(2):4, 2008.

[18] J. ClauRen, A. Kemper, G. Moerkotte, and K. Peithnerti-Op
mizing queries with universal quantification in objectestied

[33] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintain
ing views incrementally. IProceedings of the 1993 ACM
SIGMOD International Conference on Management of Data
pages 157-166, 1993.

[34] D. Hansel, R. Cleaveland, and S. A. Smolka. Distributed
and object-relational databases. Rroceedings of the 23rd prototyping from validated specificationdournal of Systems
International Conference on Very Large Data Baspages and Software70(3):275-298, 2004.

286-295. Morgan Kaufman, 1997. [35] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeepe

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein Wait-free coordination for internet-scale systemsUBENIX
Introduction to AlgorithmsMIT Press, 3rd edition, 2009. Annual Technical Conferencg010.

[20] F. Cruz, R. Rocha, S. C. Goldstein, and F. Pfenning. A lin [36] D. Kaynar, N. Lynch, R. Segala, and F. Vaandragéthe

ear logic programming language for concurrent programming Theory of Timed 1/O AutomataMorgan & Claypool, 2nd

over graph structure§-heory and Practice of Logic Program- edition, 2010.

ming, 14:493-507, 7 2014. [37] I. H. Kruger. An experiment in compiler design for a con-
[21] J. Dean and S. Ghemawat. MapReduce: Simplified data pro- current object-based programming language. Master'ssthes

cessing on large clustet§ommunications of the ACNS1(1): The University of Texas at Austin, 1996.

107-113, 2008. [38] A. Kshemkalyani and M. SinghalDistributed Computing:
[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, Principles, Algorithms, and System&ambridge University

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, Press, 2008.

and W. Vogels. Dynamo: Amazon's highly available key- [39] A. Lakshman and P. Malik. Cassandra: A decentralizagtst
value store ACM SIGOPS Operating Systems Reyid#(6): tured storage systemACM SIGOPS Operating Systems Re-
205-220, 2007. view, 44(2):35-40, 2010.

[23] DistAlgo. DistAlgo: A Language for Distributed Algo- [40] L. Lamport. Time, clocks, and the ordering of events in a

rithms. http://sourceforge.net/projects/distalgo, distributed systemCommunications of the ACM1:558-565,
2014. Betarelease September 27, 2014, latest releaseSepte 1978

ber 2015.

[24] Erlang. Erlang Programming Languagehttp://www.
erlang.org/, 2015. Last released December 18, 2015.

[25] C. J. Fidge. Timestamps in message-passing systerhs tha
preserve the partial ordering. IRroceedings of the 11th
Australian Computer Science Conferengages 56—66, 1988.

[26] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Serfiogram))
transformation for development, verification, and synithes [43] J. Larson. Erlang for (lzoncurrent programmir@ommunica-
programs.Intelligenza Artificiale 5(1):119-125, 2011. tions of the ACM52(3):48-56, 2009.

[27] V. K. Garg. Elements of Distributed ComputingViley, 2002. [44] B. Liskov. Distributed programming in ArgusCommunica-

[28] Gautam and S. Rajopadhye. Simplifying reductionsCém- tions of the ACM31(3):300-312, Mar. 1988.
ference Record of the 33rd ACM SIGPLAN-SIGACT Sympo- [45] Y. A. Liu. Systematic Program Design: From Clarity To

[41] L. Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers Addison-
Wesley, 2002.

[42] L. Lamport. The PlusCal algorithm language.Aroceedings
of the 6th International Colloquium on Theoretical Aspexfts
Computing pages 36—60. Springer, 2009.

sium on Principles of Programming Languagpages 30—41, Efficiency Cambridge University Press, 2013.

2006. ISBN 1-59593-027-2. [46] Y. A. Liu and S. D. Stoller. Dynamic programming via stat
[29] C. Georgiou, N. A. Lynch, and P. M. andJoshua A. Tauber. incrementalization. Higher-Order and Symbolic Computa-

Automated implementation of complex distributed algarith tion, 16(1-2):37-62, 2003.

25 2016/1/8

[47] Y. A. Liu and S. D. Stoller. From Datalog rules to efficten ence on Logic Programming and Nonmonotonic Reasgning

programs with time and space guarante®SM Transactions pages 310-324. Springer, 1997.
on Programming Languages and Syste8146):1-38, 2009. 2] PRL Project. ~ EventML. http://www.nuprl.org/
[48] Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, dn software/#WhatisEventML, 2012. Last released Septem-
Y. E. Liu. Incrementalization across object abstraction. | ber 21, 2012.
Proceedings of the 20th ACM Conference on Object-Oriented (53] W, pugh and T. Teitelbaum. Incremental computation via
Programming, Systems, Languages, and Applicatipages function caching. InConference Record of the 16th Annual
473-486, 2005. ACM Symposium on Principles of Programming Languages
[49] Y. A. Liu, S. D. Stoller, N. Li, and T. Rothamel. Optimiz pages 315-328, 1989.

aggregate array computations in loop&CM Transactions on

| [64] G. Ramalingam and T. Reps. A categorized bibliography
Programming Languages and Systeig1):91-125, 2005.

on incremental computation. I8onference Record of the

[50] Y. A. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng 20th Annual ACM Symposium on Principles of Programming
Y. Zhao, and J. Zhang. Core role-based access control: Effi- Languagespages 502-510, 1993.
cient implementations by transformations. Rroceedings of

i J [65] M. Raynal. Distributed Algorithms and Protocals Wiley,
the ACM SIGPLAN 2006 Workshop on Partial Evaluation and 1988

Program Manipulationpages 112-120, 2006. o)
[66] M. Raynal. Communication and Agreement Abstractions for

[51] Y. A. Liu, M. GprbO\."tSk" a_md S.D. Stoller._ A languaged Fault-Tolerant Asynchronous Distributed Systefd®rgan &
framework for invariant-driven transformations. Pmoceed- Claypool, 2010

ings of the 8th International Conference on Generative Pro-

gramming and Component Engineerimgages 55-64. ACM [67] M. Raynal. Distributed Algorithms for Message-Passing Sys-

Press, 2009. tems Springer, 2013.

[52] Y. A. Liu, S. D. Stoller, and B. Lin. High-level executiab [68] T. Rothamel and Y. A. Liu. Generating incremental imple
specifications of distributed algorithms. Rroceedings of mentations of object-set queries. Mioceedings of the 7th
the 14th International Symposium on Stabilization, Safety International Conference on Generative Programming and
and Security of Distributed Systenpgges 95-110. Springer, Component Engineeringages 55-66. ACM Press, 2008.
2012. [69] A. Rowstron and P. Druschel. Pastry: Scalable, deatnéd

[53] Y. A. Liu, S. D. Stoller, B. Lin, and M. Gorbovitski. From object location, and routing for large-scale peer-to-pmyer
clarity to efficiency for distributed algorithms. Proceedings tems. InProceedings of the IFIP/ACM International Con-
of the 27th ACM SIGPLAN Conference on Object-Oriented ference on Distributed Systems PlatforivBddleware 2001,
Programming, Systems, Languages and Applicatipages pages 329-350. Springer, 2001.

395-410, 2012. [70] D. Saha and C. R. Ramakrishnan. Incremental evaluation

[54] N. P. Lopes, J. A. Navarro, A. Rybalchenko, and A. Singh. of tabled logic programs. IfProceedings of the 19th Inter-
Applying prolog to develop distributed systeniBheory and national Conference on Logic Programmirngages 392-406.
Practice of Logic Programmingl0(4-6):691—707, July 2010. Springer, 2003.

ISSN 1471-0684. doi: 10.1017/S1471068410000360. URL [71] M. L. Scott. The Lynx distributed programming language
http://dx.doi.org/10.1017/31471068410000360. Motivation, design, and experieno8omputer Languaged6

[55] N. A. Lynch. Distributed Algorithms Morgan Kaufman, (3):209-233, 1991.

1996. [72] T. F. Serbanuta, G. Rosu, and J. Meseguer. A rewriting

[56] F. Mattern. Virtual time and global states of distriedt logic approach to operational semanticénformation and
systems. InProceedings of the International Workshop on Computation 207:305-340, 2009.

Parallel and Distributed Algorithmspages 120-131. North- [73] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Holland, 1989. Hadoop distributed file system. Rroceedings of the 2010

[57] P. Maymounkov and D. Maziéres. Kademlia: A peer-torpee IEEE 26th Symposium on Mass Storage Systems and Tech-
information system based on the XOR metricPaer-to-Peer nologies pages 1-10. IEEE CS Press, 2010.

Systemspages 53-65, 2002. [74] 1. Stoica, R. Morris, D. Liben-Nowell, D. Karger,

[58] MPI. Message Passing Interface Forumhttp://www. M. Kaashoek, F. Dabek, and H. Balakrishnan. Chord:
mpi-forum.org/, 2015. Last released June 4, 2015. A scalable peer-to-peer lookup protocol for internet agapli

[59] H. Nakamura. Incremental computation of complex objec tions. IEEE/ACM Transactions on Networking1(1):17-32,
queries. InProceedings of the 16th ACM SIGPLAN Confer- 2003.
ence on Object-Oriented Programming, Systems, Languages,[75] T. Swift, D. S. Warren, et alThe XSB System Version 3,6.x
and Applicationspages 156—165, 2001. Apr. 2015. http://xsb.sourceforge.net. Accessed De-

[60] R. Paige and S. Koenig. Finite differencing of compigab cember 20, 2015.
expressionsACM Transactions on Programming Languages [76] G. Tel. Introduction to Distributed Algorithms Cambridge

and System<}(3):402—454, 1982. University Press, 2nd edition, 2000.
[61] V. Petukhin. Programs with universally quantified emhtbed [77] R. Van Renesse and D. Altinbuken. Paxos made moderately
implications. InProceedings of the 4th International Confer- complex. ACM Comput. Sury47(3):42:1-42:36, Feb. 2015.

26 2016/1/8

[78] R. van Renesse and F. B. Schneider. Chain replication fo
supporting high throughput and availability. Rroceedings
of the Sixth Symposium on Operating Systems Design and
Implementationpages 91-104. USENIX Association, 2004.

[79] D. E. Willard. Efficient processing of relational calas ex-
pressions using range query theory. Rroceedings of the
1984 ACM SIGMOD International Conference on Manage-
ment of Datapages 164-175, 1984.

[80] D. E. Willard. An algorithm for handling many relatioha
calculus queries efficientlydournal of Computer and System
Sciences65:295-331, 2002.

[81] A. K. Wright and M. Felleisen. A syntactic approach tpey
soundnesslnformation and Computatiqri15:38-94, 1994.

[82] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Jdsep
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deploymentlEEE Journal on Selected
Areas in Communication22(1):41-53, 2004.

27

2016/1/8

