CSE 594: Modern Cryptography
 Lecture 6: The Goldreich Levin Theorum
 Instructor: Omkant Pandey
 Scribe: Hemant Pandey, Sayan Bandyopadhyay

1 Last Class

In the last class we studied about hardcore predicates for a one way function, Goldreich Levin theorem, Markov's inequality. Today, we are going to discuss Goldreich Levin Theorem and its proof in details along with an overview of Chebychev's inequality.

2 Goldreich Levin Theorem

The context of Goldreich and Levin is to find a hard-core predicate for any one-way function. Let's recall first what a hard core predicate was :

A predicate $h:\{0,1\}^{*} \rightarrow\{0,1\}$ is a hard core predicate for f if h is deterministic and efficiently computable given x and there exists a negligible function ν such that for every non uniform PPT adversary A and for all (sufficiently large) $n \in \mathbb{N}$:

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n}: A\left(1^{n}, f(x)\right)=h(x)\right] \leq \frac{1}{2}+\nu(n)
$$

Let us recall the outline of Goldreich Levin Theorem which was discussed in the previous class: Let f be a OWF (OWP). We defined the function $g(x, r)=(f(x), r)$ where, $|x|=|r|$. It is not hard to see that g is also a OWF (OWP). The Goldreich-Levin Theorem proves that $h(x, r)=\langle x, r\rangle$ is a hard core predicate for g.

This means that if there was an efficient algorithm to predict $\langle x, r\rangle$ given $g(x, r)$ (which is equal to $(f(x), r))$ there is also an algorithm to compute pre-image of $f(x)$ given $f(x)$. Probabilities over here are taken over random choice of x and r. In previous lecture we did two warm up proofs. We showed that if an algorithm can predict $\langle x, r\rangle$ with a little over $3 / 4$ probability, we can invert f with noticeable probability. Today, we will prove that this works even if the probability is just above $1 / 2$.

In order to do this, we first need to understand a few concepts.

2.1 Pairwise Independence

We say that $X_{1} \ldots X_{M}$ are pairwise independent if for every $\mathrm{i}, \mathrm{j} \in[\mathrm{M}]$ with $\mathrm{i} \neq \mathrm{j}$ and every a, b $\in \mathrm{R}$ we have,

$$
\operatorname{Pr}\left[X_{i}=a \wedge X_{j}=b\right]=\operatorname{Pr}\left[X_{i}=a\right] \cdot \operatorname{Pr}\left[X_{j}=b\right]
$$

For pairwise independent variables, the following important equation holds:

$$
E[X i \cdot X j]=E[X i] \cdot E[X j] .
$$

We can use this property with the Chebyshev inequality in the last class to get meaningful bounds for sums of pairwise independent $0 / 1$-random variables.

2.2 Chebyshev's inequality for Sum of Pairwise Independent Boolean Variables

Recall from last class that if Y is a random variable with variance (denoted from hereon as) $V[Y]$, then by Chebyshev's inequality: $\operatorname{Pr}[|Y-E[Y]|>k] \leq \frac{V[Y]}{k^{2}}$.

Now, suppose that we have $n 0 / 1$-random-variables denoted by X_{1}, \ldots, X_{m} such that: $\operatorname{Pr}\left[X_{i}=1\right]=p$. We want to get a meaningful bound for a random variable that is sum of them all. That is, if we denote the sum by:

$$
X=X_{1}+X_{2}+\ldots+X_{m}
$$

Then we want a meaning bound for how far X can deviate from its expected value.
Note that each X_{i} has expected value: $E\left[X_{i}\right]=p .1+(1-p) .0=p$. Therefore, by linearity of expectation:

$$
E[X]=E\left[\sum_{i=1}^{m} X_{i}\right]=\sum_{i=1}^{m} E\left[X_{i}\right]=\sum_{i=1}^{m} p=m p
$$

We want to know what is the probability that X will be "far" from its expected value $m p$? In particular, what the is the probability that X is δm far from its expectation? In other words, we want to know a bound on $\operatorname{Pr}[|X-m p|>m \delta]$. Let us write $\mu=E[X]=m p$. We claim that:

$$
\begin{equation*}
\operatorname{Pr}[|X-\mu|>m \delta] \leq \frac{1}{4 m \delta^{2}} \tag{1}
\end{equation*}
$$

Proof: We will apply Chebyshev. To do so, we first calculate the variance $V[X]$. We apply the formula for the variance:

$$
\begin{aligned}
V[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[(X-\mu)^{2}\right] \\
& =E\left[\left(X^{2}-2 \mu X+\mu^{2}\right)\right] \\
& =E\left[X^{2}\right]-E[2 \mu X]+E\left[\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \\
& =E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2} \\
& =E\left[X^{2}\right]-m^{2} p^{2}
\end{aligned}
$$

Now, let's calculate $E\left[X^{2}\right]$. First, notice that for each $X_{i}: E\left[X_{i}^{2}\right]=p .1^{2}+(1-p) .0^{2}=p$ and for each $i \neq j: E\left[X_{i} \cdot X_{j}\right]=E\left[X_{i}\right] \cdot E\left[X_{j}\right.$ because X_{i}, X_{j} are pairwise independent. Therefore,

$$
\begin{aligned}
E\left[X^{2}\right] & =E\left[\left(X_{1}+X_{2}+\ldots . .+X_{m}\right)^{2}\right] \\
& =E\left[\sum_{i, j} X_{i} \cdot X_{j}\right] \\
& =E\left[\sum_{i \neq j} X_{i} \cdot X_{j}\right]+\sum_{i} E\left[X_{i}^{2}\right] \\
& =\sum_{i \neq j} E\left[X_{i}\right] \cdot E\left[X_{j}\right]+\sum_{i} p \\
& =\sum_{i \neq j} p \cdot p+m p \\
& =p^{2} \cdot\left(m^{2}-m\right)+m p \\
& =m^{2} p^{2}+m p(1-p) .
\end{aligned}
$$

Substituting the value of $E\left[X^{2}\right]$ back in the calculation for $V[X]$ we get:

$$
V[X]=m p(1-p) .
$$

Now substituting the value of $V(x)$ back in Chebyshev's inequality, we can get equation (1). That is:

$$
\begin{aligned}
\operatorname{Pr}[|X-\mu|>m \delta] & \leq \frac{V[X]}{(m \delta)^{2}} \\
& =\frac{m p(1-p)}{m^{2} \delta^{2}} \\
& =\frac{p(1-p)}{m \delta^{2}} \\
& \leq \frac{1}{4 m \delta^{2}}
\end{aligned}
$$

where the last line follows from the fact that $p(1-p)$ attains its maximum value when $p=$ $1-p=\frac{1}{2}$. This proves equation (1) which we will use soon.

2.3 From few independent bits to many pairwise independent bits

Suppose that b_{1}, b_{2} are independent random bits. Then the tuple $\left(b_{1}, b_{2}, b_{3}\right)$ where $b_{3}=b_{1} \oplus b_{2}$ is a tuple of 3 pairwise independent bits. This fact is easy to verify by simply using the definition of pairwise independent.

We can extend this concept to many bits. In particular, we are given l random and independent bits: $\left(b_{1}, b_{2}, b_{3} \ldots \ldots . b_{l}\right)$ we can create m bits from them: $\left(b_{1}^{\prime}, b_{2}^{\prime} \ldots \ldots . b_{m}^{\prime}\right)$ such that these m bits are pairwise independent and $m=2^{l}-1$. Indeed, observe that there are $2^{l}-1$ non-empty subsets of the set $[l]=\{1,2, \ldots, l\}$. Therefore, we can define a bit for each of these subsets as follows: $b_{S}^{\prime}=\oplus_{i \in S} b_{i}$ for $S \subset[l]$ and $S \neq \phi$. So if we number these sets from 1 to m , our bits will be $\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$. It is easy to check that these m bits are pairwise independent as before.

Why is this important? The above fact is important for the following reason. Suppose that someone comes and gives us correct hardcore bits for l challenges, then we can generate hard core bits for m challenges simply by xoring as above. This works only for the inner product function $\langle x, r\rangle$ and may not work for other types of hard core predicates.

Now, how will we get these l values? Well, if we set $l=\log n$, then we can just guess them randomly and we will be correct with probability at least $1 / n$. And then by applying the above method, we can get $m=2^{l}-1$ correct values without guessing. So we get m values by guessing only l which means we get m correct values with probability $1 / n$. Now lets use this.

2.4 Proof of GL Theorem

Given A such that:

$$
\begin{equation*}
\operatorname{Pr}_{x, r}[A(f(x), r)=<x, r>] \geq \frac{1}{2}+\epsilon \tag{2}
\end{equation*}
$$

We will design an algorithm B for inverting f with probability more than $\epsilon / 4$.
To do this, let us first define a good set of x values. These are the x values for which A guesses the hardcore bit with better than $1 / 2$ probability. (Note that not all x have this property - we only know that A on average guesses hardcore bits for a random x with better than $1 / 2$; so we want to define a set where we are guaranteed that A always has good chance as we change r but keep x fixed). Let $G d$ be the set of good values defined as follows:

$$
G d=\left\{x: \operatorname{Pr}_{r}[A(f(x), r)=<x, r>] \geq \frac{1}{2}+\frac{\epsilon}{2}\right\}
$$

We claim that there are many good x values; more precisely:

$$
\begin{equation*}
\operatorname{Pr}_{x}[x \in G o o d] \geq \frac{\epsilon}{2} \tag{3}
\end{equation*}
$$

Proof: Suppose that this is not true, i.e.: $\operatorname{Pr}_{x}[x \in G o o d]<\frac{\epsilon}{2}$.
Then,

$$
\begin{aligned}
\operatorname{Pr}_{x, r}[A(f(x), r)=<x, r>]= & \underset{x, r}{ } \operatorname{Pr}[A(f(x), r)=<x, r>\mid x \in G d] \cdot \operatorname{Pr}_{x, r}[x \in G d] \\
& +\operatorname{Pr}_{x, r}[A(f(x), r)=<x, r>\mid x \notin G d] \cdot \operatorname{Pr}_{x, r}[x \notin G d] \\
< & 1 \cdot \frac{\epsilon}{2}+\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \cdot 1 \\
= & \frac{1}{2}+\epsilon
\end{aligned}
$$

This is a contradiction to the assumption that A guesses $<x, r>$ with $1 / 2+\epsilon$ probability or more. Hence the claim.

Now we define adversary B which guesses $b_{1}, b_{2}, \ldots b_{l}$ for random values $r_{1}, r_{2}, \ldots r_{l}$ and then generates values $b^{\prime} 1, \ldots, b_{m}^{\prime}$ and $r_{1}^{\prime}, \ldots, r_{m}^{\prime}$ as we discussed above. And then uses them to guess bits of x one by one.

Here the main idea to guess each bit of x. Suppose that the values B generates are correct hard core bits: i.e., $\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$ and $\left(r_{1}^{\prime}, \ldots, r_{m}^{\prime}\right)$ are such that $<x, r_{j}^{\prime}>=b_{j}^{\prime}$. Then, the B can use A to guess the hardcore bit for $r_{j}^{\prime \prime}=e_{i} \oplus r_{j}^{\prime}$. It can then recover a guess for x_{i} as we did in the warm up proof for $3 / 4+\epsilon$ case. That is, define:

$$
x_{i, j}^{*}=b_{j}^{\prime} \oplus b_{i, j}^{\prime \prime} \text { where } b_{j}^{\prime \prime}=A\left(f(x), e_{i} \oplus r_{j}^{\prime}\right)
$$

Then, the guess for x_{i} is obtained as:

$$
x_{i}^{*}=\text { majority bit in }\left\{x_{i, j}^{*}\right\}_{j=1}^{m}
$$

We claim that if $m=\frac{2 n}{\epsilon^{2}}$ then for every $x \in G d$:

$$
\begin{equation*}
\operatorname{Pr}\left[x_{i}^{*} \neq x_{i}\right]<\frac{1}{2 n} \tag{4}
\end{equation*}
$$

Proof: Keep an indicator variable y_{j} such that $y_{j}=1$ if $x_{i, j} \neq x_{i}$. Let:

$$
y=y_{1}+y_{2}+\ldots . .+y_{m}
$$

Then, x_{i}^{*} is not correct if $y>m / 2$. We apply Chebyshev for $x \in G d$. Notice that for $x \in G d$ each y_{i} is 1 with probability $p=\operatorname{Pr}\left[y_{i}=1\right]=1-\left(\frac{1}{2}+\frac{\epsilon}{2}\right)=\frac{1-\epsilon}{2}$ and $E[y]=m p$ where $m=2 n / \epsilon^{2}$. Let $\delta=1 / 2-p=\epsilon / 2$. Then using Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[y>m / 2] & =\operatorname{Pr}[y-m p>m / 2-m p] \\
& \leq \operatorname{Pr}[|y-E[y]|>(1 / 2-p) m] \\
& <\frac{1}{4 m \delta^{2}} \\
& =\frac{1}{4 \cdot \frac{2 n}{\epsilon^{2}} \cdot \frac{\epsilon^{2}}{4}} \\
& =\frac{1}{2 n}
\end{aligned}
$$

As claimed. Therefore, for any given x, by the above strategy B will get x_{i} wrong for any given $x \in G d$ with at most $1 / 2 n$ probability. By union bound, if B guesses each x_{i} one by one for each i to construct full x, the probability that x will not be correct is at most $n \times 12 n=1 / 2$. This gives us the following algorithm B for inverting $f(x)$ for a random x :

Algorithm B to invert f : On input a challenge $z=f(x)$ for a random x do the following:

1. Pick random values $\left(r_{1}, \ldots, r_{l}\right)$ for $l=\log m+1$ where $m=\frac{2 n}{\epsilon^{2}}$.
2. Cycle through all possible values of $\left(b_{1}, \ldots, b_{l}\right)$ starting from $(0,0, \ldots, 0)$ to $(1,1, \ldots, 1)$ doing the following:

$$
\text { for } i=1 \text { to } n \text { : }
$$

(a) Construct strings $\left(r_{1}^{\prime}, \ldots, r_{m}^{\prime}\right)$ and $\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$ using the set construction as defined above.
(b) for $j=1$ to m : feed $e_{j} \oplus r_{j}^{\prime}$ to A and get his answer, denoted: $b_{j}^{\prime \prime}=A\left(f(x), e_{i} \oplus r_{j}^{\prime}\right)$.
(c) Compute $x_{i}^{*}=$ majority bit in $\left\{x_{i, j}^{*}\right\}_{j=1}^{m}$ where $x_{i, j}^{*}=b_{j}^{\prime} \oplus b_{i, j}^{\prime \prime}$. return x^{*} if $f\left(x^{*}\right)=z$ where $x^{*}=x_{1}^{*}, \ldots, x_{n}^{*}$.
3. Return fail. (i.e., no candidate x^{*} found so far).

It is easy to check that B runs in polynomial time. We have already argued that if $x \in G d$ then the probability that B is wrong about x^{*} is at most $1 / 2 n$ provided that it starts with $\left(b_{1}, \ldots, b_{l}\right)$ that are correct hardcore bits corresponding to $\left(r_{1}, \ldots, r_{l}\right)$. Since B cycles through all possible values of $\left(b_{1}, \ldots, b_{l}\right)$, one of them would be correct. Therefore, when the loop in point 2 exits, the probability that B does not invert z for any $x \in G d$ is at most $1 / 2$. Since x is chosen uniformly, it is in $G d$ with probability at least $\epsilon / 2$ as we argued before. Therefore, B inverts f with probability at least $\epsilon / 2 \cdot 1 / 2=\epsilon / 4$. This is a contradiction and proves the GL theorem.

