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ABSTRACT

The scarcity of annotated medical images poses a significant challenge to developing and training accurate AI 

models for the detection of tumors and other pathologies. To address this, we introduce a novel method for 

synthesizing realistic medical images using Multi-Conditioned Denoising Diffusion Probabilistic Models, capable 

of generating images with and without tumors. Our approach leverages existing datasets to train the diffusion 

models, ensuring the synthetic images closely mimic real-world medical images. This controlled synthesis process 

allows for the creation of diverse datasets, enhancing the variability and richness of training data. By generating 

high-quality synthetic medical images, we aim to overcome the limitations of data scarcity and improve the 

performance and generalizability of AI models. While our primary goal is to increase the volume and diversity 

of training data, this method also holds potential benefits for underrepresented population groups by facilitating 

the inclusion of more varied demographic and pathological characteristics. Our results indicate that the diffu- 

sion model-generated medical images are indistinguishable from real images by radiologists, demonstrating their 

potential for effective use in AI model training. We also found that enriching sparse training data with our syn- 

thetic images can improve the accuracy of pathology detection AI classifiers. This innovative approach promises 

to significantly advance the field of AI-driven medical imaging, leading to more accurate and reliable diagnostic 

tools. Our paper presents first results on two specific important applications, lung CT and mammography.

Keywords: Synthetic Lung-CT, Synthetic Mammograms, Diffusion Models, Pathologies, Medical Imaging, 

Diagnostic Tools, Data Augmentation

1. INTRODUCTION

Significant progress has been made in deep learning-based applications for medical imaging; such as denoising, 

1–3 

cross-modality translations 

4–9 and cancer detection. 

10, 11 However, the potential of these applications is limited 

by the scarcity of highly specialized, accurate, and high-resolution annotated images necessary for robust training. 

Researchers have turned to synthetic medical image synthesis using generative AI, yet generating high-resolution 

phantom images with flawless anatomy and accurate annotations 

12–14 remains a challenge. Current methods 

rely on unconditional generative models 

15 but these often produce non-annotated images, failing to meet specific 

medical application needs.

Denoising Diffusion Probabilistic Models (DDPMs) 

16 have emerged as an alternative, along with innovative 

techniques guiding the process towards specific distributions 

17–20 during sampling or image generation. This 

paper explores a conditional generation approach via a condition-free trained DDPM, 

19 expanding it to include 

multiple annotations/conditions for dynamic guidance during sampling. By synthesizing nodules, tumors, and 

lesions, both benign and malignant within anatomy-constrained lung-CT and mammograms, we demonstrate 

the model’s versatility and ability to handle novel scenarios and rare cases broadening its applicability. To our 

knowledge, this is the first work to achieve such flexibility in generating full-resolution images with annotations, 

ensuring anatomical accuracy across multiple clinically relevant domains. We validate our approach using a 

Visual Turing Test 

21 and other quantitative methods.
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2. MULTI-CONDITIONED DENOISING DIFFUSION PROBABILISTIC MODEL

The DDPM iteratively transforms a Gaussian distribution into a lung-CT/mammogram image. The Markov
Chain model learns the reverse of the forward diffusion process which is q(x t 

|x t−1 

) := N(x t 

; 

√ 

1− β t 

x t−1 

, β t 

I) 

with x t 

as the latents with added noise and β t 

as a fixed variance schedule.

Via the reparameterization trick; x t 
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. The added 

noise ϵ ∼ N (0, I) has the same dimensionality as the image and the sampled latents during training. The reverse
diffusion process p θ 

(x t−1 
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) = N(x t−1 
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, t), σ2
t I) is learned via a neural network p θ 

via the below loss:
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Eq. 1 is used to train our DDPM, incorporating refinements from Nichol et al. 

22 We train 2 DDPMs; one 

for the lung-CT on a dataset of lung-CT scans provided by the National Lung Screening Trial 

23 and another for 

the mammograms on a dataset of mammography scans provided by RSNA. 

24 We extracted around 50k images 

for training from scans contained in both datasets. For sampling post-training; x t−1 

(via reparameterization):

x t−1 

=
1 

√ 

α t 

(x t 

− β t√ 

1− α t 

ϵ θ 

(x t 

, t)) + 

√ 

β t 

ϵ (2)

Next, we discuss our modifications to the sampling strategy to facilitate multi-annotations guidance.

2.1 Multi-Condition Guidance

We explore the guidance techniques introduced by Choi et al. 

19 and utilize them to exert precise control over 

the generation of lung CT images within all HU windows. The sampling process is guided towards a subset of 

images similar to a reference image y, by enforcing equivalence between the downsampled reference image and 

the intermediate latents x t 

produced during sampling steps. Specifically, Choi et al. continuously refine the 

downsampled latent variable x t 

within steps (T, a) to ensure that both x t 

and y t 

share low frequency contents. 

As such in each sampling step; y t 

is computed from reference image y and x t 

is refined as:

x t 

= x t 

+ ϕ N 

(y t 

)− ϕ N 

(x t 

) (3)

where ϕ N 

(. . . ) is a low-pass linear filter with N as the downsampling factor. The term is approximated by 

ensuring the latent x t 

captures the missing low-frequency contents of y t 

after sampling from the DDPM.

We argue that since the extent of low pass filtering of a linear filter ϕ can be controlled by its factor N,
for any given set of conditional or guidance images {y 1 

, y 2 

. . . y m 

} we should be able to fine-tune our algorithm
with a set of integers {n 1 

, n 2 

. . . n m 

}, with each integer denoting the extent of downsampling for a linear filter
corresponding to every conditional image, such that we could have a valid image generation via a trained DDPM 

sharing low level features (or similarity) with each of the conditional images. We modify Eq. 3 as:

x t−1 

= x t−1 

+

M∑
s=1

{
(ϕ n s 

(y s t−1 

)− ϕ n s 

(x t−1 

)), if t ≥ a s

0, otherwise
(4)

Fig. 1a and Fig. 2 show some of the images generated with our model. For mammograms, we needed 

to perform texture/content transfer for tumor patches during the multi-conditioned sampling since at times 

the texture/style of the two conditioning images would vary greatly because of the density/fat content of the 

surrounding tissue or the entire breast; which is discussed in next section.
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Figure 1: (a) Examples of a generated mammogram with pathology using multi-condition sampling, following
the anatomy/texture of the anatomy reference image (top left) and the pathology reference image (top right).
For mammograms, we pre-processed cancer tumors with texture and content transfer. (b) The transformations
a pathology patch undergoes before multi-conditioned guidance. Histogram equalization improves contrast,
followed by normalization to match pixel values with the reference image. Gaussian weighting reduces pixel
intensity at the edges, eliminating artifacts from discontinuities between the patch and the reference image.

2.2 Mammography Diffusion Model

For the annotated mammography images the sampling process is conditioned on two images – a reference image
from the RSNA dataset24 and a pathology image from the much smaller annotated INbreast dataset25 containing
8 cancer images. The reference image guides the diffusion model to generate a specific orientation (i.e. MLO or
CC) as well as scanner and breast properties. The pathology image is taken from a second, annotated scan. It
is transformed prior to conditioning to make its appearance closer to the reference image.

Fig. 1b illustrates the transformation applied to the pathology image to make it closer in appearance to
the reference image. First, we perform histogram equalization followed by normalizing the values based on the
reference image. Specifically, we normalize between the minimum reference image value and a quantile value
between 0.975 and 0.995 chosen uniformly at random. Next, we apply a Gaussian weighting to reduce the
intensity of toward the edge of the patch. We also apply a weighting during conditioning on the pathology image
so that Eq. 3 becomes:

xt = xt + (ϕN (yt)− ϕN (xt)) ∗W (5)

W is a weight matrix with the same dimension xt and is zero for pixels outside the pathology patch (similar
to the case for lung-CT tumors). For pixels inside the patch, W is proportional to a spherical bi-variate Gaussian
function with a mean determined by the center of the patch and a variance based on the size of the patch.

3. EVALUATION

Lung-CT. We reran our Visual Turing Test14 with the assistance of three radiologists to evaluate the realism
of our generated lung CT images. The radiologists were asked to label a randomly selected lung CT image as
“Real” or “Fake.” from a set of 30 real and generated images, one at a time. The images were randomly chosen
from bone, lung, and soft-tissue windows.

Their responses had an accuracy of about 46% indicating our generative framework passed the Visual Turing
Test, as expert radiologists could not distinguish between synthesized and real lung CT images.

Mammography. We evaluate the quality of the synthetic mammography images by comparing the classifier
performance of a ConvNext26 convolutional neural network trained for 20 epochs on real data augmented with
an increasing amount of synthetic data. Specifically, we train on 7500 mammography images from the RSNA
dataset24 and evaluate classifier performance as we add synthetic data in increments of 2500. In all cases, 10%
of the training dataset contained cancerous tumors while 90% contained no cancer.
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Figure 2: Examples of generated lung-CT images with pathology using multi-condition sampling. These i mages
follow the anatomy of the conditional images in the left column (generated with B-Spline curves 

14 ) a nd the
pathology of the real CT images in the top row. In many cases, the generated lesions realistically attach to the
lung walls or surrounding tissues when in close proximity, this mimics the behavior of tumors in these regions.

To synthesize images containing cancer, a total of six pathology patches were taken from the INbr east25

dataset. To increase tumor diversity, We applied random augmentations to these patches during image gene ration
(i.e. rotation, translation, and flipping). The classifiers were evaluated on their ability to detect malignant t umors
in mammography images taken from the mini-DDSM dataset. 

27

Table 1 shows that adding synthetic data improved the performance over real data alone. Interes tingly,
adding only 2500 synthetic images led to the best results, with performance degrading as more syntheti c data
was added. This is likely due to the small number of tumor patches used in synthesizing mammogram s with
cancer. Adding more synthetic images likely results in overfitting which is harming performance.

Training Size 7500 Real Data +2500 Synth +5000 Synth +7500 Synth +10000 Synth
AUC 0.588 0.671 0.639 0.603 0.599
F1 Score 0.324 0.391 0.363 0.326 0.319

Table 1: Performance metrics datasets with varying amounts of synthetic data.

4. CONCLUSION

Our paper presents a novel generative AI model for synthesizing realistic medical images using Multi-Conditioned
Denoising Diffusion Probabilistic Models. This versatile model can generate images for unique scenarios and rare
cases across various domains / modalities. We demonstrated that the synthetic images produced by our model
can pass a visual Turing test and enhance classifier performance. In the future, we aim to broaden the range
of domains and pathologies our model can address. Additionally, we will explore the potential for our synthetic
images to entirely replace real data in the training of medical AI models.
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