
IntFlow: Improving the Accuracy of Arithmetic Error
Detection Using Information Flow Tracking

Marios Pomonis
Columbia University

mpomonis@cs.columbia.edu

Theofilos Petsios
Columbia University

theofilos@cs.columbia.edu

Kangkook Jee
Columbia University

jikk@cs.columbia.edu

Michalis Polychronakis
Columbia University

mikepo@cs.columbia.edu

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

ABSTRACT
Integer overflow and underflow, signedness conversion, and
other types of arithmetic errors in C/C++ programs are
among the most common software flaws that result in ex-
ploitable vulnerabilities. Despite significant advances in au-
tomating the detection of arithmetic errors, existing tools
have not seen widespread adoption mainly due to their in-
creased number of false positives. Developers rely on wrap-
around counters, bit shifts, and other language constructs
for performance optimizations and code compactness, but
those same constructs, along with incorrect assumptions and
conditions of undefined behavior, are often the main cause
of severe vulnerabilities. Accurate differentiation between
legitimate and erroneous uses of arithmetic language intri-
cacies thus remains an open problem.

As a step towards addressing this issue, we present Int-
Flow, an accurate arithmetic error detection tool that com-
bines static information flow tracking and dynamic program
analysis. By associating sources of untrusted input with the
identified arithmetic errors, IntFlow differentiates between
non-critical, possibly developer-intended undefined arithmetic
operations, and potentially exploitable arithmetic bugs. Int-
Flow examines a broad set of integer errors, covering almost
all cases of C/C++ undefined behaviors, and achieves high
error detection coverage. We evaluated IntFlow using the
SPEC benchmarks and a series of real-world applications,
and measured its effectiveness in detecting arithmetic error
vulnerabilities and reducing false positives. IntFlow success-
fully detected all real-world vulnerabilities for the tested ap-
plications and achieved a reduction of 89% in false positives
over standalone static code instrumentation.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2.5
[Software Engineering]: Testing and Debugging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ACSAC ’14, December 08–12 2014, New Orleans, LA, USA
Copyright 2014 ACM 978-1-4503-3005-3/14/12 . . . $15.00
http://dx.doi.org/10.1145/2664243.2664282 .

General Terms
Security, Reliability

Keywords
Static analysis, information flow tracking, arithmetic errors

1. INTRODUCTION
When developing programs in the C and C++ languages,

programming practices that involve undefined arithmetic
operations often constitute a well-established status quo.
Compilers tolerate the use of undefined behavior, as this
enables code optimizations that greatly increase the perfor-
mance of critical code segments. Consequently, program-
mers often purposely rely on undefined language constructs
due to empirical certainty for certain expected outcomes.
This flexibility comes at a cost: arithmetic operations con-
stitute a major source of errors, often leading to serious se-
curity breaches when erroneous values directly or indirectly
affect sensitive system calls or memory operations.

The root of the problem is fundamentally bound to the
differences between the mathematical and machine repre-
sentations of numbers: although integer and floating point
numbers are infinite, their machine representations are re-
stricted by their respective type-specific characteristics (e.g.,
signedness and bit-length). Furthermore, not all arithmetic
operations are well-defined by the language standards, to al-
low for a number of compiler optimizations. For instance,
the standard does not specify what the value of a signed
integer that overflows (or underflows) should be.

As it is non-trivial to determine whether a particular arith-
metic operation resulting in undefined behavior is benign or
not, bugs due to integer errors are prevalent. Integer errors
are listed among the 25 most dangerous software bugs [3],
and are often the root cause of various vulnerabilities such
as buffer overflows [25] and memory disclosures [2]. During
the past years, numerous attempts have been made towards
their automatic detection and prevention. Such efforts in-
clude static [23] and dynamic [7] analysis solutions, tools
based on symbolic execution and dynamic test generation [8,
17], as well as compiler extensions [25] that resolve ambigu-
ities at compilation time.

Despite numerous suggested solutions, there is no generic
tool that provides effective and complete detection and san-
itization of integer bugs. One reason is that tools that focus
on coverage typically generate a large amount of false posi-
tives (due to the inaccuracy of static analysis) [25, 23, 16],

while those that focus on accuracy provide poor coverage
(as they rely on dynamic analysis or dynamic test genera-
tion) [10, 17, 19, 20]. Furthermore, existing tools typically
focus only on certain integer error classes (mainly overflows
and underflows) and as a result they do not provide broad
spectrum protection. The most crucial reason, however,
is the inherent difficulty of prevention mechanisms to dif-
ferentiate between critical integer errors that may lead to
exploitable vulnerabilities, from intentional uses of wrap-
around behavior, type castings, bit shifts, and other con-
structs that serve application-specific purposes.

As a step towards addressing these issues, in this paper we
propose an approach that combines static code instrumen-
tation with information flow tracking to improve the accu-
racy of arithmetic error detection, focusing on reducing the
number of false positives, i.e., developer-intended code con-
structs that violate language standards. Our tool, IntFlow,
uses information flow tracking to reason about the severity
of arithmetic errors by analyzing the information flows re-
lated to them. The main intuition behind this approach is
that arithmetic errors are critical when i) they are triggered
by or depend on values originating from untrusted locations,
or ii) a value affected by an arithmetic error propagates to
sensitive locations, such as the arguments to functions like
malloc() and strcpy().

To demonstrate the effectiveness of our approach, we eval-
uated IntFlow with real world programs and vulnerabilities
and verified that it successfully identifies all the real world
vulnerabilities for the applications of our testbed, generating
89% less false positives compared to IOC [10], our reference
arithmetic error detection tool.

Our work makes the following contributions:

• We present an accurate arithmetic error detection ap-
proach that combines static information flow tracking
and dynamic program analysis.

• We present IntFlow, our prototype implementation for
this approach, which operates as an LLVM add-on.
IntFlow is freely available as an open source project.1

• We evaluate IntFlow using real-world programs and
vulnerabilities. Our results demonstrate that IntFlow
achieves improved detection accuracy compared to pre-
vious solutions, as it suppressed more than 89% of the
false positives reported by IOC [10].

2. BACKGROUND
To effectively deal with integer errors in real world appli-

cations, it is necessary to first define what is considered an
error. Doing so is not trivial, as apart from the mere exam-
ination of conformance to the language standard, we must
also examine whether pieces of seemingly erroneous code—
from the perspective of the language specification—are ex-
plicitly written in that way due to the developer’s intention,
typically for performance, convenience, or other reasons.

In this section, we discuss how the C/C++ language stan-
dards define correctness for arithmetic operations, and ex-
amine why developers often write code that deviates from
the language specification. We also present examples of ex-
ploitable vulnerabilities caused by integer errors, and demon-
strate the importance of good programming practices.

1http://nsl.cs.columbia.edu/projects/intflow/

2.1 Integer Errors and Undefined Behavior
Although the C and C++ language standards explicitly

define the outcome of most integer operations, a number of
corner cases are left undefined. As an example, the C11
standard considers an unsigned integer overflow as a well-
defined operation, whose result is the minimum value ob-
tained after the wrap-around, while leaving signed integer
overflows undefined. This choice facilitates compiler imple-
mentations to handle them in a way that produces optimized
binaries [24]. For instance, signed integer overflows (or un-
derflows) enable compiler developers to implement an opti-
mization that infers invariants from expressions such as i+1
> i and replaces them with a constant Boolean value [5].

Table 1 lists special cases of integer operations and their
definedness. It should be noted that although more in-
stances of undefined behavior (not necessarily restricted to
integer operations) are declared in the language specifica-
tion, we only consider those relevant to this work.

Arithmetic Operation Definedness

Unsigned overflow (underflow) defined

Singed overflow (underflow) undefined

Signedness conversion undefined∗

Implicit type conversion undefined∗

Oversized/negative shift undefined

Division by zero undefined
∗if value cannot be represented by the new type

Table 1: Summary of defined and undefined arithmetic op-
erations according to the C/C++ language specification.

As in practice not all cases of undefined behavior neces-
sarily result in actual errors, the difficulty of dealing with
these types of bugs lies in distinguishing critical integer er-
rors from developer-intended violations of the standard. The
intention of a developer, however, cannot be formally de-
fined or automatically derived, as the code patterns used in
a piece of code are deeply related to the author’s knowledge,
preference, and programming style.

Although writing code that intentionally relies on unde-
fined operations is generally considered a bad programming
practice (as the outcome of those operations can be arbi-
trary, depending on the architecture and the compiler), there
are several cases in which the community has reached con-
sensus on what is the expected behavior of the compiler in
terms of the generated code, mainly due to empirical evi-
dence. This explains why idioms that take advantage of un-
defined behavior are still so prevalent: although according to
the standard the result of an operation is undefined, develop-
ers have an empirically derived expectation that compilers
will always handle such cases in a consistent manner.

This expectation creates serious complications whenever
developers check the validity of their code with state-of-the-
art static analysis tools. These tools evaluate code based on
strict conformance to the language specification, and conse-
quently generate a large amount of false positives. Thus, the
generated reports are often overlooked by developers who
struggle to spot which of the reported bugs are actual er-
rors. Unfortunately, tools based on dynamic code analysis
also do not provide strong guarantees in these cases, as they
suffer from low code coverage.

1 UINT MAX = (unsigned) −1;
2 INT MAX = 1 << (INT WIDTH − 1) − 1;

Listing 1: Widely used idioms that according to the stan-
dard correspond to undefined behavior.

1 /∗ struct containing image data, 10KB each ∗/
2 img t ∗table ptr;
3 unsigned int num imgs = get num imgs();
4 ...
5 unsigned int alloc size = sizeof(img t) ∗ num imgs;
6 ...
7 table ptr = (img t∗) malloc(alloc size);
8 ...
9 for (i = 0; i < num imgs; i++)

10 { table ptr[i] = read img(i); } /∗ heap overflow ∗/

Listing 2: An unsigned integer overflow as a result of a mul-
tiplication (line 5), which results in an invalid memory allo-
cation (line 7) and unintended access to the heap (line 10).

To further illustrate the complexity of this issue, in the
following we present two characteristic integer error exam-
ples and discuss the complications introduced by the use of
undefined operations.

2.2 Integer Error Examples
While the task of automatically detecting undefined arith-

metic operations is relatively easy, the true difficulty lies in
identifying the developer’s intention behind the use of con-
structs that violate the language standard.

As an example, Listing 1 presents two C statements in
which developers intentionally rely on undefined behavior,
mainly to achieve persistent representation across different
system architectures. Both are based on assumptions on
the numerical representation used by the underlying system
(two’s complement). Line 1 shows a case of signedness cast-
ing in which the original value cannot be represented by the
new type. In Line 2, a shift operation of INT_WIDTH - 1 is
undefined2 but it conventionally returns the minimum value
of the type, while the subtraction operation incurs a signed
underflow which is also undefined. Although these cases
are violations of the language standard, the desirable oper-
ation of an integer overflow checker would be to not report
them, as they correspond to developer-intended behavior—
otherwise, such cases are considered false positives [10].

In contrast, in the example of Listing 2, the unsigned
integer variable (alloc_size) might overflow as a result
of the multiplication operation at line 5. This behavior is
well-defined by the standard, but the overflow may result in
the allocation of a memory chunk of invalid (smaller) size,
and consequently, to a heap overflow. An effective arith-
metic error checker should be able to identify such poten-
tially exploitable vulnerabilities as it is clear that the devel-
oper did not intend for this behavior.

3. APPROACH
The security community is still unsuccessful in completely

eliminating the problem of integer errors even after years of

2According to the C99 and C11 standards. The C89 and
C90 (ANSI C) standards define this behavior.

effort [10, 17, 25, 23]. One of the main reasons is the dif-
ficulty in distinguishing critical errors, which may lead to
reliability issues or security flaws, from uses of undefined
constructs stemming from certain programming practices.
The latter are regarded as errors by rigorous static checkers
like IOC, as they strictly follow the language standard and
report all violations found. In this work, we attempt to pin-
point critical, possibly exploitable arithmetic errors among
all arithmetic violations, which include numerous less criti-
cal and often developer-intended uses of undefined behavior.
Although many programming choices deviate from the lan-
guage specification, IntFlow examines the conditions under
which such constructs signify critical bugs, by focusing only
on detecting errors that might break the functionality of the
program or lead to a security flaw.

Before describing IntFlow’s design, we first provide a con-
crete definition of what we consider critical arithmetic errors.

Definition 1. An arithmetic error is potentially critical if
it satisfies any of the following conditions:

1. At least one of the operands in an erroneous arithmetic
operation originates from an untrusted source.

2. The result of an erroneous operation propagates to a
sensitive program location.

As capturing the intention of developers is a hard prob-
lem, IntFlow focuses on the detection of arithmetic errors
that might constitute exploitable vulnerabilities or cause re-
liability issues. This is achieved not only by focusing on
the identification of violations according to the language
standard, which in itself is a tractable problem, but also
by considering the information flows that affect the erro-
neous code. The rationale behind this definition is that (1)
arithmetic errors influenced by external and potentially un-
trusted sources, such as sockets, files, and environment vari-
ables, may be exploited through carefully crafted inputs, and
(2) arithmetic errors typically result in severe vulnerabilities
when they affect sensitive library and system operations,
such as memory allocation and string handling functions.

The two conditions of Definition 1 are reflected in IntFlow
by two different modes of operation, blacklisting and sensi-
tive (in addition to a third whitelisting mode), discussed in
Section 4.3. Although the existence of either condition is an
indication of a critical error, arithmetic violations for which
both conditions hold are more severe, as they can potentially
allow input from untrusted sources to misuse critical sys-
tem functions—IntFlow’s different modes of operation can
be combined to detect such errors.

Figure 1 visualizes the definition with different types of
information flows that may involve erroneous arithmetic op-
erations. Critical errors are related to information flows that
originate from untrusted inputs, or that eventually reach
sensitive operations, such as system calls, through value
propagation. In cases where the input of an arithmetic op-
eration is untrusted (Definition 1.1) or a sensitive sink is
reached (Definition 1.2), the error is flagged as critical. In
contrast, arithmetic errors influenced only by benign inputs
are considered less likely to be used in exploitation attempts.

The information flow based approach enables us to handle
cases similar to the examples presented in Section 2.2. Int-
Flow can also silence error reports caused by statements sim-
ilar to those presented in Listing 1, since it can trace that the

Untrusted
Inputs

read(), recv() ...

Trusted
Inputs

gettimeofday(),
CONSTANT ...

Flow 1

Arithmetic
Operations

Sensitive
locations

malloc(), strcpy() ...X, %, +, -, <<, >>

Flow 2

Figure 1: Information flows to and from the location of an
arithmetic error.

origin of the value that leads to the undefined behavior is a
constant initialization which is de facto developer-intended.
The code snippet in Listing 2, contains two different types
of flows. The first one connects get_num_imgs() (line 3)
with the multiplication operation (line 5) while the second
one connects the result of the multiplication with a memory
allocation function (line 7), which is considered a sensitive
program location. The former is a Type 1 flow because the
value of the multiplication operand originates from an un-
trusted input, while the latter is a Type 2 flow since the
result of the operation affects a sensitive function call. Int-
Flow would detect and report arithmetic errors caused by
maliciously crafted inputs in both cases.

4. DESIGN AND IMPLEMENTATION
In this section we present the design and implementation

of IntFlow, a tool that combines information flow tracking
(IFT) [18] with a popular integer error checking tool [10]
to improve the accuracy of arithmetic error detection. The
main goal of IntFlow is to reduce the number of false pos-
itives produced by other static arithmetic error checkers.
In this context, the term “false positive” refers to reporting
developer-intended violations as critical errors. Although
from the perspective of the language standard these corre-
spond to erroneous code, the prevalence of such constructs
makes reports of such issues a burden for security analysts,
who are interested only in critical errors that may form ex-
ploitable vulnerabilities.

4.1 Main Components
IOC operates at the abstract syntax tree (AST) level pro-

duced by Clang [1], a C/C++ front-end of LLVM [14]. It in-
struments all arithmetic operations, as well as most of unary,
casting, and type conversion operations. In contrast to pre-
vious tools that focus on a subset of integer errors (typically
overflows and underflows), IOC provides protection against
a broader range of integer errors. Even though it focuses
mainly on errors with undefined behavior based on the lan-
guage standards, it can also protect against errors that do
not fall into this category, covering most of the integer error
classes presented in Table 1.

IOC instruments all arithmetic operations that may lead
to an erroneous result, and inserts checks accordingly. Es-
sentially, for each integer operation inside a basic block, ad-
ditional basic blocks that implement the error-checking logic
are added and users are allowed to register callback functions
for error handling. Similarly to other integer error detection
systems, the fact that IOC instruments blindly all arith-

metic operations is a major source of false positives, while
IntFlow’s active provisioning allows it to reduce false posi-
tives by eliminating checks for non-critical violations. IOC
is a major component of our architecture, as it provides as-
surance that all potentially serious arithmetic errors can be
checked. It is then up to the information flow analysis to
identify and report only the critical ones.

For IntFlow’s information tracking mechanism we em-
ploy llvm-deps [18], an LLVM compiler pass implementing
static information flow tracking in a manner similar to clas-
sic data flow analysis [5]. It is designed as a context sensi-
tive (inter-procedural) analysis tool that allows forward and
backward slicing on source and sink pairs of our choice using
the DSA [15] algorithm. DSA performs context-sensitive,
unification-based points-to analysis that allows us to track
data flows among variables referred by pointer aliases. It
is important to note that the analysis scope of llvm-deps
is limited to a single object file, as it is implemented as a
compile-time optimization pass and not as a link-time opti-
mization pass. Finally, due to the use of llvm-deps, Int-
Flow only examines explicit flows during its IFT analysis
and ignores possible implicit flows.

4.2 Putting It All Together
Figure 2 illustrates the overall architecture of IntFlow:

IOC adds checks to the integer operations that are exposed
by Clang in the AST and then llvm-deps performs static
IFT analysis on the LLVM intermediate representation (IR).
To reduce unnecessary checks that may lead to false pos-
itives, IntFlow uses llvm-deps to examine only certain
flows of interest. As discussed in the previous section, Int-
Flow examines only flows stemming from untrusted sources,
or ending to sensitive sinks. Initially, IntFlow performs
forward slicing: starting from a particular source used in
a potentially erroneous arithmetic operation, it examines
whether the result of the operation flows into sinks of in-
terest. Once such a source is found, IntFlow performs back-
ward slicing, to verify that the sink is actually affected by it.
Since the flow tracking mechanism does not offer full code
coverage, we employ this two-step process to gain confidence
on the accuracy of the flow and verify its validity. Once the
source is reached when using backward slicing starting from
the sink, the flow is considered established.

After compiling and linking the IR, the resulting binary
is exercised to identify critical errors, since the error check-
ing mechanism triggers dynamically. Developers should ex-
ecute the augmented binary with a broad range of inputs to
exercise as many execution paths as possible, and identify
whether they cause critical errors that can potentially lead
to exploitable vulnerabilities.

4.3 Modes of Operation
As discussed in Section 3, IntFlow uses two different types

of information flow to pinpoint errors. The first associates
untrusted inputs with integer operations while the second
associates the result of integer operations with its use in
sensitive system functions. Once IOC inserts checks in all
arithmetic operations that may lead to an error, IntFlow
eliminates unnecessary checks by operating in one of the
following modes:

• In blacklisting mode, IntFlow only maintains checks for
operations whose operands originate from untrusted
sources and removes all other checks.

Clang
ASTC/C++

LLVM-
IR

Compile,
Link

Arith. Operations
Instrumented

IntFlow
Binary

IFT Integration

Trusted / Untrusted
Input Tracking

Sensitive Operation
Tracking

Runtime
Execution

Integer
error
report

Input set

Figure 2: Overall architecture of IntFlow.

• In sensitive mode, IntFlow only maintains checks for
operations whose results may propagate to sensitive
sinks.

• In whitelisting mode, all checks for operations whose
arguments come from trusted sources are removed.

4.3.1 Trusted and Untrusted Inputs
For each operation that may result in an arithmetic error,

IntFlow’s IFT analysis determines the origin of the involved
operands. IntFlow then classifies the origin as either trusted
or untrusted, and handles it accordingly, using one of the
following two modes of operation.

Blacklisting: Input sources that can be affected by exter-
nal sources are considered untrusted, since carefully crafted
inputs may lead to successful exploitation. If any of the
operands has a value affected by such a source, IntFlow
retains the error checking instrumentation. System and li-
brary calls that read from untrusted sources, such as read()
and recv(), are examples of this type of sources.

Whitelisting: Erroneous arithmetic operations for which
all operands originate from trusted sources are unlikely to
be exploitable. Thus, for those cases, IntFlow safely re-
moves the error checks inserted by IOC at the instrumenta-
tion phase. Before an operation is verified as safe, IntFlow
needs to examine the origin of all data flowing to that opera-
tion. Values derived from constant assignments or from safe
system calls and library functions, e.g., gettimeofday()
or uname(), are typical examples of sources that can be
trusted, and thus white-listed.

Following either of the above two approaches, IntFlow se-
lects the unsafe integer operations that will be instrumented
with protection checks. These modes of operation can be
complemented by IntFlow’s third mode, which refines the
analysis results for the surviving checks.

4.3.2 Sensitive Operations
In this mode, IntFlow reports flows that originate from

integer error locations and propagate to sensitive sinks, such
as memory-related functions and system calls. Moreover, in
contrast to the previous modes, whenever an integer error
occurs, the error is not reported at the time of its occurrence,
but only once it propagates as input into one of the sensitive
sinks. This is very effective in suppressing false positives,
since errors that do not flow to a sensitive operation are not
generally exploitable.

To report errors at sensitive sink locations, IntFlow per-
forms the following operations:

• Initially, the tool identifies all integer operations whose
results may propagate into a sensitive sink at runtime.
Any checks that do not lead to sensitive sinks are not
exploitable and thus are eliminated. A global array is
created for each sensitive sink, holding one entry per
arithmetic operation affecting it.

• Whenever an integer operation generates an erroneous
result, its respective entries in the affected global ar-
rays are set to true. If the operation is reached again
but without generating an erroneous result, before reach-
ing a sensitive location, the respective entry is set to
false, denoting that the result of the sensitive oper-
ation will not be affected by this operation.

• If the execution reaches a sensitive function, the re-
spective global array is examined. Execution is inter-
rupted if one or more entries are set to true, as an
erroneous value from any previous integer operation
may affect its outcome.

Essentially, IntFlow keeps track of all the locations in the
code that may introduce errors affecting a sensitive sink at
compilation time. Once a sensitive sink is reached during
runtime, IntFlow examines whether any of the error loca-
tions associated with the sink triggered an error in the cur-
rent execution flow and in that case terminates the pro-
gram. Although it is better to combine the two modes to
establish end-to-end monitoring and detection of suspicious
flows, each mode can also be used independently: the first
mode to generally reduce the number of false positives, and
the second mode to detect exploitable vulnerabilities.

4.4 Implementation
IntFlow is implemented as an LLVM [14] pass written in

∼3,000 lines of C++ code. Briefly, it glues together its two
main components (IOC and llvm-deps) and supports fine-
tuning of its core engine through custom configuration files.

IntFlow can be invoked by simply passing the appropriate
flags to the compiler, without any further action needed from
the side of the developer. Although IOC has been integrated
into the LLVM main branch since version 3.3, for the current
prototype of IntFlow we used an older branch of IOC that
supports a broader set of error classes than the latest one.
IntFlow’s pass is placed at the earliest stage of the LLVM
pass dependency tree to prevent subsequent optimization
passes from optimizing away any critical integer operations.
During compilation, arithmetic error checks are inserted by
IOC, and then selectively filtered by IntFlow. Subsequent
compiler optimizations remove the filtered IOC basic blocks.

IntFlow offers developers the option to explicitly specify
arithmetic operations or sources that need to be whitelisted
or blacklisted. In addition, it can be configured to exclude
any specific file from its analysis or ignore specific lines of
code. Developers can also specify the mode of operation that
IntFlow will use, as well as override or extend the default
set of sources and sinks that will be considered during in-
formation flow analysis. Finally, they can specify particular
callback actions that will be triggered upon the discovery of
an error, such as activating runtime logging or exiting with
a suitable return value. These features offer great flexibil-
ity to developers, enabling them to fine-tune the granularity
of the generated reports, and adjust the built-in options of
IntFlow to the exact characteristics of their source code.

5. EVALUATION
In this section, we present the results of our experimental

evaluation using our prototype implementation of IntFlow.
To assess the effectiveness and performance of IntFlow, we
look into the following aspects:

• What is the accuracy of IntFlow in detecting and pre-
venting critical arithmetic errors?

• How effective is IntFlow in reducing false positives?
That is, how good is it in omitting developer-intended
violations from the reported results?

• When used as a protection mechanism, what is the
runtime overhead of IntFlow compared to native exe-
cution?

Our first set of experiments aims to evaluate the tool’s
ability to identify and mitigate critical errors. For this pur-
pose, we use two datasets consisting of artificial and real-
world vulnerabilities. Artificial vulnerabilities were inserted
to a set of real-world applications, corresponding to var-
ious types of MITRE’s Common Weakness Enumeration
(CWE) [4]. This dataset provides a broad test suite that
contains instances of many different types of arithmetic er-
rors, which enables us to evaluate IntFlow in a well-controlled
environment, knowing exactly how many bugs have been in-
serted, as well as the nature of each bug. Likewise, our
real-world vulnerability dataset consists of applications such
as image and document processing tools, instant messaging
clients, and web browsers, with known CVEs, allowing us
to get some insight on how well IntFlow performs against
real-world, exploitable bugs.

In our second round of experiments, we evaluate the ef-
fectiveness of IntFlow’s information flow tracking analysis
in reducing false positives, by running IntFlow on the SPEC
CPU2000 benchmark suite and comparing its reported er-
rors with those of IOC. IOC instruments all arithmetic op-
erations, providing the finest possible granularity for checks.
Thus, by comparing the reports produced by IntFlow and
IOC, we obtain a base case for how many non-critical errors
are correctly ignored by the IFT engine.

Finally, to obtain an estimate of the tool’s runtime over-
head, we run IntFlow over a diverse set of applications of
varying complexity, and establish a set of performance bounds
for different types of binaries. All experiments were per-
formed on a system with the following characteristics: 2×
Intel(R) Xeon(R) X5550 CPU @ 2.67GHz, 2GB RAM, i386
Linux.

Applications CWEs

Cherokee 1.2.101 CWE-190

Grep 2.14 CWE-191

Nginx 1.2.3 CWE-194

Tcpdump 4.3.0 CWE-195

W3C 5.4.0 CWE-196

Wget 1.14 CWE-197

Zshell 5.0.0 CWE-369

CWE-682

CWE-839

Table 2: Summary of the applications and CWEs used in
the artificial vulnerabilities evaluation.

5.1 Accuracy
In all experiments for evaluating accuracy, we configured

IntFlow to operate in whitelisting mode, since this mode
produces the greatest number of false positives, as it pre-
serves most of the IOC checks among the three modes. Thus,
whitelisting provides us with an estimation of the worst-case
performance of IntFlow, since the other two modes perform
more fine-tuned instrumentation.

5.1.1 Evaluation Using Artificial Vulnerabilities
To evaluate the effectiveness of IntFlow in detecting crit-

ical errors of different types, we used seven popular open-
source applications with planted vulnerabilities from nine
distinct CWE categories.3 Table 2 provides a summary of
the applications used and the respective CWEs.

Each application is replicated to create a set of test-case
binaries. In every test-case binary—essentially an instance
of the real-world application—a vulnerability is planted and
then the application is compiled with IntFlow. Subsequently,
each test-case binary is executed over a set of benign and
malicious inputs (inputs that exploit the vulnerability and
result in abnormal behavior). A correct execution is ob-
served when the binary executes normally on benign inputs
or terminates before it can be exploited on malicious inputs.

Overall, IntFlow was able to correctly identify 79.30%
(429 out of 541) of the planted artificial vulnerabilities. The
20.7% missed are due to the accuracy limitations of the IFT
mechanism, which impacts the ability of IntFlow to correctly
identify flows, and also due to vulnerabilities triggered by
implicit information flows (i.e., non-explicit data flows real-
ized by alternate control paths), which our IFT implemen-
tation (llvm-deps) is not designed to capture. We discuss
ways in which accuracy can be further improved in Section 7.

5.1.2 Mitigation of Real-world Vulnerabilities
In our next experiment, we examined the effectiveness of

IntFlow in detecting and reporting real-world vulnerabili-
ties. For this purpose, we used four widely-used applica-
tions and analyzed whether IntFlow detects known integer-
related CVEs included in these programs. Table 3 summa-
rizes our evaluation results. IntFlow successfully detected all
the exploitable vulnerabilities under examination. From this
small-scale experiment, we gain confidence that IntFlow’s

3The modified applications for this experiment were pro-
vided by MITRE for testing the detection of integer error
vulnerabilities, as part of the evaluation of a research pro-
totype [6].

Program CVE Number Type Detected?

Dillo CVE-2009-3481 Integer Overflow Yes

GIMP CVE-2012-3481 Integer Overflow Yes

Swftools CVE-2010-1516 Integer Overflow Yes

Pidgin CVE-2013-6489 Signedness Error Yes

Table 3: CVEs examined by IntFlow.

gzip vpr gcc crafty parser perlbmk gap vortex

N
u
m

b
e
r

o
f
R

e
p
o
rt

e
d
 A

ri
th

m
e
ti
c
 E

rr
o
rs

0

10

20

30

40

100

150

200

250

IOC Intended

IOC Critical

IntFlow Intended

IntFlow Critical

Figure 3: Number of critical and developer-intended arith-
metic errors reported by IOC and IntFlow for the SPEC
CPU2000 benchmarks. IntFlow identifies the same number
of critical errors (dark sub-bars), while it reduces signifi-
cantly the number of reported developer-intended violations.

characteristics are maintained when the tool is applied to
real world programs, and therefore it is suitable as a detec-
tion tool for real-world applications.

5.1.3 False Positives Reduction
Reducing the number of false positives is a major goal

of IntFlow, and this section focuses on quantifying how ef-
fective this reduction is. For our first measurement we used
SPEC CPU2000, a suite that contains C and C++ programs
representative of real-world applications. Since IOC is a core
component of IntFlow, we chose to examine the same subset
of benchmarks of CPU2000 that was used for the evaluation
of IOC to measure the improvements of IntFlow’s IFT in
comparison to previously reported results [10]. We ran the
SPEC benchmarks using the “test” data sets for both IOC
and IntFlow, so that we could manually analyze all the re-
ports produced by IOC and classify them as true or false
positives, Once all reports were categorized based on Defi-
nition 1, we examined the respective results of IntFlow. We
report our findings in Figure 3.

IntFlow was able to correctly identify all the critical errors
(64 out of 64) triggered during execution, and reduced the
reports of developer-intended violations by ∼89%.

5.1.4 Real-world Applications
In Section 5.1.2 we demonstrated how IntFlow effectively

detected known CVEs for a set of real-world applications.
Here, we examine the reduction in false positives achieved
when using IntFlow’s core engine instead of static instru-
mentation with IOC alone. To collect error reports, we ran

Overall Dillo Gimp Pidgin SWFTools

IOC 330 31 231 0 68

IntFlow 82 26 13 0 43

Table 4: Number of False Positives reported by IOC and
IntFlow for the real-world programs of Section 5.1.2.

each application with benign inputs as follows: for Gimp,
we scaled the ACSAC logo and exported it as GIF; for
SWFTools, we used the pdf2swf utility with a popular e-
book as input; for Dillo, we visited the ACSAC webpage and
downloaded the list of notable items published in 2013; and
for Pidgin, we performed various common tasks, such as reg-
istering a new account and logging in and out. Table 4 shows
the reports generated by IOC and IntFlow, respectively.

Overall, IntFlow was able to suppress 75% of the errors
reported by IOC during the execution of the applications
on benign inputs. Although this evaluation does not pro-
vide full coverage on the number of generated reports (for
instance, we did not observe any false positives for pidgin
with the tests we performed), it allows us to obtain an esti-
mate of how well IntFlow performs in real world scenarios.

As the last part of our false positive reduction, we exer-
cised vanilla versions of each application used in Section 5.1.1
over sets of benign inputs and examined the output. Since
those inputs produce the expected output, we assume that
all reported violations are developer-intended either explic-
itly or implicitly. With this in mind, we compared the error
checks of IntFlow with those of IOC to quantify the ability of
IntFlow in removing unnecessary checks. Overall, IntFlow
eliminated 90% of the false checks (583 out of 647) when
tested with the default set of safe inputs. This reduction
was achieved due to the successful identification of constant
assignments and the whitelisting of secure system calls, as
discussed in Section 3.

It should be noted that the effectiveness in the reduc-
tion of false positives is highly dependent on the nature of
each application, as well as on the level of the execution’s
source coverage. That is, the more integer operations occur
throughout the execution, the greater the expected num-
ber of false positives. For instance, Gimp’s functionality
is tightly bound to performing arithmetic operations for a
number of image processing actions, and thus IOC reports
many errors, most of which are developer-intended, while
Dillo does not share the same characteristics and as a result
exhibits a smaller reduction in false positives.

5.2 Runtime Overhead
Although IntFlow was not designed as a runtime detection

tool but rather as an offline integer error detection mecha-
nism, one may wonder whether it could be customized to
offer runtime detection capabilities. In this section, we seek
to examine the performance of IntFlow for various applica-
tions, when running them with all the automatically inserted
arithmetic error checks. For this purpose, we perform a set
of timing measurements on the applications used in Sec-
tion 5.1.1. For each run, we measured the time that was
required to complete a series of tasks for each of IntFlow’s
modes of operation, and then normalized the running time
with respect to the runtime of the native binary. Reported
results are mean values over ten repetitions of each experi-
ment, while the reported confidence intervals correspond to

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

grep wget wwwx zshx tcpdump cher nginx

S
l
o
w
d
o
w
n

(
n
o
r
m
a
l
i
z
e
d
)

Whitelisting
Blacklisting

Sensitive

Figure 4: Runtime overhead for the applications of Sec-
tion 5.1.1 (normalized over native execution).

95%. We ran all binaries natively, and measured user time
with the time utility.

For grep, we search for strings that match a complex reg-
ular expression in a 1.2GB file. For wget, we download a
1GB file over a 1Gbit/s link from a remote server. For zshx,
we execute a series of shell commands, and for tcpdump
we examine packets from a 5.8GB pcap file. For the web
servers, Cherokee was configured for IPv4 only, while for
Nginx all configurations options were left to their default set-
ting. We measured performance using Apache’s ab bench-
marking utility and static HTML files.

Figure 4 shows the results of our evaluation. IntFlow in-
curs high overhead in applications that involve a large num-
ber of integer operations, such as grep.4 We also notice
high performance deviation for wget, wwwx, and tcpdump,
as they are I/O bound. Although in such applications the
overhead is rather prohibitive, and cancels out the benefits
of using a static mechanism, in other cases, such as for the
cher and nginx servers, the overhead is within an accept-
able 20%. Thus, it could be the case that IntFlow might be
used as a runtime defense for certain types of applications,
i.e., I/O-bound. As each of IntFlow’s modes of operation
targets different flows and can be fine-tuned by developers,
customization can result in different overheads, as different
flows dominate the execution of different applications. This
is the reason we observe different slowdowns per mode: de-
pending on whether the dominating flows involve sensitive
calls (e.g., web servers), the sensitive mode will be slower or
faster than the other two modes, and so on.

6. RELATED WORK
During the past years, as the protection mechanisms against

buffer overflows became more mature, great focus was placed
upon efficiently dealing with integer overflows. This sec-
tion summarizes the main characteristics of the several ap-
proaches that have been followed so far for addressing integer
overflows and outlines the connection between the current
work and existing research on the field.

4Based on our experience with the SPEC CPU2000 bench-
marks, the overhead on benchmarks with very frequent in-
teger operations, such as gzip, is in the range of ∼x10,
prohibiting IntFlow from being used as a generic runtime
detection mechanism for such applications.

6.1 Static Analysis
Static analysis tools provide good coverage but generally

suffer from a high rate of false positives. IntPatch [25] is
built on top of LLVM [14] and detects vulnerabilities utiliz-
ing the type inference of LLVM IR. Similarly to our tool, Int-
Patch uses forward & backward analysis to classify sources
and sinks as sensitive or benign. Each sensitive variable is
located through slicing. If a variable involved in an arith-
metic operation has an untrusted source and the respective
sink may overflow, IntPatch will insert a check statement
after that vulnerable arithmetic operation. If an overflow re-
sult is used for sensitive actions such as memory allocations,
IntPatch considers it a real vulnerability. Contrary to the
current work though, IntPatch does not deal with all types
of integer overflows and also does not address programmer-
inserted sanitization routines.

KINT [23] is a static tool that generates constraints rep-
resenting the conditions under which an integer overflow
may occur. It operates on LLVM IR and defines untrusted
sources and sensitive sinks via user annotations. KINT
avoids path explosion by performing constraint solving at
the function level and by statically feeding the generated
constraints into a solver. After this stage, a single path con-
straint for all integer operations is generated. Unfortunately,
despite the optimization induced by the aforesaid technique,
the tool’s false positives remain high and there is a need for
flagging false positives with manual annotations in order to
suppress them. Moreover, contrary to this work, KINT at-
tempts to denote all integer errors in a program and does
not make a clean distinction between classic errors and er-
rors that constitute vulnerabilities.

SIFT [16] uses static analysis to generate input filters
against integer overflows. If an input passes through such
filter, it is guaranteed not to generate an overflow. Initially,
the tool creates a set of critical expressions from each mem-
ory allocation and block copy site. These expressions con-
tain information on the size of blocks being copied or al-
located, and are propagated backwards against the control
flow, generating a symbolic condition that captures all the
points involved with the evaluation of each expression. The
free variables in the generated symbolic conditions represent
the values of the input fields and are compared against the
tool’s input filters. A significant difference of this paper in
comparison to SIFT is that the latter nullifies overflow er-
rors but does not detect them nor examines whether they
could be exploitable.

IntScope [21] decompiles binary programs into IR and
then checks lazily for harmful integer overflow points. To
deal with false positives, IntScope relies on a dynamic vul-
nerability test case generation tool to generate test cases
which are likely to cause integer overflows. If no test case
generates such error, the respective code fragment is flagged
appropriately. This approach varies significantly from the
one used in our tool as it relies on the produced test cases
to reveal a true positive: if a test case does not generate an
overflow, that does not guarantee that no overflow occurs.
In addition, IntScope regards all errors as generic, without
focusing particularly on errors leading to vulnerabilities.

Finally, RICH [7] is a compiler extension which enables
programs to monitor their execution and detect potential
attacks exploiting integer vulnerabilities. Although RICH is
very lightweight, it does not handle cases of pointer aliasing
and produces false positives in cases where developers inten-

tionally abuse the undefined behavior of C/C++ standards,
both of which are basic components of IntFlow’s design.

6.2 Dynamic & Symbolic Execution
Dynamic Execution tools use runtime checks to prevent

unwanted program behavior. IOC [10] uses dynamic anal-
ysis to detect the occurrence of overflows in C/C++ pro-
grams. The tool performs a compiler-time transformation to
add inline numerical error checks and then relies on a run-
time handler to prevent any unwanted behavior. The instru-
mentation transformations operate on the Abstract Syntax
Tree (AST) in the Clang front-end, after the parsing, type-
checking and implicit type conversion stages. IOC checks
for overflows both in shifting and arithmetic operations and
makes a clear distinction between well-defined and unde-
fined behaviors, that is, it does not consider all overflows
malicious. Our tool adopts this perspective and comple-
ments IOC in the sense that it addresses the issue of high
false positives by integrating static instruction flow tracking
to the performed analysis.

Symbolic Execution tools provide low false positives but
can’t easily achieve full coverage. They usually use dynamic
test generation [11] to detect violations. SmartFuzz [17] gen-
erates a set of constraints defining unwanted behavior and
determines whether some input could trigger an unwanted
execution path. This tool does not require source code and
makes use of the Valgrind framework for its symbolic exe-
cution and scoring. Coverage and bug-seeking queries are
explored in a generational search, whilst queries from the
symbolic traces are solved generating a set of new test cases.
Thus, a single symbolic execution feeds the constraint solver
with many queries, which themselves generate new test cases
etc. KLEE [8] uses symbolic execution to automatically gen-
erate tests that achieve high coverage for large-scale pro-
grams but it is not focused on integer errors, thus it does
not achieve as good results against integer overflows as other
tools that targeted towards integer operations.

7. DISCUSSION

7.1 Static information flow tracking
A core component of IntFlow is llvm-deps [18], which,

as an implementation of static information flow tracking, is
expected to provide good source code coverage with low run-
time overhead. However, we should note that llvm-deps
suffers from inherent inaccuracy issues, largely due to the
limitations of its points-to analysis [15] and due to its data
flow analysis mechanism. These limitations are amplified
when one wishes to extend the scope of the technique by
performing inter-procedural analysis. Fortunately, as our ex-
perience revealed, sources and sinks typically reside within
a single function. This can be viewed as an instance of
the classic trade-off between accuracy and performance: for
cases where accuracy has the maximum priority, we may
choose to incorporate dynamic IFT [13] and attempt to re-
duce any increased runtime overhead using techniques that
combine static and dynamic analysis [12, 9].

7.2 IntFlow for Runtime Detection
While the primary use case of IntFlow is to help users ana-

lyze existing code during the development phase by reducing
the amount of false positives reported by previous tools, an-
other use case is to deploy it as a runtime defense against

zero-day vulnerabilities. For this purpose, the two main is-
sues that must be addressed are i) the increased runtime
overhead due to the inserted checks, and ii) any remaining
false positives after IntFlow’s analysis.

The main source of runtime overhead, as shown in Sec-
tion 5.2, can be attributed to IOC’s checks, as it replaces
each arithmetic operation with at least three basic blocks
to perform the checking operation. Given the significance
of the problem, there have been many previous proposals
for implementing fast and efficient checking operations [22],
which IntFlow could adopt to improve performance.

As shown in Section 5, IntFlow was able to identify a large
portion of the developer-intended violations in the programs
under examination, but still missed some cases. In order to
provide as broad coverage of false positives as possible, Int-
Flow supports manual labeling of false positives. Developers
can dedicate a separate off-line phase to apply IntFlow using
a trusted input set over their application, and pinpoint the
locations in which IntFlow falsely flags a benign operation as
malicious. A more suitable solution for this use case would
be the incorporation of dynamic IFT, which though would
impose high runtime overhead, as already discussed.

7.3 Quality of the Produced Reports
Another advantage of IntFlow’s design is the fact that

its three different modes of operation offer an estimation
of how critical a particular bug is. Errors reported by the
sensitive mode have the highest risk, as they involve sensitive
operations and are more likely to be exploitable. Likewise, in
black-listing mode, IntFlow examines flows originating from
untrusted locations and thus the produced reports are of
moderate priority. Finally, the whitelisting mode is likely to
generate the largest amount of warnings. Thus, if developers
wish to examine as few locations as possible, e.g., due to
limited available time for performing code auditing, they
can first examine the reports generated by IntFlow in the
sensitive mode, and if time permits then use the blacklisting
mode, and so on.

Throughout our evaluation, we noticed that many of the
reports generated by IntFlow follow a particular pattern,
mainly due to code reuse from the side of developers. We
believe that using simple pattern matching and lexical anal-
ysis of the source code, in combination with the reports of
IntFlow, could further increase the accuracy with which Int-
Flow classifies errors as malicious or not—the more the oc-
currences of a particular error, the more likely for this error
to be developer-intended. We will explore this approach as
part of our future work.

8. CONCLUSION
We have presented IntFlow, a tool that identifies a broad

range of arithmetic errors and differentiates between crit-
ical errors and developer-intended constructs that rely on
undefined behavior, which do not constitute potential vul-
nerabilities. IntFlow uses static information flow tracking
to associate flows of interest with erroneous statements, and
greatly reduces false positives without removing checks that
would prevent the detection of critical errors. The results
of our evaluation demonstrate the effectiveness of IntFlow
in distinguishing between the two types of errors, allowing
developers and security analysts to detect and fix critical er-
rors in an efficient manner, without the need to sift through
numerous non-critical developer-intended violations. The

significant reduction in false positives that IntFlow achieves
over IOC, which has been integrated into Clang since ver-
sion 3.3, demonstrates the need for effective and accurate
automated arithmetic error detection.

Acknowledgments
This work was supported by DARPA and the US Air Force
through contracts DARPA-FA8750-10-2-0253 and AFRL-
FA8650-10-C-7024, respectively, with additional support from
Intel Corp. Any opinions, findings, conclusions, or recom-
mendations expressed herein are those of the authors, and do
not necessarily reflect those of the US Government, DARPA,
the Air Force, or Intel.

9. REFERENCES
[1] Clang C language family frontend for LLVM.

http://clang.llvm.org/.

[2] CVE - CVE-2006-3824. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2006-3824.

[3] CWE - 2011 CWE/SANS top 25 most dangerous
software errors. http://cwe.mitre.org/top25/.

[4] CWE - Common Weakness Enumeration.
http://cwe.mitre.org/.

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley
Longman Publishing Co., Inc., 1986.

[6] A. Benameur, N. S. Evans, and M. C. Elder.
Minestrone: Testing the soup. In Proceedings of the
6th Workshop on Cyber Security Experimentation and
Test (CSET), 2013.

[7] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and
D. Song. RICH: Automatically Protecting Against
Integer-Based Vulnerabilities. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), 2007.

[8] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of
the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2008.

[9] W. Chang, B. Streiff, and C. Lin. Efficient and
extensible security enforcement using dynamic data
flow analysis. Proceedings of the 15th ACM conference
on Computer and Communications Security (CCS),
2008.

[10] W. Dietz, P. Li, J. Regehr, and V. Adve.
Understanding integer overflow in C/C++. In
Proceedings of the 34th International Conference on
Software Engineering (ICSE), 2012.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed automated random testing. In Proceedings of
the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2005.

[12] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh,
D. I. August, and A. D. Keromytis. A general
approach for efficiently accelerating software-based
dynamic data flow tracking on commodity hardware.
In Proceedings of the 19th Network and Distributed
System Security Symposium (NDSS), 2012.

[13] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D.
Keromytis. libdft: practical dynamic data flow
tracking for commodity systems. In Proceedings of the
8th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments
(VEE), 2012.

[14] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the international
symposium on Code generation and optimization
(CGO), 2004.

[15] C. Lattner, A. Lenharth, and V. Adve. Making
context-sensitive points-to analysis with heap cloning
practical for the real world. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2007.

[16] F. Long, S. Sidiroglou-Douskos, D. Kim, and
M. Rinard. Sound input filter generation for integer
overflow errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2014.

[17] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux
programs. In Proceedings of the 18th USENIX Security
Symposium, 2009.

[18] S. Moore. thinkmoore/llvm-deps.
https://github.com/thinkmoore/llvm-deps.
(Visited on 06/07/2014).

[19] E. Revfy. Inside the size overflow plugin.
http://forums.grsecurity.net/viewtopic.
php?f=7&t=3043.

[20] T. Wang, C. Song, and W. Lee. Diagnosis and
emergency patch generation for integer overflow
exploits. In Proceedings of the 11th Conference on
Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), 2014.

[21] T. Wang, T. Wei, Z. Lin, and W. Zou. Intscope:
Automatically detecting integer overflow vulnerability
in x86 binary using symbolic execution. In Proceedings
of the Network and Distributed System Security
Symposium (NDSS), 2009.

[22] X. Wang. Fast integer overflow detection.
http://kqueue.org/blog/2012/03/16/
fast-integer-overflow-detection/.

[23] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F.
Kaashoek. Improving integer security for systems with
KINT. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation
(OSDI), 2012.

[24] X. Wang, N. Zeldovich, M. F. Kaashoek, and
A. Solar-Lezama. Towards optimization-safe systems.
In Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP), 2013.

[25] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou.
Intpatch: Automatically fix
integer-overflow-to-buffer-overflow vulnerability at
compile-time. In Proceedings of the 15th European
Symposium on Research in Computer Security
(ESORICS), 2010.

http://clang.llvm.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3824
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3824
http://cwe.mitre.org/top25/
http://cwe.mitre.org/
https://github.com/thinkmoore/llvm-deps
http://forums.grsecurity.net/viewtopic.php?f=7&t=3043
http://forums.grsecurity.net/viewtopic.php?f=7&t=3043
http://kqueue.org/blog/2012/03/16/fast-integer-overflow-detection/
http://kqueue.org/blog/2012/03/16/fast-integer-overflow-detection/

	Introduction
	Background
	Integer Errors and Undefined Behavior
	Integer Error Examples

	Approach
	Design and Implementation
	Main Components
	Putting It All Together
	Modes of Operation
	Trusted and Untrusted Inputs
	Sensitive Operations

	Implementation

	Evaluation
	Accuracy
	Evaluation Using Artificial Vulnerabilities
	Mitigation of Real-world Vulnerabilities
	False Positives Reduction
	Real-world Applications

	Runtime Overhead

	Related Work
	Static Analysis
	Dynamic & Symbolic Execution

	Discussion
	Static information flow tracking
	IntFlow for Runtime Detection
	Quality of the Produced Reports

	Conclusion
	References

