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Abstract. Occluding contour (OC) plays important roles in many computer vi-
sion tasks. The study of using OC for visual inference tasks is however limited,
partially due to the lack of robust OC acquisition technologies. In this work, ben-
efit from a novel OC computation system, we propose applying OC information
to category classification tasks. Specifically, given an image and its estimated oc-
cluding contours, we first compute a distance map with regard to the OCs. This
map is then used to filter out distracting information in the image. The results are
combined with standard recognition methods, bag-of-visual-words in our exper-
iments, for category classification. In addition to the approach, we also present
two OC datasets, which to the best of our knowledge are the first publicly avail-
able ones. The proposed method is evaluated on both datasets for category clas-
sification tasks. In all experiments, the proposed method significantly improves
classification performances by about 10 percent.

1 Introduction

Occluding contour (OC) is well known to play important roles in many vision tasks [1,
2]. Unlike regular photograph, an occluding contour image removes the effects of il-
lumination, texture, and appearance while maintaining important edge and silhouette
information. In computer vision, researchers have been seeking to develop new contour-
based visual inference algorithms for many years [4]. In many visual inference tasks, a
big challenge is to locate foreground object boundaries from the sea of all kinds of edge
contours. Despite the known importance of OC, acquiring high quality OC in complex
environment has been a long-standing challenging task [2].

In this paper we study the method and efficacy of using OC information for visual
category classification, which is among the most important vision tasks [17]. We first
use a novel multi-flash based OC acquisition device to get the initial OC estimation.
This step provides us occluding contours that are more accurate than those from other
existing methods. Once the OC data is ready, they can be used to improve visual infer-
ence tasks such as category classification.

The basic idea is to use occluding contours for feature filtering. Similar strategy
appeared in [3]. Regions that are close to an OC are more likely to contain valuable
shape related information and less pruning to distracting texture noises. Therefore, OC
can be used to trim local visual features and then prepare a “purified” shape-related
feature set for high level vision tasks such as visual recognition, detection, tracking,
etc. Specifically, for an image and its estimated OC image, a distance map is generated
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from the occluding contours. The distance map is used to filter out distracting local
features in the image. The improved feature set is then combined with standard bag-of-
visual-words model for visual category classification.

Another contribution of this paper is the benchmark datasets, which are the first such
datasets to the best of our knowledge. We designed two datasets with both color images
and OC images. The first dataset simulates the ideal occluding contours by manually
picking OCs from normal edges maps (Canny edges [5]). In contrast, the occluding
contours in the second dataset are automatically computed from the OC-Cam intro-
duced in Section 2. We conducted category classification experiments on both datasets.
In all experiments, the OCs information in the proposed method could significantly help
improve classification performances.

The rest of the paper is organized as follows. Section 1.1 summarizes related work.
Then, we introduce the OC acquisition device in Section 2. After that, the proposed
OC-based category classification method is described in Section 3. Section 4 presents
the experiments. Finally, Section 5 concludes the paper.

1.1 Related Work

As mentioned above, OC image could eliminate many distracting effects while main-
taining important edge and silhouette information. To acquiring OCs, traditional pas-
sive image processing methods are often not robust enough to classify scene edges (e.g.,
occluding contours vs. material or texture edges) [8]. In particular, when foreground ob-
jects are surrounded by complicated background, it would be highly difficult to identify
the occlusion boundaries.

Recent advances in computational photography have suggested that active illumi-
nation techniques can utilize shadows to effectively extract occlusion boundaries. For
example, aerial imagery techniques can first detect shadows in a single intensity im-
age and then infer building heights by assuming the ground geometry and surface re-
flectance models [11-13]. It is also possible to strategically cast shadows onto scene
objects to recover their geometry [19]. In our work, shadows of objects are produced by
multi-flash camera, which we refer readers to [18] for a complete review of this device.

In computer vision, researchers have been seeking to develop contour-based visual
inference algorithms for many years. For example, contour information has been widely
used in object recognition and localization tasks [4, 20, 7, 16, 15]. Most previous studies
either assume that shapes of target objects are known, or work directly on the contours
obtained from low- or middle-level edge extraction processes. Our work is different in
that we explicitly use occluding contours achieved through the hardware directly.

Among many visual inference tasks, we choose visual category classification to
demonstrate the effectiveness of using OCs. Category classification is an important re-
search topic and has been attracting a large amount of research attention recently [17].
Our method is closely related to the bag-of-visual-words model [21, 10], which have
been demonstrated excellent performance on several benchmark datasets [23,22]. The
proposed method can be viewed as an extension of these methods in the aspect of fea-
ture selection.
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Fig. 1. The Occluding Contour Camera (OC-Cam) system design. (a) An OC-Cam uses one high
resolution infrared camera and a pair of high speed visible light cameras. They are surrounded by
multiple rings of controllable infrared LED lights. (b) The infrared camera and the LEDs form a
multiple-flash camera. (c) The infrared camera and the visible camera pairs form a hybrid speed
camera.
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Fig. 2. Examples of occluding contours achieved by the OC-Cam system. Left: original normal
images. Middle: corresponding OC images. Right: result of Canny edges [5] for comparison.

2 Extracting Occluding Contours

In this section we briefly introduce the occluding contour acquisition devices used in
this study and the postprocessing steps. It is worth noting that both acquisition and
postprocessing are fully automatic.

2.1 Occluding Contour Camera

Our solution for acquiring the OC data is to construct a novel Occluding Contour Cam-
era (OC-Cam). The OC-Cam extends the previously proposed multi-flash camera that
composes of a single image sensor with four flashes evenly distributed about the cam-
era’s center of projection, as shown in Figure 1. To acquire the contour data, the multi-
flash camera takes successive photos of a scene, each with a different flash turned on.
The location of the shadows generally abuts depth discontinuities and changes along
with the flash position. All the depth edge pixels hence can be detected by analyzing
shadow variations. For example, turning on the left flash will result in the shadows to
the right of the depth edge. We can then traverse the image horizontally and identify the
pixels that transition from the non-shadow region to the shadow region.

The major limitation of the multi-flash camera is that it is difficult to determine the
proper camera-flash baseline, i.e., the distance the flash lies from the center of projection
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Fig. 3. Left: original normal images. Middle: original occluding contours. Right: results after
postprocessing.

of the camera. For example, the shadows may appear detached from the boundary when
the baseline is too large or may disappear when the baseline is too small. Since our goal
is to acquire the occluding contours for various types of objects, it is important that
we dynamically adjust the flash baseline, e.g., for acquiring both the internal and the
external occluding contours of the object.

To achieve this goal, our OC-Cam mounts multiple rings of flashes around the cen-
tral camera to support dynamic flash-camera baselines. In our implementation, we syn-
chronized the LED flashes and the central viewing camera using the APIs provided
by the PointGrey Research. The APIs allows the programmer to configure the camera,
trigger image capture and also gives the programmer access to general purpose regis-
ters on the camera that can act as input/output ports depending on the configuration.
Specifically, we use these registers as a four bit output port to send signals to the flash
hardware. During the capture process each shot will take one picture at the given frame
rate while at that time one of the flashes is illuminating the scene. For moderate frame
rates such as twenty frames per second, synchronizing the flash sequence with the shut-
ter is extremely important.

In order to control multiple rings of flashes with the same four bit port architecture,
we further modify the control hardware: instead of using each bit to directly control a
given flash, all flashes will be triggered sequentially from one bit. To do this, the pulse
from one bit on the port will increment a counter. The output of the counter is fed into
a decoder that indexes each flash. Therefore, the binary output from the counter can
select an output line on the decoder which triggers the appropriate flash. We then use
another bit to control which ring of flashes is used. Several images from the system are
shown in Figure 2.

2.2 Postprocessing

The original OC image contains noises and irrelevant broken lines, hence a postprocess-
ing is needed for further usage. First, an image filter with certain threshold (100/255 in
gray level in the experiments setting) is convolved with the original image to produce
binary image where black pixels indicate edge and white pixels indicate irrelevant back-
ground. Then the morphologic operators, closing and opening, are conducted on the
image successively. Intuitively, closing joins the broken lines into connected line com-
ponents (2x2 neighborhood pixels in the experiment setting) while opening removes
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those connected components less than certain amount of pixels in area (100 pixels in
the experiments setting). Figure 3 shows some results of the postprocessing.

3 Category Classification Using Occluding Contours

In this section we explore how to bring the rich shape information carried in OCs into
category classification tasks. The overview of the process is shown in Figure 4.

3.1 Feature Filtering Using Occluding Contours

We propose to advance the state-of-the-art visual recognition algorithms by exploring
the role of OCs as a feature filter. Specifically, OCs can help high-level vision tasks
to get “purified” shape related features. This “purified” feature set in turn leads to im-
proved object representation.

Let an input image be I : A — [0, 1], where A C R? is the grid I defined on. The
feature extraction of I is represented by a process F(I), which results in a set of local
features. Without loss of generality, we denote the feature set as

F(I) ={(x; £:)}, (1

where x; € R? indicates the position of the it" feature and f; € R™f indicates the n f-
dimensional feature descriptor. Specifically, in our experiment SIFT [14] is used, such
that ny=128.
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Fig. 5. Use occluding contours for feature filtering. (a) The original image. (b) The original image
with local features. (c) The OC image. (d) The distance map. (e) Original image with filtered local
features.

The OC image of I is then denoted as I,. : A — [0, 1]. Our task is to use I, to trim
F(I). A natural strategy is to use I, directly by eliminating any feature (x;,f;) such
that x; is within a distance of an OC pixel. Precisely, the new feature set G is defined
by:

g(f(I)a Imask) = {(Xlafz) S f(I) : Imask(xi) < T}a (2)

where Ip,q5% () is the distance transform map of I,.(x) and 7 is the distance threshold.
In particular our experiment uses Euclidean distance. In the new feature set G, feature
descriptors will stay close to occluding contour therefore provide better description of
the target objects. An example of the filtering process is shown in Figure 5.

3.2 Category Classification Using Bag-of-Visual-Word Model

We follow the idea of Bag-of-Visual-Word approach [21] to represent the images as his-
togram of visual words. The independent features are generated by SIFT 128-dimensional
feature descriptor. After that the alphabet of visual words, i.e. codewords dictionary, is
formed by k-means clustering. The new image thus could be represented by histogram
of visual words in the alphabet. The main difference here is that we apply the OC infor-
mation to filter out irrelevant features whenever possible, as shown in Figure 4.

The discriminative method Support Vector Machine (SVM) is used in our approach
as classifier. For implementation, we choose the LibSVM package [6] and a Gaussian
kernel defined by

[lsi —x|I?

K(s;,x) = exp ( 572 ) , 3)
where s; denotes support vectors, X represents the feature representation (histogram of
visual words) of the input image and o is the covariance parameter for the Gaussian
kernel.

4 Experiments

To evaluate the proposed method, two datasets are created containing both color images
and corresponding OC images. The proposed method is conducted on both datasets
in comparison with the original bag-of-visual-word method. In the following, we use
BOW as abbreviation for the bag-of-visual-word and BOW+OC for the proposed method.
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Fig. 6. Example images misclassified by the standard BOW but correctly classified using our
proposed BOW+OC method.

Table 1. Category classification experiments on the Category-16 dataset.

Method BOW BOW+OC
Classification rate (%)|43.57+£1.97|49.824+2.27

4.1 Synthetic Occluding Contours

We first create a dataset containing 16 categories selected from the Caltech 256 dataset [9].
Each of the 16 categories contains 20 images. For each image in the dataset, we gen-
erate a “simulated” occluding contour image by first using Canny edge detector and
then manually removing non-occluding contours. In other words, for each image I in
the dataset, there is a corresponding OC mask I,.. In the rest of the paper we call this
dataset Category-16.

To demonstrate how OCs can help with category classification tasks, both BOW and
BOW+OC frameworks are conducted on the Category-16 dataset. For the experiment,
we randomly divide the dataset into training and testing sets, with 10 of total 20 images
per category for training and the rest for testing. The experimental result is summarized
over 5 random splits. The average classification rate is listed in Table 1. It shows that
OC, even when used in a very simple way, can substantially improve recognition rate.
Fig. 6 shows several examples that are misclassified by BOW but correctly classified by
BOW+OC.

4.2 Real Dataset with Complicated Background

Another dataset we build contains five categories: car, cow, cup, dog and horse. Each
of the five categories contains 24 images (accompanied with OC images) taken from
six different objects. For every object, images are shot from four poses: 0°, 90°, 180°
and 270° horizontal rotating from the default pose. For each image in the dataset, we
generate the occluding contour image from the device introduced in Section 2. There-
fore every image I in the dataset has a corresponding gray level OC image I,.. In the
rest of the paper we call this dataset Category-5. Figure 7 shows example images of this
dataset. We will make this dataset publicly available after publishing this paper.
Similar to the experiment on the synthetic dataset, both BOW and BOW+OC frame-
works are conducted on the Category-5 dataset to demonstrate how OCs can help with
the category classification tasks. To make experiment result consistent, we still ran-
domly divide the dataset into training and testing sets, with 12 of total 24 images per
category for training and the rest for testing. The experimental result is summarized
over 100 random splits. The average classification rate is listed in Table 2. The result
has shown that OC method has significant improvement in recognition rate: around
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Fig. 7. Example images of the Category-5 OC dataset, six objects per class and one image pair
(color image and OC image) per object.

Fig. 8. Example images misclassified by the standard BOW but correctly classified using our
proposed BOW+OC method.

10%. Examples in Figure 8 show some examples that are misclassified by BOW but
successfully classified by BOW+OC.

Table 2. Category classification experiments on the Category-5 dataset.

Method BOW BOW+OC
Classification rate (%)|56.17+7.78|66.50+8.22
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Fig. 9. Example images misclassified by the BOW+OC but correctly classified using standard
BOW method.

The above two experiments show clearly that OC information can be used to im-
prove the performance of visual classification. It is also worth studying when the pro-
posed method “hurts” the performance. In Figure 9 we show some examples which are
misclassified by BOW+OC but successfully classified by BOW. One possible reason
of misclassification by BOW+OC could be that sometimes it over-eliminates feature
descriptors from the image. The setting of 7, i.e. the distance threshold, currently is
determined empirically. This problem becomes noticeable when the input images are of
certain types: background is solo-colored, background is uniformly textured, etc. These
types share one property in common: feature descriptors are aggregated close to the
object and are little scattered around the background in the OC image. Receiving those
images as input, the BOW+OC method might eliminate some valuable feature descrip-
tors around the object hence reduce the recognition rate while on the other hand standard
BOW method will benefit from keeping all features. Though the limitation it appears in
these scenarios, BOW+OC actually satisfied our expectation: when the standard BOW
method can handle object classification in uniform background but suffer from compli-
cated background, BOW+OC performs much better recognition rate according to the
experimental results above.

5 Conclusions and Future Work

This paper investigates using the shape information from Occluding Contour (OC) to
improve visual inference tasks, with focus on category classification. To this end, a new
method is proposed that uses occluding contours as a feature filter to improve the im-
age representation used in category classification. The improved representation is then
combined with the bag-of-visual-words model for classification tasks. The proposed
method clearly improves the performance on two datasets.

The applications of occluding contours are by no means limited to category classi-
fication. In fact, we expect the study in this paper to motivate rich future work toward
different fields in computer vision, such as object localization. The datasets presented
in this paper can therefore serve as benchmarks for future study as well. Aside from
application of OC information in visual inference, we are also interested in improving
the process of OC acquisition.
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Yu are supported under NSF Grant I[IS-CAREER-0845268 and an Air Force Young
Investigator Award.
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