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Abstract 1. Introduction

Dynamic languages such as Python allow programs to beDynamic languages such as Python and JavaScript allow
written more easily using high-level constructs such as-com programs to be written more easily using high-level con-
prehensions for queries and using generic code. Efficient ex structs such as comprehensions for queries and using generi
ecution of programs then requires powerful optimizations— code. Efficient execution of programs then requires power-
incrementalization of expensive queries and speciatinati  ful optimizations—incrementalization of expensive gesri
of generic code. Effective incrementalization and spéexal under updates to query parameters (Liu et al. 2005) and spe-
tion of dynamic languages require precise and scalable alia cialization of generic code in procedures and methods under
analysis. specific calls to the procedures and methods (Rigo 2004).
This paper describes the development and experimentalThese optimizations require identifying values of varésbl
evaluation of a may-alias analysis for a full dynamic object and fields that are references to the same object, eitheaa dat
oriented language, for program optimization by incremen- object or a function object. Due to extensive use of object
talization and specialization. The analysis is flow-sévesit references, effective optimizations require precise aad s
we show that this is necessary for effective optimization of able alias analysis.
dynamic languages. It uses precise type analysis and a pow- Alias analysis aims to compute pairs of variables and
erful form of context sensitivity, called trace sensityyito fields that are aliases of each other, i.e., that refer to the
further improve analysis precision. It uses a compresged re same object. Determining exact alias pairs is uncomputable
resentation to significantly reduce the memory used by flow- (Ramalingam 1994). We use alias analysis to refer to may-
sensitive analyses. We evaluate the effectiveness ofithis a  alias analysis, which computes pairs timady be aliases,
ysis and 17 variants of it for incrementalization and sdecia an over-approximation of exact alias pairs. An alias analy-
ization of Python programs, and we evaluate the precision, sis is interprocedural if it propagates information betwee
memory usage, and running time of these analyses on pro-procedures, and intraprocedural otherwise; flow-semsitiv
grams of diverse sizes. The results show that our analysisit computes alias pairs for each program node, and flow-
has acceptable precision and efficiency and represents thénsensitive otherwise; context-sensitive if it computkasa
best trade-off between them compared to the variants. pairs for each calling context, and context-insensitiveeot
wise; type-sensitive if alias pairs only include variaktlest
have compatible data types, and type-insensitive otherwis
Making alias analysis precise and scalable is already dif-
ficult for statically typed languages, and even more difficul
for dynamic languages. This is due to extensive use of fea-
tures such as first-class functions, dynamic creation and re
General Terms A|gorithm3, Languagesy Performance, Ex- blndlng of fieIdS, methOdS, and even Classes, and rea.SSign'
perimentation ment of variables to objects of different types. These fiesstu
make even the construction of control flow graphs difficult.
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CNS-0627447, and CNS-0831298. cise alias information at every program node and its context
Can one make alias analysis sufficiently precise and sealabl
. - _ _ for such optimizations to be effective?
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talization and specialization. The analysis has the fadhgw ~ we evaluate the effect of refining control flow graphs using
features: precise type analysis, and we examine uses of program con-

e It is flow-sensitive. This is necessary for optimization Structs that are most challenging for precise type and alias
of dynamic |anguageS, because a variable or field may analyses. The results show that our ana|ySiS, which is flow-
have different aliases and even different types at differen Sensitive and trace-sensitive and uses precise type @alys
program nodes, and optimizations are applied to specific as acceptable precision, memory usage, and running time,
program nodes. The analysis is designed by extending an@nd represents the best trade-off between precision and effi

optimal-time intraprocedural flow-sensitive analysis for ciency for effective optimizations. For example, the asisly

C (Goyal 2005) to handle dynamic and object-oriented takes 20 minutes on BitTorrent with over 20K LOC and less
features. than an hour on Python standard library with over 50K LOC.
. . . L A significant amount of work has been done on alias anal-
It uses precise type analysis to increase the precision of . . . . . o

* precise typ ys! : precist ysis, as discussed in Section 4. Our work is the first imple-

the analysis results. Precise type analysis infers not only tati d . al uati ¢ timal-ti
basic types as in typed languages, but also types express[nen ation and experimental evajuation ot an optimal-ime

ing known primitive values and ranges, and collections of ZOW'Se_nS'tk')\_/e z;ma_lys;s gllgorlthm, ex_ttinded_to handle_ hIfUI
known contents and lengths. These precise types are crit- yga}mlé:ho jec -orler:je .tr?r:guage W _t.p_rtemlse Wp? a:{a ys
ical for handling dynamic features for constructing and and further improved with trace sensiivity. In contrast, a

refining control flow graphs in the first place. Our type most all prior works are for statically typed languages such

analysis uses an iterative algorithm based on abstract in-25 C and Java. There_ are many uses Of. a_Ilas_ana_IyS|s for
terpretation. other analyses and verification, and for optimizationsudel

| ful ¢ o lled ing specialization. Our work is the first use of alias analysi

[ ] . . A . .

tt uses a g_oyzertu fortrr? of context ser|13|t_|V|ty, called  for effective incrementalization, and the first thoroughlev
race sensitivity, 1o Turth€r improve analysis precision. ,a4ion of alias analysis variants for incrementalizatiod a
It inlines all calls repeatedly except only once for recur-

sive calls, but then merges analysis results back into thespemallzatlon.

original program flow graph. This improves over flow- Need for flow-sensitivity and type-sensitivityWe show
sensitive analysis results without needing large storagethat flow-sensitivity and type-sensitivity are essentaldp-

for keeping all clones, as in standard context-sensitive timization of dynamic languages. Consider optimization by
analysis, that help little for the optimizations. incrementalization, which replaces expensive queriel wit

e It uses a compressed representation for the aliases analnexpensive retrievals of results that are efficiently emen-
lyzed, to significantly reduce the memory used by flow- tally maintained at updates to values on which the query de-
sensitive analysis. The idea is to represent aliases at aPe€nds. Consider the following simple example that contains
program node as differences from aliases at its control updates to collections and is typical in dynamic languages a
flow predecessor node if there is only one such predeces-Wwell as static languages such as Java:
sor. This is natural and simple for flow-sensitive analysis, #removes all instances of 0 from collection C
and drastically reduces space usage. def removeObject(C,0):

We implemented this analysis, plus five main variations 1% 1sinstance(C,set):

. - #a set contains 0 at most once,
of it, for Python. The variations are: .
#thus remove it once

¢ two flow-insensitive analyses: one that is context-insen- if 0 in C:
sitive, and one that is context-sensitive; C.remove (0)

« two flow-sensitive analyses: one that is context-insensiti ~ 1f isinstance(C,1ist):

ve, and one that is context-sensitive; and #a list may contain 0 multiple times.
#count the number of 0’s in C

¢ a flow-sensitive, trace-sensitive analysis that also eseat #and remove 0 that many times from C
extra clones. for n in range(C.count(0)):
Each of these six alias analyses is also coupled with no C.remove(0)
type analysis, basic type analysis, and precise type asalys Incrementalization of a query over a collection, sy
resulting in a total of 18 variants of alias analysis. typically requires insertion of maintenance code, to updat

We evaluate the effectiveness of these variants for in- the result of the query, before the removal of an element
crementalization and specialization of Python programs, from S. At any statement that removes an element from any
through applications that use InvTS, an invariant-driven collectionC that may aliass, InvTS inserts the correspond-
program transformation system for incrementalizatioru(Li  ing maintenance code guarded by a runtime checkalisit
et al. 2005, 2009), and applications that use Psyco, a just-aliased toS. InvTS uses alias analysis to statically remove
in-time compiler that does specialization (Rigo 2004). We the check ifc may be aliased to only.
also evaluate the precision, memory usage, and running time Suppose the alias set ofis {L, S}, whereL is a list and
of these analyses on programs of diverse sizes. In addition,S is a set, at the start of the body ®émoveObject. Then,



ods and classes; type-based dispatch, including polynmorph
functions and explicit type comparison, e.g., for elements
of heterogeneous collections; exceptions; andl, which
evaluates a string as code. These features all make it diifficu
to statically determine control flows.

our analysis yields two different alias sets @+{S} and
{L}—at the tworemove statements. This is because flow-
sensitivity allows different alias sets at different nodes
the same function, and type-sensitivity uses conditiomsfr
isinstance. At the firstremove statement, becauseis
aliased to onlys, the runtime aliasing check is removed. At To address this challenge, we use a precise type analysis
the secondemove statement, becausemay not be aliased  to infer the types of variables and expressions at all pragra
to S, the maintenance code and runtime check are nevernodes, and use types to statically determine control flows as
inserted. precisely as possible. In particular, dynamic featuresemak
Note that for a flow-insensitive analysis of the above code, it especially difficult to determine interprocedural cartr
in both the original and SSA forms, the alias setofs flows. Thus, we use the types of arguments and returns to
{L,S}. This leaves both the maintenance code and runtime help determine interprocedural control flows. We say that
check at bothremove statements. Note also that a flow- two types arecompatible if their sets of possible values
sensitive but type-insensitive analysis would yield theesa  intersect. We add interprocedural CFG call and return edges
undesirable result. between a call and a procedure or method only if the type
signature of the call is compatible with that of the procedur
2. Analysis or method.

Our analysis takes an input program and produces informa- Our type analysis and CFG construction is done by an

tion about alias pairs, as well as data types and control flows abstract interpretation over a domain of precise types. It i

It first handles dynamic features by analyzing types and con-fers the types of alll varlables_ln scope at each program node,

trol flows using an abstract interpretation, and then perfor ~ @nd the type of the expression at each expression node. It

a flow-sensitive trace-sensitive alias analysis, or a tiaria ~ @lS0 constructs CFG nodes and edges as it visits program

of it. nodes following the control flows determined, easily for
The first step has two main tasks: (1) parse a program file most intraprocedural flows, and using types for interproce-

and construct an abstract syntax tree (AST), which is easy,dural flows and exceptions. Similarly, we use types to deter-

and (2) analyze types and construct a control flow graph mine control flows involving exceptions.

(CFG) on the ASTs from all files read so far; since the code Basic types and precise typesOur domain of precise types

in a file may import modules from other files, analyzing a extends our domain of basic types. A precise type is a sub-

file recursively performs (1) followed by (2) at tHeport type of a basic type. Precise types are used in type inference

nodes. The output of this step is an interprocedural CFG of and CFG construction. Basic types are used afterwards for

the entire program, annotated with type information. generating specialized procedures and methods. Basis type
The second step has two main tasks: (1) construct a sparsén our type system are:

evaluation graph (SEG) from the CFG by removing CFG e none, for the special undefined value, needed in dynamic

nodes that do not affect aliases or control flows and connect-  languages;

ing edgesto passthe removed_ nodes, and (2_)_do an alias anal-4 primitive typesint, float, andbool:

ysis that extends an optimal-time flow-sensitive intraproc

dural alias analysis to handle procedures, methods, add fiel

and to be trace-sensitive. We also describe a compressed rep ® mmodule (similar to package in Java), with, if known,

resentation, implementation issues, and analysis vatiant module name, a list of names and their types exported
In this paperprogram node refers to AST node. As com- by the module, and the AST node id of the module defi-

mon in languages like C and Pythdanction refers to both nition;

functions and procedures; functions are just procedusgs th e class, with, if known, class name, a list of parent classes,

can return values. For complexity analysié,denotes the a list of static field (including method) names and their

size of the input programy’ denotes the number of vari- types, and the AST node id of the class definition:;

ables in the program, anfl denotes the maximum number instance, with, if known, type of the class of the in-

of variables in scope at any program node. stance, and a list of instance field names and their types;

e function, with, if known, function name or special name
lambda (for unnamed functions), a list of parameters and

e collection typesstring, list, tuple, set, anddict (map);

2.1 Type and control flow analysis
The key challenge posed by dynamic language features is

construction of a sufficiently precise CFG. Dynamic lan-

guage features are: first-class functions and methods, in-
cluding lambdas, inner functions, and methods in inner
classes; dynamic creation and rebinding of fields, methods,
and classes; reassignment of variables to objects of differ
ent types, where objects may be anything, including meth-

their types, a list of free variables and their types (for
closures), the return type, and the AST node id of the
function definition;

e method, with, if known, everything as in function type
plus the type of the instance on which the method is
invoked,;



e union, with a list of any types other than union types;

instead ofist;.,(5). The precise limit we use is for the size

union types are needed for dynamic languages, since anof each type description to be no more than 60 type names

expression can evaluate to values of different types at
different times it is evaluated; and

* hot andtop, the type of no values and the type of all
values, respectivelyot is a subtype of all types, and all
types are subtypes odp.

Precise types extend basic types to include additional sub-

types. There are three kinds of extensions:

e for primitive types, add subtypes for known values or
ranges: forint, add int,q(n) for integer constant,
intnon_neg TOr NONNegative integers, anidt, ., (nl,n2)
for integers fromm 1 to n2, where the first of these types
is also a subtype of the latter two whenis not neg-
ative or is in the range ofil to n2, respectively; for
float, add similar types; fobool, addbool,,q; (true) and
boolyai (false).

for collection types, add subtypes for known element
types or lengths: fotist, addlisty;|t1, ..., tn] for lists

of known lengthn and element typesl throughtn
that are not altop, list;.,(n) for lists of known length

n but all top element types, andistee,,(t) for lists

of unknown length but known same noop element
type ¢, where the first of these types is also a sub-
type of the latter two whems have the same value or
t1 throughtn are of the same type, respectively; for
tuple and set, add similar types; forlict, add similar
types plusdictsi.c_key[n, t] fOr maps of known sizen,
known same norep key typet, but all top value types,
and dicts;ze_vai[n, t] Symmetrically with key and value
switched, wheredictq;[(kt1,vtl), ..., (ktn,vtn)] is a
subtype of both, and both are subtypesdéfts;..(n),
whenns have the same valugring is treated as a tuple
whose element types are character types.

foreachmodule, class, instance, function, andmethod

type, add subtypes whose component types may use also

the subtypes above, where a tyfeis a subtype of a
type¢2 iff all components of1 are subtypes of the cor-
responding components tif.
Any set{ty, ..., t,} of types has a minimum supertygep
if any ¢, is top; otherwise union of the maximal types in all
t; if ¢;'s are union types, and otherwise first turn anyhat
is not a union type into a union type of itself.

We bound the set of precise types considered during
type analysis to be finite, by generalizing a type to a su-
pertype of a smaller size when the size of the type ex-
ceeds a constant. Generalization yields a minimal super-
type of a smaller size; when there are multiple such types,

we choose the one that merges the lowest ranges for range

types, and the one with most information about element
types for collection types. For examplepion(int,q..(2),
intyai(4),intyq(8)) is generalized tawnion(int,qn(2,4),
intya(8)) instead ofunion(int,q(2),int,qan(4,8)), and
listqy[int,int,int,int, int] is generalized t@istqjem (int)

(int, float, etc.), except that the size of a range type is the
number of times it has been generalized. Assuming that the
height of the inheritance hierarchy is bounded by a constant
the number of generalizations of types for each variable is
bounded by a constant. Thus, the set of types considered for
each variable is bounded by a constant.

Analysis and refinement. Our algorithm does the Analy-

sis step below to infer types and construct a CFG. Once the
Analysis step reaches a fixed-point, the Refinement step be-
low specializes the program based on the types inferred; the
resulting program is then analyzed again to yield more pre-
cise types and a more refined CFG, and is analyzed incre-
mentally. We repeat the two steps until either the resulting
program cannot be further specialized, or a bound on the
number of iterations is reached. The bound is set to be 30,
but for all examples we have experimented with, the fixed-
point was reached after 1 to 19 refinement steps, except that
for Python standard library, the bound 30 had to be imposed
to stop the analysis. Section 3.3 experimentally evaluhtes
effectiveness vs. cost of refinement.

Analysis. Start at the program entry point, and visit and
interpret each program node according to its semantics in
the domain of precise types. The types for all variables and
expressions at all program nodes are assignéd tinitially,
and go up until a fixed-pointis reached. A total of 312 kinds
of program nodes are handled. Most of them are for built-
in functions and are obvious. We explain how the dynamic
features are handled.

First-class functions and methods. At calls to first-class
functions, the function type is used to determine which
functions may be called. Returning, passing, or assign-
ing a function is handled by the type analysis algorithm
propagating the function type to the type of the corre-
sponding return expression, argument expression, or the
left side of the assignment, respectively. The same holds
for methods.

Lambdas, inner functions, and methods in inner classes
all have function types. The function type contains a

list of the free variables and their types. The type is

propagated by the type analysis algorithm as for other
functions, and the types of the free variables are looked
up when an application of the function is analyzed.

Dynamic creation and rebinding. All dynamic creation and
rebinding of fields, methods, and classes are reduced to
field creation and field assignment of the fosmf=y.

Just as for normal field creation and assignment, the type
analysis algorithm creates a new instance typg for x

from the current typé..... for x, wheref is added to the

list of fields int,,.,, if £ is notin the list, and the type of

f is assigned the type gf, the algorithm then assigns

the minimum supertype df,.,, andt,,;-.



Variables may be reassigned objects of different types,  bad for precise control flow analysis, but our experiments
where objects may be anything, including methods and  in Section 3.4 show that this rarely occurs.

classes. This is handled by the type analysis algorithm  Note that imprecision caused by reflection features for

propagating by reference, not by copying, the type of  accessing fields, throughetattr andgetattr, is lim-

the right side of the assignment to that of the left side.  jted to related objects and fields, and thus is much less

Propagating the type by reference ensures that types of  proplematic tharval.

aliased variables change together at dynamic rebindings. Reafinement. Refine and simplify the program using spe-
Type-based dispatch, including polymorphic functions and cjalization and inlining as follows:

type comparison of elements of heterogeneous collec- 1 Clone procedures and methods so that there is one clone
tions. At a call to a polymorphic function or method, the for each different combination of basic types of argu-
analysis algorithm constructs a CFG edge to each func-  ments a procedure or method is called with, and replace

tion or method with a compatible type signature for the  gyriginal calls with calls to the clones with the correspond-
parameters and return. ing argument types.

Type comparison of elements of heterogeneous collec- 2. Eliminate code in the clones that becomes dead for the
tions is handled by the analysis algorithm as a normal  argument types of the clone; this results in procedures

comparison, yieldingool,q:(true) or boolva (false) if and methods that are specialized for each combination of

the types of the collection’s elements are known, and are  argument types.

equal or not equal, respectively, alb! otherwise. 3. Inline all procedure and method calls where inlining does
Exceptions. Exceptions are objects. Becausg blocks not increase the number of program nodes; this elimi-

can be nested, our analysis maintains a stack of exception  nates the overhead of analyzing calls and returns without

handlers. When analysis entersxzy block, it pushes on increasing program size.

this stack the first CFG node of eaelrcept (similar Type and control flow analysis takes tin@(N x S),

to catch in Java) block together with the class types pecause the set of types considered for each variable is
of exceptions that thexcept block handles; these stack  pounded by a constant, and the number of refinements is
entries are popped when analysis leavetheblock. bounded by a constant.
When analyzing ary block, including functions and
methods called during it, from each CFG nodehat
may throw an exception, the analysis adds an edge fromFlow-sensitive alias analysis. We use the intraprocedural
n to each CEG node in the stack where one of the cor- flow-sensitive alias analysis originally studied by Choi et
responding exception class types is compatible with the @l- (Choi et al. 1993), by extending the optimal-time algo-
type of the thrown exception, and adds an edge from  fithm for it by Goyal (Goyal 2005) to handle procedures,
to the program exit node; to improve precision, if an ex- mMethods, and fi_elds. The extensions are stan_dard: treating
ception thrown byn is definitely caught by one of the ~Parameter passing and result returns as assignments, and
except clauses on the stack, edges fronto except making methods into procedures that take an additional pa-
clauses lower on the stack and to the program exit node'ameter for the object on which the method is invoked. We
are omitted. CFG edges involvininally blocks are  treat field dereferences as variables except that aliading o
added in a standard way. the variable through which the field is accessed is taken into
faccount: an assignment of the fosnf = y is treated as a
normal update plus a weak updatertof with y for each
aliasr of x; and an assignment of the form= y.f is
treated as a normal update plus a weak updatenith r . £
for each aliagx of y. The algorithm maintains a workset for
each SEG node and iterates until all worksets become empty.
These extensions do not change the optimality of the time
complexity. The time complexity of Goyal's algorithm is
optimal because it is in the order of the size of input plus
output; it isO(N x V?) because the output is in the worst
- | i case alias pairs between all variables at each program point
case, the behavior efral of an unknown stringmay still  The extensions do not change the order of the program size,
be limited by the language definition; e.g., Python allows o the number of variables; the latter is because generally

programmers to specify the sets of local and global vari- there is a constant number of lexically mentioned fields
ables that arval may update. In the worst case, if an | gjevant to each variable.

eval may update anything, we set the types of all vari-
ables in scope toop at thiseval node; this is generally

2.2 Alias analysis

Evals. The analysis distinguishes two cases. If the type o
the argument oéval is a union of constant strings, then
create a set of inner functions, one for each string in the
union; create a CFG edge from téeal node to the entry
node of each of these inner functions, and create a CFG
edge from each exit node of these inner functions to the
CFG node immediately following theval node. The
return type of theeval is the minimum supertype of the
return types of the inner functions.

Otherwise, we useop as the return type. Even in this

Using types to improve alias analysis precisionWe mod-
ify the algorithm to only allow alias pairs that have com-



patible types. This applies to languages that do not allow
arbitrary type casting, such as Python, Ruby, and JavaScrip

Our experiments show that using precise types signifi-
cantly increases alias analysis precision compared with us
ing basic types, with little or no penalty in running time.

Trace sensitivity. Precise alias analysis needs to distin-
guish between different calling contexts of a SEG node. We
describe a new form of context sensitivity, called tracessen
tivity, and compare it with traditional context-sensitaeal-
ysis.

There are two major obstacles to context-sensitive anal-
ysis. The first is recursion: the number of contexts in a re-

cursive program may be unbounded. A standard approach to

this problem is (1) representing a context as a sequence o
calls or call sites, and (2) distinguishing contexts by adixe
length subsequence of such sequences. For example,@nlinin
n levels of function calls of the program is equivalent to (1)

representing the context as a sequence of call sites, and (2

distinguishing contexts by the firatentries of the sequence
— information for all contexts with the same firstall sites

is merged. We refer to analysis that does 1 level of inlining
as context-sensitive. Similarly-CFA (Shivers 1988; Vitek
etal. 1992) distinguishes contexts by the lastlls — infor-
mation for all contexts with the same lastalls is merged.
For typical small values for, such approaches give impre-
cise results for dynamic languages that routinely use aoubl
dispatch and implicit nesting of calls, such as in the case of
field access in Python; larger valuesromake such analy-

ses consume an unacceptable amount of space. The secorgje

problem is that, even in non-recursive programs, the num-
ber of contexts in a program is worst-case exponential in the

depth of the nested procedure calls, hence storing alias in-

formation for each context is infeasible for analyzing &rg
programs.

We address the first problem by inlining all non-recursive
calls, and by inlining calls to recursive procedures onlgen
along a call path. We address the second problem by return
ing alias pairs for only nodes in the given SEG. We merge
alias pairs for nodes of the inlined procedures into aliaspa
for the corresponding nodes in the given SEG. We remove
nodes of inlined procedures when alias pairs for them are
no longer needed for the rest of the computation, reducing
memory consumption.

We say that this analysis isace-sensitive, because the
output of the analysis depends on execution traces, but doe
not store information per context. Precisely, the analysis
does the following:

¢ When encountering a call nodeof a proceduref, if a
clone off is not in the current calling context ef create
a clone off, with cloned local variables; otherwise, do
analysis on the existing clone ¢fin the calling context.

¢ When adding the alias pait{one, Yeione) 10 the alias
pairs for a cloned node.;,,., also add the alias paiz(
y) to the alias pairs fon.

¢ At the end of each iteration in which an alias pair in the
workset of a node: is processed, for each clorfé that
is reachable from, if the worksets of all SEG nodes that
can reach the entry node ¢f are empty, thery’ and
the alias pairs of all nodes gf are removed to reduce
memory usage.

¢ Perform all other operations as in the flow-sensitive algo-
rithm described previously.

¢ At the end, return alias pairs for only nodes in the given
SEG.

Our trace-sensitive analysis is always at least as pre-
cise as, and in our experiments always more precise than,
ontext-insensitive analyses. The increased precisibe-is
cause our algorithm distinguishes aliasing information in
different contexts during analysis, even though it subse-
guently merges information for different contexts. Our ap-

lications in optimization do not exploit different aliagi
nformation for different contexts.

For programs without recursion, trace-sensitive analysis
is always at least as precise as, and often more precise than,
an analysis that distinguishes contexts by a subsequence of
the context with length. The increased precision is because
trace-sensitive analysis distinguishes aliasing infdionan
every calling context during analysis of non-recursive-pro
grams, while an analysis that distinguishes contexts based
on a subsequence of the context with lengtimerges alias-
ing information for contexts whose length is greater than
For programs with recursion, trace-sensitive analysis may
less precise than an analysis that distinguishes centext
based on context subsequences of lengtm > 1, for
contexts involving recursive calls. However, in experitsen
we have done, an analysis that inlinegalls withn > 1
runs out of memory for several examples. Our experiments
in Section 3.4 also show that recursion is rarely used.

We define a natural extension of trace sensitivity to allow
more than one clone of a procedure in the same calling con-

text, in essence allowing extra levels of inlining for resive
procedures. We say that an analysi &e-sensitive with e
extra clonesif it allows e + 1 clones of a procedure in a call-
ing context. We observed that fer> 1, the analysis runs
out of memory for larger examples. We show experiments
with e = 1 in Sections 3.1 and 3.2.

Overall, our experiments show that removing cloned pro-

cedures that can be determined to no longer alter the alias

airs is quite effective in reducing the memory usage, al-
lowing analysis of large Python programs. Thus, trace sensi
tivity increases precision while remaining feasible fagka
programs.

Let p be the maximum size of a procedurebe the
maximum number of call nodes to a proceduiehe the
maximum depth of calls to non-recursive procedures, and
e be the number of extra clones allowed for each pro-
cedure. The analysis take8((N + (p x ¢)@*(e+D)) x
(V + (p x ¢)™*(e+1))2) time. If one assumes that c, d,



ande are bounded by constants, then the time complexity of sis, plus five main variations of it, for Python. The variaso
the trace-sensitive analysis is stil{ N x V2). are:

¢ two flow-insensitive analyses: one that is context-insen-
sitive, by extending Andersen’s analysis (Andersen 1994)
to handle dynamic and object-oriented features in a sim-
ilar way as described above, and one that is context-
sensitive, by taking the flow-sensitive and context-sesesit
variant below and merging the analysis results for all pro-
gram nodes together.

Compressed representation.To reduce space usage, we
introduce a simple but important optimization. The alias
pairs for each node that has only one control flow predeces-
sor node are not stored explicitly, but are stored as changes
to the alias pairs of the predecessor node, which themselves
may be stored as changes to the alias pairs of the predecessor
node of the predecessor node, all the way up to a node that = ) _ N
has multiple predecessor nodes. A membership test against® Wo flow-sensitive analyses: one thatis context-inserssiti
the alias pairs of a node may involve as many lookups asthe ~@nd one that is context-sensitive, both by extending
length of the chain of predecessors. We bound the length ~ GOyal's analysis as described.

of such a chain to be no more than 30. Our experiments e a flow-sensitive, trace-sensitive analysis that also eseat
show that this optimization reduces memory consumption  extra clones.

for flow-sensitive analysis variants by up to a factor of 10.  Each of these six alias analyses is also coupled with (1) no
type analysis, i.e., type-insensitive, (2) type analysisgl
basic types, called basic-type-sensitive, and (3) typyaisa
using precise types, called precise-type-sensitive Jtiagu

in a total of 18 variants.

Implementation issues. To implement the analyses, two
additional problems must be solved.

First, non-trivial applications may use a large number of
functions and classes for which the source code is not avail-
able. These funct_lons :_:md classes may be built into the Ian—3_ Experiments
guage, be written in a differentlanguage such as assentbly, o ) .
be available only in compiled form. For example, Python has We performed experiments that show the effectiveness of our
over 400 special functions and classes implemented in C, ei-analysis. Our first set of experiments shows that our analy-
ther as part of the interpreter or separate C modules. The pro sis can be effectively used to incrementalize and speeializ
grams we analyzed contain 165 of these plus a special mod-PYython programs. For the trace-sensitive analysis with ex-

ule. For the ten most commonly used built-in classes( tra clones, we allow one extra clone. We then evaluate the
float, bool, string, list, set, dict, class, module precision, memory usage, and running time of analysis vari-
type) and the special module_puiltins_), we labori- ants. We also evaluate the effect of refinement on alias anal-

ously hand-coded their behavior in terms of their parameter YSis- Finally, we consider recursiosal, andexec — con-

and return types, side effects, CFG effects, and effects onStructs that can hurt our analysis precision — and show that
alias pairs, in the abstract interpreter; this took 310@din  these are rare in Python programs. _

of Python. For all remaining 155 cases, which are the vast Uniess otherwise specified, all experiments were per-
majority, we just duplicated the functionality of the C code formed running Python 2.6.4 on Windows 7 64bit, running
in Python code without regard for time and space efficiency; N & Core 2 Quad (Q9750 at 3.8GHz) CPU with 16 GB of

this makes the implementation much easier and took only MemMory.
about 8000 lines of Python. 3.1 Effectiveness for optimization

Second, the analysis on larger programs may take hours. ] ] o )
We developed a persistence layer for the analysis frameworkEffectiveness for incrementalization. InvTS (Liu et al.
that allows efficient storage and lookup of alias pairs ok dis 2005, 2009) is a transformation system for Python that
for further analysis. The persistence layer supports ntyt on Performs source-level incrementalization transformegio
fast membership test against alias pairs computed by thePY @pplying transformation rules that involve alias condi-
analysis at any node, but also efficient lookup of the set of tions. INVTS uses alias information to statically deterenin
variables that a given variable aliases at a given SEG nodethe value of aliasing conditions if possible. If the value of

and all of the subsequent SEG nodes in the same basic block? condition is known at compile time, InvTS can determine
To increase confidence in the correctness of the analysisWhether to transform a code segment. Otherwise, the condi-

and its implementation, we usesbjgraph (http://mg tion is inserted into the generated code as a run-time check,
.pov.1t/objgraph) to find all references to all objects at with the transformed code in the true branch and the original

runtime for a subset of the programs we analyzed, used thisc®de in the false branch. _
information to construct runtime alias sets for variables i MVTS experiments are conducted by transforming Python
the program, and then verified that the runtime alias sets areProg9rams using transformation rules and different vasiant

subsets of the alias sets computed by the analysis. alias analysis. The programs transformed are Ixml, an XML
library, and nftp, an FTP client. The transformation rules i

Analysis variants. For evaluation and comparison, we crementally maintain properties that must hold during exe-
have implemented the flow-sensitive trace-sensitive analy cution. For each analysis variant, we report the analysis,ti



runtime overhead (defined &&“=timc.  wheretime, and updated, which usually then calls thesetitem__ method

time, are the running times of the transformed and original of thedict class object that represents fields of an object as

programs respectively), and the number of alias conditions key-value pairs).

for which runtime checks are eliminated. In generaly levels of inlining with the typical small val-

ues forn give imprecise results for dynamic languages that

routinely use double dispatch and implicit nesting of ¢alls

such as in the above case of field access in Python; larger val-
ues ofn make the analyses consume an unacceptable amount
of space.

! i - We conclude that the best trade-off between precision and
ements have a valid parent field, i.e., elemenparent analysis time is the flow-, trace- and precise-type-semsiti
field equalg iff elementp hase as a child. analysis. While adding extra clones slightly increasesipre

* No shared child and not self child: Inan XML document, sjon, it takes several times as long to run.
an element may be a child of at most one element, and an  s;o[ =5 fiow-insensitive, context-insensitive
element cannot be a child of itself.

 Cause of indexing out of range: For an expression of the _
form A[B], the value of8 must be a valid index of. If & 440
this property is violated, report the files and lines where g 400}
theindex out of bounds exception became unavoid-
able, i.e., the location at which each variable that was in
the expression that eventually caused the exception was2 2 B
last modified during execution so as to cause the excep-§ 280}
tion. 5
The test suite processed 10 million XML records.
Table 1 shows that the overhead of maintaining these g
properties, when the transformation uses a flow- and context § 160
sensitive but type-insensitive analysis, is 83%, 93%, and §
310%, respectively. Precise type sensitivity decreaseseth
to 73%, 89%, and 192%. Adding trace sensitivity further de- ° *°|
creases the overhead to 14%, 85%, and 85%, but increases 4of

Lxml. Lxml (http://codespeak.net/1xml/) is a Py-
thon library to create and transform XML DOM trees. We
applied InvTS to the test suite of the Ixml library to check
the following properties:

¢ Valid parent field: In an XML document, all non-root el-
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the analysis time by up to 41% (from 61 to 86 seconds). 0
Ixml Ixml xml nftp
Nftp. Using InvTS, we found the cause of a previously valid Parent  No Shared Child _ Indexing
encountered bug in nftph€tp://inamidst.com/proj/ Figure 1. Runtime overhead of transformed programs, us-

nftp), an FTP client that downloads directories from multi- ing precise-type-sensitive alias analysis, varying flow an
ple machines. This bug occurs when a directory listing com- context sensitivity.
mand is issued before a Cha’.‘ge directory cpmr_nand COM-Ettectiveness for specialization. Psyco (Rigo 2004) is a
pletes. We wrote a transformation rule that maintains afset o T T .

specializing just-in-time compiler for Python. At starfup

outstanding FTP commands, and uses it to determine WhereIt comiles all the bvtecode it can to machine code. The
this error occurs. We ran nftp with 10 threads, with 30 di- b Y X

. . . . . remaining bytecode needs more information to be compiled,
rectories totaling 20GB over a 1GBit connection, ensuring gy P

. including alias and type information. After collecting reor
that the program is CPU bound. Table 1 shows that the run-. g . P ; 'ng
. . . information at runtime, Psyco compiles the remaining code
time overhead when using flow- and context-sensitive but

. o, o . . . to machine code. In our experiments, we augmented Psyco
type-insensitive analysis is 91%. Adding precise typeisens so it can use statically computed alias and type information
tivity reduces it to 81%, and adding trace sensitivity ferth y P yp

reduces it to 73%. Specifically, we modify P_sy_co’s_ unlift operat_or as f_oIIows:
when Psyco blocks specialization of a function until a run-
General observations. Table 1 summarizes our InvTS ex- time answer to the question “is x the same as y” or “is x
periments. Figure 1 shows the overhead for the six precise-of type T" becomes available, and the answer is available
type-sensitive variants of alias analysis. Flow-insérsit  from statically computed alias or type information, we ratu
analysis performs poorly, whether context-sensitive dr no that answer to Psyco, and Psyco continues specializing the
For flow-sensitive analysis variants, the context-seresiti  function. This allows Psyco to compile functions at startup
analysis performs only slightly better than the context- that otherwise it would have to compile at runtime after
insensitive analysis. A reason for this is, in Python, field collecting more information.
assignments are usually two nested callssétattr_ and We ran Psyco on its largest included benchmark, which
__setitem_; __setattr__is a method of the object being consists of 397 lines of code, and performs assignments,



Ixml - Valid Parent | Ixml - No Shared Child Ixml - Indexing nftp
97 alias checks 81 alias checks 1451 alias checks 31 alias checks

flow context type runtime checks analysig runtime checks analysig runtime checks analysig runtime checks analysis
sensitive  sensitivity  sensitivity overhead removed time| overhead removed time | overhead removed time| overhead removed time
no 92% 12 36 95% 12 39| 440% 35 49| 119% 7 19

no no basic 93% 12 36 95% 13 38| 429% 35 50| 119% 7 19
precise 91% 14 36 95% 13 39| 381% 41 49| 112% 9 19

no 88% 16 60 94% 15 62| 364% 55 97| 110% 9 83

no yes basic 88% 17 64 93% 17 62| 350% 61 97 96% 11 82
precise 74% 26 61 90% 23 61| 323% 89 99 91% 13 84

no 87% 17 42 93% 19 42| 340% 79 62 93% 12 30

yes no basic 86% 17 43 91% 20 43| 331% 81 61 89% 13 30
precise 73% 28 43 90% 28 46| 219% 122 61 89% 13 30

no 83% 18 59 93% 20 57| 310% 103 98 91% 13 80

yes yes basic 82% 18 61 90% 23 63| 303% 112 95 86% 14 82
precise 73% 30 61 89% 29 61| 192% 199 98 81% 14 81

no 82% 20 81 91% 19 85| 160% 246 103 90% 12 63

yes trace basic 75% 28 82 88% 28 85| 133% 344 109 77% 14 62
precise 14% 68 82 85% 40 86 85% 836 104 73% 16 63

no 67% 37 308 85% 37 312 124% 455 783 78% 14 119

yes trace extra  basic 19% 61 308 85% 38 310 99% 603 780 4% 15 119
precise 14% 72 310 83% 41 311 83% 892 791 70% 17 118

Table 1. Runtime overhead, number of alias checks removed, andsagéilyie (in seconds) in InvTS experiments. Runtime
overhead |§%§me° wheretime, andtime, are running times of the transformed and original prograespectively.

class construction, function and method calls, and list and flow  context type |program uncompiled analysis
dictionary operations. For this benchmark, Psyco, with no sensitive sensitivity sensitivilyspeedup procedures  time
additional alias information passed to it, compiles only 43 no 3.8% 27 1.8
out of 73 procedures at startup, speeding the program up N0 no basic 4.8% 26 1.9
44%. We provided the results of each alias analysis variant precise | 6.7% 23 2.2
to Psyco, and measured the number of non-compiled proce- no 7:2% 24 26.6
dures and the speedup compared to Psyco run without this no yes bas.'c 7'7?’ 23 26.9
information. We do not include analysis time when comput- prﬁglse 12'202 S; 21'8
ing speedup, because analysis information can be computed yes o basic 7:2% 23 4:1
once per program. precise | 11.3% 20 4.2
Table 2 shows that the number of procedures compiled at no 6.7% 24 23.1
startup, and the resulting speedup, increases with theé-prec  yes yes basic 7.7% 23 24.1
sion of the alias analysis and type sensitivity. Flow-, érac precise | 13.4% 18 23.8
and precise-type-sensitive analysis with extra clonelslyie no 8.2% 24 51.1
the best results, a speedup of nearly 16% compared to the yes trace  basic 10.0% 22 51.4
original Psyco, which is 53% when compared to Python precise | 15.5% 16 52.6
without Psyco, computed ds-(1—0.44) x (1—0.16). Elim- no 9.9% 22 33L.1
inating the use of extra clones reduces the speedup by 0.4% Yes traceextra basic | 11.3% 20 3357
(15.9% - 15.5%) and the analysis time by 843#2-52.), precise | 15.9% 15 339.3

Even though the anaIySiS time is Significant, dOing the anal- Table 2. Program Speedup, number of procedures left un-
ysis is worthwhile because after performing the analysis ju  compiled at compile-time, and analysis time (in seconds) in
once, every future run of the program can use the analysis re-psyco experiments. Program speedufge—tinca \where
sults without performing the analysis again, thus amewjzi ¢, is the running time using Psyco with ‘alias informa-
the cost of one analysis over a potentially very large number tion, andtime, is the time using the original Psyco, which
of runs. leaves 30 procedures uncompiled.

3.2 Precision, memory usage, and running time

We evaluated the precision, maximum memory usage, andmoduleshunk, bdb, pickle,andtarfile; Fortran2003,
running time of the analysis variants by running them on a module of SciPy (http://www.scipy.org/); bit-
seven Python programs of diverse sizes. The programsTorrent (http://www.bittorrent.com/); and std.
include the standard Pythomt(tp://www.python.org) 1lib., the set of Python standard libraries used by the pro-
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Figure 2. Alias set size for each variable (shown horizontally) facle@FG node (shown vertically) for flow-sensitive analysis
variants fortarfile. Variables are ordered by increasing average alias seindize context-insensitive precise-type-sensitive
analysis.

grams we analyzed. We recorded the output, running time, 19 = rostimized frace-sensensitive
and maximum memory Consumption_ oo unoptimized trace-sensensitive extra clones

Precision of alias analysis variants. Figure 2 shows a 100 |
visual comparison of the results of the alias analysis of
tarfile, for four flow- and precise-type-sensitive analysis

variants, plus, for comparison, the trace- and basic-type-
sensitive analysis with extra clones. Columns represent th
variables in the program; rows represent the CFG nodes.g
The shading represents the size of the alias set of a variable -
at a CFG node, where the alias set of a variable is the
set of variables it may alias; lighter colors represent &éigh

-
o
W

context-insensitiveO- O
context-sensitive(- {1
0 trace-sensitive+ +
trace-sensitive extra clones o- - |
compressed context-insensitive O-O
compressed context-sensitive[-]
compressed trace-sensitive +—

y usage (MBytes)

precision, and darker colors represent lower precisiors Th ‘ . compressed trace-sensitive extra clones o—o
graph makes it clear that as we add context- and trace- ;@:4%4 eoi% z:’j%)&gg’% 3;‘;%» 7;;%
sensitivity, the precision of the analysis increases. Addi Nomber o AST nodeSin program 2% B¢

extra clones also improves precision, but not by as great
an extent. Type insensitivity reduces the precision of the
analysis. Trace-sensitive analysis with extra clonesstée
more time than trace-sensitive analysis without extraeton
while providing only slightly higher precision. We conckid
that the most practical alias analysis is the flow-, traced, a
precise-type-sensitive analysis.

Figure 3. Maximum memory usage for flow- and precise-
type-sensitive alias analysis variants, varying contexi- s
sitivity using uncompressed or compressed represengation
“unoptimized” means that trace optimization and compres-
sion are both disabled; trace optimization is enabled flor al
other trace-sensitive variants. Data points are missimg fo
cases where the analysis ran out of memory or time (limited

Memory usage. Figure 3 shows the memory usage of the to 4 hours). Both axes are log scale.

four flow- and precise-type-sensitive analysis varianith) w

and without compressed representation, and of the two un-

compressed trace-sensitive variants without trace opéimi  for Fortran2003 because the average size of alias graphs

tion (removal of no longer needed procedure clones). Due toin tarfile is significantly larger when analyzed by a flow-

the large spread of values, both axes are drawn in log-scale.sensitive analysis. The memory usage for flow-insensitive
Despite being a smaller program, the memory usage for analysis variants are not shown because they are much

several variants of the analysis oérfile is larger than smaller.
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Figure 4. Running times for flow- and precise-type-
sensitive alias analysis variants using compressed r@pres
tation, varying context sensitivity. Both axes are log scal

From Table 3, it is clear that for trace-sensitive anal-
ysis of large programs, both trace optimization and com-
pressed representation are required, otherwise memory us
age is prohibitively large on even medium-sized programs
such agarfile. Analyzingtarfile withoutthe optimiza-
tions consumes over 4 GB of memory. Trace optimization
alone reduces this to a still large 1.75 GB, while increas-
ing running time by 46%, from 31.36 seconds to 45.90 sec-
onds. Combining trace optimization and compressed rep-
resentation further reduces the memory usage to 0.69 GB,
while increasing the running time by only 14%, from 45.90
seconds to 52.38 seconds. Combining these two optimiza-
tions makes it feasible for trace-sensitive analysis tdyaiea
bitTorrent andstd. 1lib.

Running time. Figure 4 and Table 3 show the running
time of the four flow- and precise-type-sensitive analysis
variants, using compressed representation, and where app
cable, trace optimization. For example, on BitTorrent with
over 20K LOC, our flow-sensitive, precise-type-sensitive,
and trace-sensitive analysis that uses compressed raprese
tation takes 20 minutes and 12 seconds.

Here again, the trace-sensitive analysis is the most pre-
cise feasible variant, as the trace-sensitive variant aitha
clones takes almost 1 hour to complete Rartran2003,
and times out (exceeds 4 hours) et Torrent andstd.
1ib. Without extra clones, the trace-sensitive analysis takes
less than an hour to analyzed. 1ib. with over 50K LOC.
Running times of type-insensitive and basic-type-seresiti

alias analysis variants are not presented because in our exprecisely,

perience, increasing type sensitivity does not signifigant

increase alias analysis time, especially when compared to

the benefits of precise type sensitivity. Table 1 shows this:
the largest slowdown caused by precise type sensitivity
is eleven seconddtml - Indexing, trace- and precise-
type-sensitive vs. trace- and basic-type-sensitive rgria

without with

refinement| refinement
MAASS, all variables 15.3 15.1
MAASS, locals and parameters 4.7 2.8
number of AST nodes 5021 5619

Table 4. Precision of alias analysis akml - Indexing,
with and without refinement. 12 refinement steps are per-
formed before a fixed-pointis reached. MAASS is the mean
average alias set size of variables in specialized funstion
computed as described in text.

and there are cases where precise type sensitivity actually
speeds alias analysis up.
Table 3 shows the data used to generate Figures 3 and 4.

3.3 Effect of refinement on alias analysis

In this section, we determine the effect of refinement on
alias analysis, and show that refinement is worthwhile. To
do this, we perform the following experiments on a subset
of programs from Section 3.1:

¢ \We measure the effect of refinement on the precision of
_alias analysis results.

¢ \We measure how the program size varies as a function
of the bound on the number of iterations of analysis and
refinement.

¢ We measure how the overhead of the programs trans-
formed by InvTS varies as a function of the bound on
the number of iterations of analysis and refinement.

¢ \We measure how the time taken to transform these pro-
grams varies as a function of the bound on the number of
iterations of analysis and refinement.

Effect of refinement on precision of alias analysis.To
demonstrate how the precision of alias analysis results
changes due to refinement, we performed alias analysis on
1xml - Indexing program, without refinement, and then
with refinement until a fixed point was reached. This resulted
in 7 functions being specialized into 19 functions. We com-
pute an average alias set size for each variable used in these
functions, by averaging the alias set size for that variable
all of the AST nodes in the functions. We then compute the
mean average alias set size (MAASS) by taking the mean
of the average alias set size for a set of variables. We com-
pute the MAASS first over all variables, then over a subset
consisting of only local variables and formal parameters.
Table 4 presents the results of this experiment. Using
refinement introduced 598 new AST nodes. Adding these
nodes allowed the refined functions to be analyzed more
with the MAASS decreasing from 15.3 to 15.1.
When only local variables and parameters are considered,
the MAASS was reduced more substantially, from 4.7 to 2.8.
This shows that refinement is effective at decreasing ths ali
set size of local variables and parameters.

Effect of refinement on program size. Refinement special-
izes functions before alias analysis is performed, so it may



context-insensitive

context-sensitive

AST unoptimized uncompressed| compressed unoptimized uncompressed  compressed

Program LOC Nodes|| time memory time memory | time memory || time memory time memory| time memory
chunk 172 493 1.01 31.06 1.28 31.04 258  39.07 3.10 39.07
bdb 609 2026 1.20 33.25 1.48  32.03 452 4171 5.07 40.85
pickle 1392 4239 1.65 76.20 1.98 36.51 10.04 121.43| 10.11 49.48
tarfile 1796 7877 not applicable 3.23 1964.09 4.16 267.70| notapplicablg 20.69 2384.95| 23.11 341.45
Fortran 6503 15955 11.94 928.16| 12.77 157.25 77.71 1142.45| 80.97 188.16
bitTorrent 22423 102930 63.01 8134.75| 90.01 1198.93 298.86 11555.96| 330.44 1574.81

std. lib. 51654 420654 out of memory

trace-sensitive

317.44 2434.01

out of memory | 1519.68 3726.77

trace-sensitive with extra clones

AST unoptimized uncompressed| compressed unoptimized uncompressed  compressed
Program LOC Nodes|| time memory time memory | time memory || time memory time memory | time memory
chunk 172 493 409 4174 497 39.16 565 39.13 7.10 4226 8389 39.26] 10.37 39.15
bdb 609 2026 7.60 4376 7.61 41.40 8.76  40.18| 12.90 49.4¢ 1391 46.15| 16.08 40.85
pickle 1392 4239 11.12 291.61 13.94 88.60( 15.97 59.74 (| 21.11 812.11 34.69 294.06| 43.13 162.91
tarfile 1796 7877 31.36 4203.29 45.90 1751.84| 52.38 688.53|| outof memory 236.76 8631.85| 283.45 2570.28
Fortran 6503 15955(| 123.65 3018.5F 262.93 1202.04| 298.23 627.41|| out of memory 2687.26 8645.29|3389.17 3602.21
bitTorrent 22423 102930|| out of memory| 1068.36 10618.39|1211.87 2909.11|| out of memory out of time out of time
std. lib. 51654 420654|| out of memory|  out of memory |3401.69 13124.52|| out of memory out of time out of time

Table 3. Running time (in seconds) and maximum memory usage (in MByier flow- and precise-type-sensitive alias
analysis variants. “unoptimized” means that trace opttidmn and compression are both disabled; trace optimizasio
enabled for all other trace-sensitive variants; “not aggilie” means that trace optimization is not applicableaodrinsensitive
variants; “out of memory” means that the memory usage of tiadyais exceeded 16 GB; “out of time” means that its running

time exceeded 4 hours.

increase the size of the program that the alias analysiohas t tion of that bound. The experiments were performed using
analyze. We quantify this increase by measuring the numberthe same setup as the experiments in Section 3.1.

of AST nodes after refinement as a function of the bound on

Figure 6 presents the results. For each program, overhead

the number of iterations of analysis and refinement. Figure 5 decreases as the bound increases, up to the point where a

shows that for all programs from Section 3.1, the program

fixed-point is reached, i.e., further iterations of analyesnd

size never increases more than 11%. For programs from Sec+efinement do not specialize any more functions.Jzal -
tion 3.2, refinement increased the number of AST nodes of Indexing andnftp, this happens when the bound is higher
the analyzed program by an average of 13.6%; the maximumthan 12 and 7, respectively. The overhead reduction is in

increase was 28.6%, for Python standard library.
6000 T T T T
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Figure 5. Number of AST nodes, as a function of the bound
on the number of iterations of analysis and refinement.

Number of AST nodes in program
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Effect of refinement on optimization. The increase in pro-

some cases quite significant, such as the almost 20% reduc-
tion for 1xml - Indexing; the extra transformation time
due to refinement never exceeds 10 seconds, i.e., 12% of
the total transformation time. Thus, for InvTS, refinement i
clearly worthwhile, especially since the relatively mimer
finement cost is incurred just once, but the benefits of lower
overhead are reaped every time the transformed program is
executed.

3.4 Prevalence of recursion, eval, and exec

Recursion. Trace sensitivity is a good fit for programs
where deeply nested function calls are common, and recur-
sion is not prevalent. To determine how common recursion
is in Python programs, we looked at all Python programs
(.py files) on an Ubuntu 8.10 system, a total of 7,740 pro-
grams, including Python 2.4 and 2.5 standard libraries, the
zope framework, and many other utilities and libraries.

We statically analyzed these programs to detect the pres-

gram size due to refinement potentially increases the aliasence of recursion that involves only calls to functions
analysis time. To determine whether the cost of refinementand calls to methods througtelf, analogous tcthis in

is worthwhile, we measured (1) how the overhead of the pro-
grams transformed by InvTS in Section 3.1 varies as a func-
tion of the bound on the number of iterations of analysis and
refinement, and (2) how the total transformation time (in-

cluding analysis time) for these programs varies as a func-

Java. Specifically, we parsed the program and constructed
a call graph whose nodes are fully qualified function or
method names, and with call edges induced by function
calls and method calls througtelf, i.e., calls of the form
self.m(...) (thisis a call to the methad m, whereC is the



o—o Ixml - Valid Parent »—_Ixml - Indexing for calls toeval or exec. Out of the 974 programs analyzed,

o—C Ixml - No Shared Child 5= nftp only 101 use these constructs outside of the Python litgarie
120 ‘ ‘ ‘ ‘ ‘ ‘ we reimplemented. Our reimplementations do notaisel
__100f h ] or exec. Thus, for the purposes of our type analysis, calls
;5: 80— ] to eval or exec occurred in approx. 10% of the programs
8 60 1 surveyed.
g" aof 1 Using our type analysis to determine all possible targets
Wp—o—o—"0—ooo o o at function call sites and method call sites, we statically
o5 s : 3 5 o 5 4 detected all direct and indirect usessefl andexec in the
Bound on # of iterations programs from Sections 3.1 and 3.2. We manually inspected
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uses of these constructs to determine whether the set of

SNV accessible variables is restricted. We found that anly
I ] useseval without restricting the set of accessible variables;
M Fortran2003, InvTS, andstd. 1ib. useeval but restrict

the set of accessible variablefjunk, pickle, tarfile,
S all 1xm1 programsnftp, andbitTorrent do not use these

2 4 6 8 10 12 14 constructs at all. This confirms that use éfal or exec

Bound on # of iterations . I . . .
: _ with no restriction on the set of accessible variables is rar
Figure 6. Runtime overhead of transformed programs in python programs.

and total program transformation time, using precise-type
sensitive alias analysis, as a function of the bound on the
number of iterations of analysis and refinement. 4. Related work

Alias analysis and the related problem of points-to analy-
sis have been studied extensively (Hind 2001), mostly for
statically typed languages, such as C and Java. Many posi-
tions on the spectrum of trade-offs between precision and
scalability have been explored: flow-insensitive, context
insensitive analyses, such as (Andersen 1994; Steensgaard
1996); context-sensitive, flow-insensitive analyseshsas
(Foster et al. 2000; Fahndrich et al. 2000; Milanova et al.
2005); context-insensitive, flow-sensitive analyseshsas
(Choi et al. 1993; Goyal 2005); and context-sensitive, flow-
sensitive analyses, such as (Vitek et al. 1992; Emami et al.
1994).

There have been some studies on these trade-offs in the
context of statically typed languages. For example, flow sen
sitivity in analysis of C programs provides little improve-

ent in precision for some applications (Hind and Pioli

001; Mock et al. 2002) but is important in others (Hard-
ekopf and Lin 2009); similarly, context sensitivity proeid
little precision benefit in analysis of some C programs (Ruf
1995) but was significant for some Java applications (Lkota
and Hendren 2006).
Eval and exec. Uses ofeval functions andexec state- Our analysis is trace-sensitive, a form of context sensitiv
ments (which are similar teval functions, but do notreturn ity based on cloning of functions. Guyer and Lin’s client-
values) cause the type of all accessible variables to becomedriven pointer analysis for C also uses cloning in providing
top. This can be detrimental to the precision of the type anal- a customizable level of context sensitivity to client aisaly
ysis unless the calls teval or exec contain a scope argu-  (Guyer and Lin 2005). Significant differences between their

=
o o
[==)

[ ]
==}

i
o

Transformation time (seconds)
[ee]
o

enclosing class). The call graph was searched for strongly
connected components (SCCs), which indicate recursion.

This analysis detected recursion in 461 out of 7,740 pro-
grams analyzed. Specifically, 738 out of a total of 264,080
functions are in strongly connected components.

Since this analysis may miss some recursions, and it may
report recursions that rarely (or never) occur during execu
tion, we also performed runtime detection of recursion on a
subset of the programs. Specifically, we ran the programin a
way that recorded the call history, and detected cyclesan th
call history; these cycles indicate recursion. Out of thel@,
programs, we selected ones with a history of more than 50
calls when run without arguments. This eliminated programs
that trivially terminate, and left 974 programs.

Analysis of the call histories detected recursion in 66 of
these 974 programs. Our static analysis detected recursio
in 64 of these 66 programs; this is an encouraging level of
agreement. If the programs surveyed are representative, ou
results show that the use of recursion in Python programs is
limited.

ment that restricts the set of accessible variables. work and ours are the target language (C vs. Python) and the
We found that 237 out of the 7,740 programs agel or client analyses considered (error detection vs. optintint

exec, and only 39 of them do not restrict the set of accessible Lattner et al. use a form of context sensitivity that collegs

variables. strongly connected components and then inlines everything
To determine how frequentlgval or exec are called, (Lattner et al. 2007). Their analysis is for C and is flow-

we performed an experiment similar to the one for runtime insensitive, hence not appropriate for the optimizatioes w
recursion detection, except that we searched the callfésto  consider as clients.



Sridharan and Bodik’s analysis (Sridharan and Bodik have different types at different program nodes), does not
2006) also collapses strongly connected components in asupport union types, and does not track contents of collec-
context-sensitive points-to analysis for Java, but thdyana tions. The type system and type inference algorithm for a
sis mutually refines call graphs and points-to information, subset of JavaScript in (Anderson et al. 2005) also has these
while also filtering out unrealizable paths based on queried limitations; in addition, it does not support field and metho
variables, making the analysis more scalable than possiblenames as strings, functions as expressionsyat. Local-
before. The analysis is still flow-insensitive and does not ized Type Inference (Cannon 2005) for Python cannot infer
handle many dynamic features that we handle, and thus stilltypes of method and procedure arguments automatically, and
leaves much to be desired in precision and scalability for does not support single-value types, range types, or union
optimization of dynamic languages. types. DiamondBack (Furr et al. 2009), a static type infer-

We believe that trace-sensitive analysis is especially ence system for Ruby, supports intersection types, union
suited for optimizations, for both dynamic languages and types, single-value types, and parametric polymorphisiin, b
static languages. it does not support analysis efral or method calls when

Our work is the first to assess the impact of flow sen- the target object's type is unknown. Our precise types for
sitivity, context sensitivity, and type sensitivity on pre Python are sketched briefly in (Gorbovitski et al. 2008), but
sion, memory usage, and running time of alias analysis for it does not describe handling of dynamic language features,
a dynamic object-oriented language, and evaluate the ef-generalization during type analysis, and refinement betwee
fectiveness of these analyses for program transformationsanalysis.
and optimizations. We give a simple example that shows  Our static type analysis plays two important roles. First,
flow-sensitivity and type sensitivity are essential for @-pr  type information is used to statically determine dynamse di
cise analysis and effective optimization, whereas a contex patch, which is crucial to obtain a precise control flow graph
insensitive or context-sensitive analysis over an SSAerepr (Bacon and Sweeney 1996; Sreedhar et al. 2000). Second,
sentation (Hasti and Horwitz 1998; Bravenboer and Smarag-type information is used to eliminate alias pairs that are
dakis 2009) does not give the precision needed for optimiza-impossible due to type mismatches. Type information has
tion. There are fast and scalable context-sensitive butflow been used for the latter purpose in alias analysis for stati-
insensitive analyses (Bravenboer and Smaragdakis 2009)cally typed languages, e.g., Modula-3 (Diwan et al. 1998)
but flow- and context-sensitive analysis of dynamic lan- and Java (Lhotak and Hendren 2003), but it does not signifi-
guages presents unique challenges, e.g., significantfgrlar cantly help there, because most statements that wouldecreat
memory footprint and many more strong updates. such alias pairs are rejected by the type checker. In cdntras

Previous work on alias analysis for dynamic object- our experiments show that static inference of precise types
oriented languages does not handle the breadth of dynamigrovides significant benefits for alias analysis for dynamic
features that we handle. For example, the alias analysis forlanguages.

PHP in (Jovanovic et al. 2006; Balzarotti et al. 2008) does  Storing all of the alias sets for a program can consume
not handle first-class functions (which PHP does not sup- a lot of memory, especially for flow-sensitive, context-
port) or eval statements, and does not compare different sensitive analyses. We reduce the memory requirements us-
variants of the analysis. Jang and Choe (Jang and Choeng a compressed representation that exploits the simyilari
2009) handles only a simple subset of JavaScript. between alias sets at adjacent nodes in the CFG. Another

Control flow analysis for dynamic languages has been approach is to represent alias sets (or points-to sets)aymb
used for Ajax intrusion detection (Guha et al. 2009). In that ically, e.g., using BDDs (Lam et al. 2005). Unfortunately,
work, an interprocedural CFG for a JavaScript program is BDDs are slow for flow-sensitive analyses, because of the
constructed using-CFA and then transformed into a request  large number of strong updates to pointer information (Hard
graph to build an intrusion-detection proxy for the server ekopf and Lin 2009). Hardekopf et al. overcome this in a
that the program communicates with. Similar to our type partially symbolic, semi-sparse context-insensitivenper
analysis, their analysis tracks constant strings andgstrin analysis for C (Hardekopf and Lin 2009). Extending and
operations and allows static evaluatioreehls on constant  evaluating those ideas in the setting of dynamic languages i
strings. They make assumptions regardiévgls that we a direction for future work.
do not make:evals return only objects that do not have
methods, an@vals do not write into variables that are not References
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