
Lecture 16:
Introduction to Dynamic Programming

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

Multisets are allowed to have repeated elements. A multiset
of n items may thus have fewer than n! distinct permutations.
For example, {1, 1, 2, 2} has only six different permutations:
{1, 1, 2, 2}, {1, 2, 1, 2}, {1, 2, 2, 1}, {2, 1, 1, 2}, {2, 1, 2, 1},
and {2, 2, 1, 1}. Design and implement an efficient algorithm
for constructing all permutations of a multiset.

Dynamic Programming

Dynamic programming is a very powerful, general tool for
solving optimization problems on left-right-ordered items
such as character strings.
Once understood it is relatively easy to apply, it looks like
magic until you have seen enough examples.
Floyd’s all-pairs shortest-path algorithm was an example of
dynamic programming.

Greedy vs. Exhaustive Search

Greedy algorithms focus on making the best local choice at
each decision point. In the absence of a correctness proof
such greedy algorithms are very likely to fail.
Dynamic programming gives us a way to design custom
algorithms which systematically search all possibilities (thus
guaranteeing correctness) while storing results to avoid
recomputing (thus providing efficiency).

Recurrence Relations

A recurrence relation is an equation which is defined in terms
of itself. They are useful because many natural functions are
easily expressed as recurrences:
Polynomials: an = an−1 + 1, a1 = 1 −→ an = n
Exponentials: an = 2an−1, a1 = 2 −→ an = 2n

Weird: an = nan−1, a1 = 1 −→ an = n!
Computer programs can easily evaluate the value of a given
recurrence even without the existence of a nice closed form.

Computing Fibonacci Numbers

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1

Implementing this as a recursive procedure is easy, but slow
because we keep calculating the same value over and over.

F(3)

F(2)

F(1) F(0)

F(1)

F(2)

F(1)

F(2)

F(1)

F(4)

F(3)

F(0)

F(1)

F(2)

F(1)

F(2)

F(1)

F(4)

F(3)

F(0)

F(1)

F(6)=13

F(5)

F(0)

F(0)

How Slow?

Fn+1/Fn ≈ φ = (1 +
√
5)/2 ≈ 1.61803

Thus Fn ≈ 1.6n.
Since our recursion tree has 0 and 1 as leaves, computing Fn
requires ≈ 1.6n calls!

What about Dynamic Programming?

We can calculate Fn in linear time by storing small values:

F0 = 0
F1 = 1
For i = 1 to n

Fi = Fi−1 + Fi−2

Moral: we traded space for time.

Why I Love Dynamic Programming

Dynamic programming is a technique for efficiently comput-
ing recurrences by storing partial results.
Once you understand dynamic programming, it is usually
easier to reinvent certain algorithms than try to look them up!
I have found dynamic programming to be one of the most
useful algorithmic techniques in practice:

• Morphing in computer graphics.

• Data compression for high density bar codes.

• Designing genes to avoid or contain specified patterns.

Avoiding Recomputation by Storing Results

The trick to dynamic programmming is to see that the
naive recursive algorithm repeatedly computes the same
subproblems over again, so storing the answers in a table
instead of recomputing leads to an efficient algorithm.
We first hunt for a correct recursive algorithm, then we try to
speed it up by using a results matrix.

Binomial Coefficients

The most important class of counting numbers are the
binomial coefficients, where (nk) counts the number of ways
to choose k things out of n possibilities.

• Committees – How many ways are there to form a k-
member committee from n people? By definition, (nk).

• Paths Across a Grid – How many ways are there to travel
from the upper-left corner of an n ×m grid to the lower-
right corner by walking only down and to the right? Every
path must consist of n +m steps, n downward and m to
the right, so there are (n+m

n) such sets/paths.

Computing Binomial Coefficients

Since (nk) = n!/((n − k)!k!), in principle you can compute
them straight from factorials.
However, intermediate calculations can easily cause arith-
metic overflow even when the final coefficient fits comfort-
ably within an integer.

Pascal’s Triangle

No doubt you played with this arrangement of numbers in
high school. Each number is the sum of the two numbers
directly above it:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Pascal’s Recurrence

A more stable way to compute binomial coefficients is using
the recurrence relation implicit in the construction of Pascal’s
triangle, namely, that

(nk) = (n− 1
k − 1) + (n− 1

k)

It works because the nth element either appears or does not
appear in one of the (nk) subsets of k elements.

Basis Case

No recurrence is complete without basis cases.
How many ways are there to choose 0 things from a set?
Exactly one, the empty set.
The right term of the sum drives us up to (kk). How many ways
are there to choose k things from a k-element set? Exactly
one, the complete set.

Binomial Coefficients Implementation

long binomial coefficient(n,m)
int n,m; (* compute n choose m *)
{

int i,j; (* counters *)
long bc[MAXN][MAXN]; (* table of binomial coefficients *)

for (i=0; i<=n; i++) bc[i][0] = 1;

for (j=0; j<=n; j++) bc[j][j] = 1;

for (i=1; i<=n; i++)
for (j=1; j<i; j++)

bc[i][j] = bc[i-1][j-1] + bc[i-1][j];

return(bc[n][m]);
}

Three Steps to Dynamic Programming

1. Formulate the answer as a recurrence relation or recursive
algorithm.

2. Show that the number of different instances of your
recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence so you
always have what you need.

The Gas Station Problem

Suppose we are driving from NY to Florida, and we know the
positions of all gas stations g1 to gn we will pass on route.
What is the minimum number of gas stations we will have to
fill up at to make it down there?
The mi be the mile marker where station gi is located, and R
be the driving range of the car on a full tank in miles.

Recursive Idea

Let G[i] be the minimum number of fillups needed to get to
gas station gi.
If we know the best cost to get to all gas stations before i that
are in driving range, we can compute G[i]:

G[i] = min
j<i,where ((mj−mi)<R)

G[j] + 1

The boundary case is G[1] = 0.

Observations

• This gives an O(n2) algorithm to minimize the number of
stations.

• This problem could have been solved as BFS/shortest path
on an unweighted directed graph.

• Many dynamic progrmaming algorithms are in fact
shortest path problems on the right DAG, in disguise.

• The dynamic programming formulation can be extended
(with additional state) to finding the cheapest trip if gas
stations charge different prices.

