SPAA: Stealthy Projector-based Adversarial Attacks on Deep Image Classifiers

- Supplementary Materials -

Bingyao Huang*

Haibin Ling ${ }^{\dagger}$

1 Introduction

In this supplementary material, we provide additional ablation studies in $\S 2$. Then, we present more qualitative comparisons of stealthy projector-based adversarial attacks in § 3 .

The source code, dataset and experimental results are made publicly available at https://github.com/BingyaoHuang/SPAA.

2 Additional Ablation Studies

In this section, we provide additional ablation studies on different stealthiness loss functions in \S 2.1.

2.1 Different stealthiness loss functions

In Tab. 1, as a supplementary of the main paper's Table 1, we show more SPAA's projector-based attack results when using different stealthiness loss functions (main paper Equation 9). We compare three stealthiness loss functions: $L_{2}, \Delta E$ and $\Delta E+L_{2}$. (1) For attack success rates (averaged over three classifiers), L_{2} has the highest attack success rates when $d_{\mathrm{thr}} \leq 9$ and $\Delta E+L_{2}$ provides the highest attack success rates when $d_{\mathrm{thr}}>9$; (2) For perturbation sizes (averaged over three classifiers), L_{2} gives the largest perturbations for all d_{thr}, and $\Delta E+L_{2}$ obtains the lowest perturbations when $d_{\mathrm{thr}}=5$ and ΔE has the lowest perturbations when $d_{\mathrm{thr}}>5$.

3 AdDITIONAL QUALITATIVE COMPARISONS

We show more qualitative comparisons as a supplementary of the main paper Figures 4-5. We show more targeted projector-based attacks in Fig. 1 to Fig. 13 and untargeted attacks in Fig. 14 to Fig. 26. For each figure, the $1^{\text {st }}$ to the $3^{\text {rd }}$ rows are our SPAA, PerC-AL + CompenNet++ [2,6] and One-pixel DE [3], respectively. The $1^{\text {st }}$ column shows the camera-capture scene under plain gray illumination. The $2^{\text {nd }}$ column shows inferred projector input adversarial patterns. The $3^{\text {rd }}$ column plots model inferred camera-captured images. The $4^{\text {th }}$ column presents real captured scene under adversarial projection i.e., the $2^{\text {nd }}$ column projected onto the $1^{\text {st }}$ column. The last column provides normalized differences between the $4^{\text {th }}$ and $1^{\text {st }}$ columns. On the top of each camera-captured image, we show the classifier's predicted labels and probabilities. For the $2^{\text {nd }}$ to $4^{\text {th }}$ columns, we also show L_{2} norm of perturbations. Note that for One-pixel DE, the $3^{\text {rd }}$ column is blank because it is an online method and no inference is available.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In $C V P R$, pages 770-778, 2016.
[2] Bingyao Huang and Haibin Ling. Compennet++: End-to-end full projector compensation. In ICCV, 2019.
*College of Computer and Information Science, Southwest University, Chongqing, China. E-mail: bhuang@swu.edu.cn
${ }^{\dagger}$ Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA. E-mail: hling @cs.stonybrook.edu
[3] Nicole Nichols and Robert Jasper. Projecting trouble: Light based adversarial attacks on deep learning classifiers. In AAAI Fall Symposium: ALEC, 2018.
[4] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2015.
[5] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In CVPR, pages 2818-2826, 2016.
[6] Zhengyu Zhao, Zhuoran Liu, and Martha Larson. Towards large yet imperceptible adversarial image perturbations with perceptual color distance. In CVPR, pages 1039-1048, 2020.

Table 1: Quantitative comparison of different stealthiness loss functions and perturbation thresholds of our SPAA. Results are averaged on 13 setups. The four big sections show our SPAA results with different thresholds for perturbation size d_{thr} and stealthness loss as mentioned in the main paper Alg. 1. The $4^{\text {th }}$ to $6^{\text {th }}$ columns are targeted (T) and untargeted (U) attack success rates, and the last four columns are stealthiness metrics.

$d_{\text {thr }}$	Stealthiness loss	Classifier	T. top-1 (\%)	T. top-5 (\%)	U. top-1 (\%)	$L_{2} \downarrow$	$L_{\infty} \downarrow$	$\Delta E \downarrow$	SSIM \uparrow
$d_{\text {thr }}=5$	L_{2}	Inception v3 [5]	41.54	67.69	84.62	6.273	5.101	2.588	0.937
		ResNet-18 [1]	73.08	90.00	100.00	6.304	5.158	2.701	0.940
		VGG-16 [4]	69.23	83.85	100.00	6.629	5.428	2.824	0.934
		Average	61.28	80.51	94.87	6.402	5.229	2.704	0.937
	ΔE	Inception v3 [5]	32.31	65.38	76.92	5.951	4.768	2.236	0.944
		ResNet-18 [1]	57.69	79.23	92.31	5.828	4.698	2.269	0.949
		VGG-16 [4]	46.92	79.23	92.31	6.464	5.215	2.493	0.938
		Average	45.64	74.62	87.18	6.081	4.893	2.333	0.944
	$\Delta E+L_{2}$	Inception v3 [5]	33.85	65.38	69.23	6.021	4.832	2.282	0.942
		ResNet-18 [1]	54.62	76.92	92.31	5.842	4.709	2.280	0.950
		VGG-16 [4]	52.31	76.92	92.31	6.243	5.028	2.407	0.941
		Average	46.92	73.08	84.62	6.036	4.856	2.323	0.944
$d_{\text {thr }}=7$	L_{2}	Inception v3 [5]	67.69	84.62	100.00	7.603	6.199	3.135	0.904
		ResNet-18 [1]	92.31	94.62	100.00	7.786	6.396	3.349	0.907
		VGG-16 [4]	83.08	97.69	100.00	8.117	6.668	3.435	0.899
		Average	81.03	92.31	100.00	7.835	6.421	3.306	0.903
	ΔE	Inception v3 [5]	53.08	83.08	92.31	7.272	5.806	2.586	0.913
		ResNet-18 [1]	88.46	93.08	100.00	7.426	5.946	2.686	0.913
		VGG-16 [4]	80.00	93.85	100.00	7.755	6.219	2.818	0.906
		Average	73.85	90.00	97.44	7.484	5.990	2.697	0.911
	$\Delta E+L_{2}$	Inception v3 [5]	56.15	80.77	92.31	7.285	5.826	2.612	0.913
		ResNet-18 [1]	90.77	94.62	100.00	7.381	5.914	2.681	0.914
		VGG-16 [4]	80.77	94.62	100.00	7.849	6.306	2.862	0.903
		Average	75.90	90.00	97.44	7.505	6.015	2.718	0.910
$d_{\text {thr }}=9$	L_{2}	Inception v3 [5]	76.15	90.00	100.00	9.336	7.620	3.766	0.872
		ResNet-18 [1]	95.38	98.46	100.00	9.640	7.923	4.066	0.874
		VGG-16 [4]	90.00	99.23	100.00	9.978	8.211	4.156	0.864
		Average	87.18	95.90	100.00	9.651	7.918	3.996	0.870
	ΔE	Inception v3 [5]	75.38	90.77	100.00	9.100	7.269	3.134	0.877
		ResNet-18 [1]	94.62	96.92	100.00	9.300	7.435	3.250	0.878
		VGG-16 [4]	88.46	99.23	100.00	9.526	7.630	3.351	0.871
		Average	86.15	95.64	100.00	9.309	7.444	3.245	0.875
	$\Delta E+L_{2}$	Inception v3 [5]	71.54	90.00	100.00	9.112	7.282	3.149	0.877
		ResNet-18 [1]	94.62	97.69	100.00	9.263	7.412	3.249	0.879
		VGG-16 [4]	90.77	100.00	100.00	9.763	7.832	3.448	0.867
		Average	85.64	95.90	100.00	9.379	7.509	3.282	0.874
$d_{\text {thr }}=11$	L_{2}					11.190	9.156	4.386	0.843
		ResNet-18 [1]	97.69	100.00	100.00	11.605	9.545	4.785	0.846
		VGG-16 [4]	94.62	99.23	100.00	11.750	9.671	4.784	0.835
		Average	89.74	97.18	100.00	11.515	9.457	4.652	0.841
	ΔE			92.31	100.00	11.044	8.921	3.909	0.845
		ResNet-18 [1]	96.15	100.00	100.00	11.392	9.176	4.058	0.848
		VGG-16 [4]	93.08	100.00	100.00	11.625	9.373	4.127	0.837
		Average	90.00	97.44	100.00	11.353	9.157	4.031	0.843
	$\Delta E+L_{2}$	Inception v3 [5]	82.31	93.08	100.00	11.046	8.927	3.921	0.845
		ResNet-18 [1]	95.38	100.00	100.00	11.361	9.157	4.059	0.847
		VGG-16 [4]	93.85	100.00	100.00	11.742	9.477	4.181	0.835
		Average	90.51	97.69	100.00	11.383	9.187	4.054	0.842

Figure 1: Targeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection as kite.

Figure 2: Targeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection as zebra.

Figure 3: Targeted projector-based adversarial attack on VGG-16. The goal is to cause the classifier to misclassify the captured projection as cock.

Figure 4: Targeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection as table lamp.

Figure 5: Targeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection as school bus.

Figure 6: Targeted projector-based adversarial attack on VGG-16. The goal is to cause the classifier to misclassify the captured projection as table lamp.

Figure 7: Targeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection as goldfish.

Figure 8: Targeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection as projector.

Figure 9: Targeted projector-based adversarial attack on VGG-16. The goal is to cause the classifier to misclassify the captured projection as orange.

Figure 10: Targeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection as kite.

Figure 11: Targeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection as mushroom.

Figure 12: Targeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection as orange.

Figure 13: Targeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection as golden retriever.

Cam-captured scene

Adversarial projection
$\left\|x^{\prime}-x_{0}\right\|_{2}=5.37 \quad$ Welsh springer spaniel $(0.48),\left\|\hat{I} \hat{I}^{\prime}-I\right\|_{2}=5.61$

Figure 14: Untargeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT mixing bowl.

Figure 15: Untargeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT volleyball.

Figure 16: Untargeted projector-based adversarial attack on VGG-16. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT hamper.

Figure 17: Untargeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT coffee mug.

Figure 18: Untargeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT bucket.

Figure 19: Untargeted projector-based adversarial attack on VGG-16. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT paper towel.

Figure 20: Untargeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT backpack.

Figure 21: Untargeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT remote control.

Figure 22: Untargeted projector-based adversarial attack on VGG-16. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT soccer ball.

Figure 23: Untargeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT pillow.

Figure 24: Untargeted projector-based adversarial attack on ResNet-18. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT banana.

Figure 25: Untargeted projector-based adversarial attack on VGG-16. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT Iotion.

Figure 26: Untargeted projector-based adversarial attack on Inception v3. The goal is to cause the classifier to misclassify the captured projection, such that the output is NOT book jacket.

