
CSE 594 : Modern Cryptography 02/13/2017

Lecture 6: The Goldreich Levin Theorum
Instructor: Omkant Pandey Scribe: Hemant Pandey, Sayan Bandyopadhyay

1 Last Class

In the last class we studied about hardcore predicates for a one way function, Goldreich Levin
theorem, Markov’s inequality. Today, we are going to discuss Goldreich Levin Theorem and its
proof in details along with an overview of Chebychev’s inequality.

2 Goldreich Levin Theorem

The context of Goldreich and Levin is to find a hard-core predicate for any one-way function.
Let’s recall first what a hard core predicate was :

A predicate h : {0, 1}∗ → {0, 1} is a hard core predicate for f if h is deterministic and
efficiently computable given x and there exists a negligible function ν such that for every non
uniform PPT adversary A and for all (sufficiently large) n ∈ N:

Pr[x← {0, 1}n : A(1n, f(x)) = h(x)] ≤ 1

2
+ ν(n)

Let us recall the outline of Goldreich Levin Theorem which was discussed in the previous
class: Let f be a OWF (OWP). We defined the function g(x, r) = (f(x), r) where, |x| = |r|.
It is not hard to see that g is also a OWF (OWP). The Goldreich-Levin Theorem proves that
h(x, r) =< x, r > is a hard core predicate for g.

This means that if there was an efficient algorithm to predict < x, r > given g(x, r) (which is
equal to (f(x), r)) there is also an algorithm to compute pre-image of f(x) given f(x). Probabil-
ities over here are taken over random choice of x and r. In previous lecture we did two warm up
proofs. We showed that if an algorithm can predict < x, r > with a little over 3/4 probability,
we can invert f with noticeable probability. Today, we will prove that this works even if the
probability is just above 1/2.

In order to do this, we first need to understand a few concepts.

2.1 Pairwise Independence

We say that X1...XM are pairwise independent if for every i, j ∈ [M] with i 6= j and every a, b
∈ R we have,

Pr[Xi = a ∧Xj = b] = Pr[Xi = a] · Pr[Xj = b]

For pairwise independent variables, the following important equation holds:

E[Xi ·Xj] = E[Xi] · E[Xj].

We can use this property with the Chebyshev inequality in the last class to get meaningful
bounds for sums of pairwise independent 0/1-random variables.

6-1

2.2 Chebyshev’s inequality for Sum of Pairwise Independent Boolean Vari-
ables

Recall from last class that if Y is a random variable with variance (denoted from hereon as)
V [Y], then by Chebyshev’s inequality: Pr[|Y − E[Y]| > k] ≤ V [Y]

k2
.

Now, suppose that we have n 0/1-random-variables denoted by X1, . . . , Xm such that:
Pr[Xi = 1] = p. We want to get a meaningful bound for a random variable that is sum of
them all. That is, if we denote the sum by:

X = X1 +X2 + . . .+Xm

Then we want a meaning bound for how far X can deviate from its expected value.
Note that each Xi has expected value: E[Xi] = p.1 + (1− p).0 = p. Therefore, by linearity

of expectation:

E[X] = E[
m∑
i=1

Xi] =
m∑
i=1

E[Xi] =
m∑
i=1

p = mp

We want to know what is the probability that X will be “far” from its expected value mp?
In particular, what the is the probability that X is δm far from its expectation? In other words,
we want to know a bound on Pr[|X −mp| > mδ]. Let us write µ = E[X] = mp. We claim that:

Pr[|X − µ| > mδ] ≤ 1

4mδ2
(1)

Proof: We will apply Chebyshev. To do so, we first calculate the variance V [X]. We apply the
formula for the variance:

V [X] = E[(X − E[X])2]

= E[(X − µ)2]
= E[(X2 − 2µX + µ2)]

= E[X2]− E[2µX] + E[µ2]

= E[X2]− 2µE[X] + µ2

= E[X2]− 2µ2 + µ2

= E[X2]− µ2

= E[X2]−m2p2

Now, let’s calculate E[X2]. First, notice that for each Xi: E[X2
i] = p.12+(1−p).02 = p and

for each i 6= j: E[Xi ·Xj] = E[Xi] · E[Xj because Xi, Xj are pairwise independent. Therefore,

6-2

E[X2] = E[(X1 +X2 ++Xm)
2]

= E[
∑
i,j

Xi ·Xj]

= E[
∑
i 6=j

Xi ·Xj] +
∑
i

E[X2
i]

=
∑
i 6=j

E[Xi] · E[Xj] +
∑
i

p

=
∑
i 6=j

p · p+mp

= p2 · (m2 −m) +mp

= m2p2 +mp(1− p).

Substituting the value of E[X2] back in the calculation for V [X] we get:

V [X] = mp(1− p).

Now substituting the value of V (x) back in Chebyshev’s inequality, we can get equation (1).
That is:

Pr[|X − µ| > mδ] ≤ V [X]

(mδ)2

=
mp(1− p)
m2δ2

=
p(1− p)
mδ2

≤ 1

4mδ2

where the last line follows from the fact that p(1 − p) attains its maximum value when p =
1− p = 1

2 . This proves equation (1) which we will use soon.

2.3 From few independent bits to many pairwise independent bits

Suppose that b1, b2 are independent random bits. Then the tuple (b1, b2, b3) where b3 = b1⊕b2 is
a tuple of 3 pairwise independent bits. This fact is easy to verify by simply using the definition
of pairwise independent.

We can extend this concept to many bits. In particular, we are given l random and indepen-
dent bits: (b1, b2, b3.......bl) we can create m bits from them: (b′1, b

′
2.......b

′
m) such that these m

bits are pairwise independent and m = 2l − 1. Indeed, observe that there are 2l − 1 non-empty
subsets of the set [l] = {1, 2, . . . , l}. Therefore, we can define a bit for each of these subsets as
follows: b′S = ⊕i∈Sbi for S ⊂ [l] and S 6= φ. So if we number these sets from 1 to m, our bits
will be (b′1, . . . , b

′
m). It is easy to check that these m bits are pairwise independent as before.

Why is this important? The above fact is important for the following reason. Suppose that
someone comes and gives us correct hardcore bits for l challenges, then we can generate hard
core bits for m challenges simply by xoring as above. This works only for the inner product
function < x, r > and may not work for other types of hard core predicates.

6-3

Now, how will we get these l values? Well, if we set l = logn, then we can just guess them
randomly and we will be correct with probability at least 1/n. And then by applying the above
method, we can get m = 2l− 1 correct values without guessing. So we get m values by guessing
only l which means we get m correct values with probability 1/n. Now lets use this.

2.4 Proof of GL Theorem

Given A such that :
Prx,r[A(f(x), r) =< x, r >] ≥ 1

2
+ ε (2)

We will design an algorithm B for inverting f with probability more than ε/4.
To do this, let us first define a good set of x values. These are the x values for which A

guesses the hardcore bit with better than 1/2 probability. (Note that not all x have this property
— we only know that A on average guesses hardcore bits for a random x with better than 1/2;
so we want to define a set where we are guaranteed that A always has good chance as we change
r but keep x fixed). Let Gd be the set of good values defined as follows:

Gd =

{
x : Prr[A(f(x), r) =< x, r >] ≥ 1

2
+
ε

2

}
We claim that there are many good x values; more precisely:

Pr
x
[x ∈ Good] ≥ ε

2
(3)

Proof: Suppose that this is not true, i.e.: Prx[x ∈ Good] < ε
2 .

Then,

Pr
x,r

[A(f(x), r) =< x, r >] = Pr
x,r

[A(f(x), r) =< x, r > |x ∈ Gd] · Pr
x,r

[x ∈ Gd]

+Pr
x,r

[A(f(x), r) =< x, r > |x /∈ Gd] · Pr
x,r

[x /∈ Gd]

< 1 · ε
2
+ (

1

2
+
ε

2
) · 1

=
1

2
+ ε.

This is a contradiction to the assumption that A guesses < x, r > with 1/2 + ε probability or
more. Hence the claim.

Now we define adversary B which guesses b1, b2, ...bl for random values r1, r2, ...rl and then
generates values b′1, . . . , b′m and r′1, . . . , r′m as we discussed above. And then uses them to guess
bits of x one by one.

Here the main idea to guess each bit of x. Suppose that the values B generates are correct
hard core bits: i.e., (b′1, . . . , b′m) and (r′1, . . . , r

′
m) are such that < x, r′j >= b′j . Then, the B can

use A to guess the hardcore bit for r′′j = ei ⊕ r′j . It can then recover a guess for xi as we did in
the warm up proof for 3/4 + ε case. That is, define:

x∗i,j = b′j ⊕ b′′i,j where b′′j = A(f(x), ei ⊕ r′j).

Then, the guess for xi is obtained as:

x∗i = majority bit in {x∗i,j}mj=1

6-4

We claim that if m = 2n
ε2

then for every x ∈ Gd:

Pr[x∗i 6= xi] <
1

2n
(4)

Proof: Keep an indicator variable yj such that yj = 1 if xi,j 6= xi. Let:

y = y1 + y2 ++ ym

Then, x∗i is not correct if y > m/2. We apply Chebyshev for x ∈ Gd. Notice that for
x ∈ Gd each yi is 1 with probability p = Pr[yi = 1] = 1− (12 + ε

2) =
1−ε
2 and E[y] = mp where

m = 2n/ε2. Let δ = 1/2− p = ε/2. Then using Chebyshev:

Pr[y > m/2] = Pr[y −mp > m/2−mp]
≤ Pr[|y − E[y]| > (1/2− p)m]

<
1

4mδ2

=
1

4 · 2n
ε2
· ε24

=
1

2n

As claimed. Therefore, for any given x, by the above strategy B will get xi wrong for any given
x ∈ Gd with at most 1/2n probability. By union bound, if B guesses each xi one by one for
each i to construct full x, the probability that x will not be correct is at most n × 12n = 1/2.
This gives us the following algorithm B for inverting f(x) for a random x:

Algorithm B to invert f : On input a challenge z = f(x) for a random x do the following:

1. Pick random values (r1, . . . , rl) for l = logm+ 1 where m = 2n
ε2
.

2. Cycle through all possible values of (b1, . . . , bl) starting from (0, 0, . . . , 0) to (1, 1, . . . , 1)
doing the following:

for i = 1 to n:

(a) Construct strings (r′1, . . . , r′m) and (b′1, . . . , b
′
m) using the set construction as defined

above.
(b) for j = 1 to m: feed ej ⊕ r′j to A and get his answer, denoted: b′′j = A(f(x), ei ⊕ r′j).
(c) Compute x∗i = majority bit in {x∗i,j}mj=1 where x∗i,j = b′j ⊕ b′′i,j .

return x∗ if f(x∗) = z where x∗ = x∗1, . . . , x
∗
n.

3. Return fail. (i.e., no candidate x∗ found so far).

It is easy to check that B runs in polynomial time. We have already argued that if x ∈ Gd
then the probability that B is wrong about x∗ is at most 1/2n provided that it starts with
(b1, . . . , bl) that are correct hardcore bits corresponding to (r1, . . . , rl). Since B cycles through
all possible values of (b1, . . . , bl), one of them would be correct. Therefore, when the loop in
point 2 exits, the probability that B does not invert z for any x ∈ Gd is at most 1/2. Since x
is chosen uniformly, it is in Gd with probability at least ε/2 as we argued before. Therefore, B
inverts f with probability at least ε/2 · 1/2 = ε/4. This is a contradiction and proves the GL
theorem.

6-5

