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ABSTRACT

Cortical vasculature plays an important role in neuroscience,
and it is popularly analyzed using optical coherence tomog-
raphy angiography (OCTA). Despite two decades of devel-
opment, however, there remains a lack of high quality vessel
segmentation benchmark for cortex OCTA data. In this paper,
we introduce a novel OCTA vessel segmentation benchmark
of mouse cortex, called COCTA, which largely facilitates
the training and evaluation of segmentation models for brain
vasculature possible. OCTA involves different types of real-
world noise, including speckle noise, motion artifacts and
background noise. These heterogeneous noise sources ex-
hibit diverse characteristics and post challenges for current
segmentation methods. Therefore, models trained on public
retina datasets can not easily generalize to cortex OCTA. Ad-
ditionally, it is hard to accurately delineate vessel boundaries
using mouse so we introduce the stylus pen to ensure a re-
fined and natural-look mask. Besides, our annotators make
extensive efforts to remove artifacts and reveal underling
vessels. With these corrected manual masks, our dataset is
suitable for evaluation in the denoising community. Lastly,
we benchmark and analyze various segmentation methods,
including convolutional neural networks and transformers,
providing insights for the development of new approaches in
OCTA. The dataset with manual annotations are available at
https://github.com/reckdk/COCTA-dataset.

Index Terms— Optical coherence tomography angiogra-
phy, vessel segmentation, cortex vasculature, benchmark

1. INTRODUCTION

Vasculature is a critical component of biological systems, and
effective visualization and assessment of vasculature struc-
tures are essential for medical professionals. Angiography
serves as a critical imaging technique for this purpose, en-
abling physicians to examine blood vessels across the body.
This technique aids in diagnosing and evaluating various vas-
cular conditions, including blockages, stenosis, aneurysms,
and other malformations.

Angiography techniques have evolved over time, from
traditional X-ray angiography using contrast dyes to more ad-

Fig. 1: 3D scan of OCTA and two annotation layers.

vanced, less invasive, higher resolution methods. New tech-
niques include computed tomography angiography (CTA),
magnetic resonance angiography (MRA), fluorescent angiog-
raphy (FA), two-photon angiography, and optical coherence
tomography angiography (OCTA). CTA is widely used for
imaging blood vessels throughout the body, especially for
cardiovascular and cerebrovascular, due to its accuracy and
reliability. However, concerns remain regarding radiation ex-
posure. MRA has been explored but, despite recent advance-
ments, is still considered inferior in image quality compared
to CTA [1]. FA can resolve the detailed retinal vasculature in-
cluding capillaries, playing as the gold standard for evaluation
of many retinal and choroidal vascular conditions in ophthal-
mology. The real-time response of FA enables the analysis of
vascular flow dynamics. But FA is invasive and may cause
severe side effects [2]. The recently emerged two-photon an-
giography method offers high-resolution 3D images of small
blood vessels. Nevertheless, its depth of imaging is limited,
and hence primarily employed in research settings rather than
clinical practice. OCTA is a non-invasive, radiation-free, dye-
free method with high spatial-temporal resolution [3], which
gets increasing attention in both research and clinic.

Fig. 1 illustrates an OCTA volume of mouse cortex along
with the maximum intensity projection (MIP) of the first two
layers. An OCT A-scan provides a one-dimensional depth
profile of tissue reflectivity and serves as the basic unit of
OCT imaging. A B-scan, which is composed of multiple
adjacent A-scans along the same direction, forms a two-
dimensional cross-sectional image. A C-scan, in turn, is
generated by stacking multiple B-scans along the direction
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perpendicular to the B-scan plane. Due to shadow arti-
facts [4], only the MIPs are annotated in our datasets.

Currently, there are public available retina OCTA datasets
that cover various subjects, modalities, conditions, field-of-
view (FOV), and resolutions [5, 6, 7, &, 9, 10, 11]. Many
successful works have utilized these datasets and improve the
segmentation performance [12, 13, 14, 15]. We refer to the
discussion in [16, 6] for more details.

Compared with retina OCTA, mouse cortex OCTA has
much deeper imaging depth and higher resolution [17, 6, 18],
and thus is more susceptible to noises. The projected vascu-
lature density also increases with imaging depth. As a result,
models trained on retina datasets can not simply generalize
to cortex datasets. The segmentation performance in cortex
OCTA suffers from lack of high quality dataset.

In order to boost relevant research in the community, we
make the following contributions in this work.

¢ For the first time in cortex microvasculature, we con-
struct a mouse cortex OCTA dataset, named COCTA,
with high quality manual annotations. COCTA contains
62 real high-resolution OCTA images (500 x 1000) with
relatively large FOV (2 x 2.6mm?).

* COCTA contains multiple real-world noises, such as mo-
tion artifacts, speckle noise and background noise. Anno-
tators create clear masks despite these challenges.

* A convenient annotation tool with stylus pens and tablets
is introduced to enhance annotation of mask vesselness.

¢ We benchmark mainstream segmentation methods on
COCTA and analyze the performance of each method,
highlighting the specific challenges of COCTA.

2. CORTEX OCTA DATASET

Vasculature annotation is a labor-intensive task. Unlike typ-
ical segmentation datasets, high quality vessel annotations
cannot be outlined using polygons but need marking pixel
by pixel, requiring more efforts. Additionally, vasculature
density and noise level can further increase the complexity of
annotation. Iterative refinement is also required to maintain
consistency among different annotators. Twelve annotators,
mostly in computer science or biomedical engineering, un-
derwent at least five hours of training. Senior annotators with
greater expertise oversaw the refinement stage to ensure fi-
nal quality. Based on our experience, initial annotation of a
cortex OCTA image typically took 6-8 hours, with iterative
refinements taking additional 1-3 hours, resulting in a total of
approximately 9 hours per image. Such substantial time and
efforts result in the scarcity of cortex OCTA segmentation
datasets.

2.1. Vascular Annotation Solution

Vessels belong to curvilinear structures that need careful at-
tention to boundary and width. Our high resolution OCTA
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(b) Stylus pen annotation

(a) Mouse annotation

Fig. 2: OCTA images (top) and corresponding masks (bot-
tom) annotated with mouse and stylus pen, respectively.

images cover the vessels of different scales, including ar-
teries/veins, arterioles/venules, and capillaries. Delineating
dense vasculature using mouse is laborious and can lead to
waist strain due to overuse. Drawing pad for graphic design-
ers ensures the quality of mask but slow interaction response
and software adaption restrict its usage in our cases. Bene-
fiting from the evolution of tablet computers and compatible
annotation toolkits, we introduce an intuitive annotation solu-
tion, consisting of a stylus pen, an iPad (or Android tablets),
and the toolkit called webKnossos [19]. Specifically, we
visualize and annotate an image on the same screen with a
stylus pen. We use the brush tool in webKnossos with one
pixel width to delineate the thinnest capillaries. Zoom-in
and out are supported via finger gestures, especially useful
for annotating capillaries. Compared to traditional mouse-
based solution, the intuitive interaction enhances vesselness
of mask and efficiency, making it more suitable for extended
work sessions.

Fig. 2 illustrates two OCTA images annotated with mouse
and stylus pen. Benefiting from direct feedback, stylus-based
masks tend have smoother boundaries than mouse-based
ones. Additionally, the curves and diameters of capillaries
appear more natural and closer than those in Fig. 2b. In some
neuron studies, capillaries play more important roles than
large vessels so we should treat them more carefully. Further-
more, small holes often appear sporadically in mouse-based
masks, particularly at junctions or along thin vessels. These
issues are minimized with stylus-based annotations.

2.2. Multi-layer Annotation

The original cortex OCTA is a 3D scan, as illustrated in Fig. I,
and provides significantly deeper FOV than retinal OCTA.
When projecting as the MIP image, vessels at different depths



(a) OCTA - anesthetized (b) OCTA - awake
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Fig. 3: OCTA images and masks for mice under anesthetized
and awake statuses, respectively. Red arrow: motion artifacts.

interleave with each other. In this dataset, we provide masks
in three subsets of different depths, which archives optimal
trade-off between annotation abundance and confidence. To
be specific, the first layer MIP is projected from the superfi-
cial 80 voxels; the second layer is projected from the 70th to
150th voxels, with 12.5% overlap with the first layer for con-
sistency; the third subset is the fusion of the first and second
layers. The first layer has more large vessels while the sec-
ond layer has more mid-to-small vessels. Directly annotating
the fused images may lose details due to the relatively low
signal-to-noise ratio (SNR) and denser vasculature. There-
fore, we annotate the first two layers separately and then fuse
the masks. As a result, the mask in the fusion subset are of
highest density among the three subsets.

2.3. Heterogeneous Noise Sources

Our dataset involves multiple real-world noise sources: (1)
motion artifacts caused by heartbeat, respiration, and mechan-
ical jittering, severely degrade the image quality; (2) speckle
noise due to the imaging principle; and (3) background noise
with the compromised SNR due to the trade-off for improv-
ing temporal resolution. For noise distribution, motion arti-
facts appear in both the first and second layers. The first layer
has less background noise than the second layer. Annotators
work to differentiate and label structures despite these noises,
producing a clear segmentation mask.

Fig. 4: Left: OCTA image with extreme-noise; right: corre-
sponding mask. Blue: vessel; orange: ignored area.

Motion artifacts. Fig. 3 illustrates two OCTA images with
masks for mice under anesthetized and awake statuses, re-
spectively. Motion artifacts are more prevalent in awake an-
imals, as indicated by the red arrows in Fig. 3b. We remove
the motion artifacts from masks and make our best effort to
reveal the underlying vessels. We provide paired clear and
motion-affected images, which can be used to evaluate de-
noising methods.

Extreme-noise Handling. Although the vasculature is dis-
cernible in most regions, some areas remain extremely noisy
and complex, make them too indistinct to annotate. There-
fore, we create the ignore-mask to exclude these indiscernible
areas from both training and evaluation. For example, Fig. 4
illustrates an OCTA image with extreme-noise and corre-
sponding mask. The central area is too blurry so we only
keep the discernible vessels while ignoring the rest. Most
samples in our dataset have an ignore-mask covering less
than 10% of the area. In rare cases, the ignore-mask covers
up to 30% of the area.

Iterative Refinement. Different annotators show different
preferences. The annotation process follow the same standard
and includes two stages for consistency. In the first stage,
each mask is iteratively refined by the initial annotator for
one to three rounds. In the second stage, the senior annotators
check the results and make necessary corrections if needed,
and then add the ignore-mask for indiscernible regions.

3. EXPERIMENT

Our mouse cortex OCTA dataset includes three subsets at dif-
ferent depths: Layerl, Layer2, and Layerl12, containing 32,
30, and 30 images, respectively. The resolutions along the C-,
B-, and A-scans range in (500 — 650) x 1000 x 1024, with the
FOV spanning in (3.0—4.0)pm x (1.9—2.6) um x 1.0um. All
OCTA images are collected from a customized ultra-high res-
olution optical coherence angiography system (uOCA) with
a center wavelength of 1310nm. Additionally, we separate
all images based on subject statuses into Anesthetized and
Awake. The Anesthetized subset contains 23 Layerl and 23
Layer2 samples. The Awake subset contains 9 Layerl and 7
Layer2 samples. Manual annotations cover all images.

Experimental Settings. We benchmark state-of-the-art seg-
mentation models using 62 samples from the Layerl and
Layer2 subsets. The training set and validation set consist
of 50 and 12 samples, respectively. The validation set has 8



Table 1: Segmentation IoU (%) and Dice (%) of different
methods on COCTA. The backbone of each method is listed
in the second row.

FCN EncNet PSANet Segmenter SETR
ResNet50 ResNet50 ResNet50 ViT-Base ViT-Large
Laverl IoU| 60.16 60.65 58.27 47.72 48.09
D Dice| 7494 7533 7339 6432 6463
Laver? IoU| 5279 52.93 52.16 42.02 41.78
Y Dice| 68.87 68.97 68.23 58.86 58.58
Total ToU| 56.47 56.79 55.21 44.87 44.93
Dice| 71.90 72.15 70.81 61.59 61.60
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Fig. 5: Segmentation results of different methods. From left
thetized layerl, layer2, and awake layerl, respectively.

anesthetized samples and 4 awake samples. Dice coefficient
and Intersection over Union (IOU) are used as metrics.

All baselines are implemented with PyTorch and trained
on 4 NVIDIA RTX A6000 GPUs. All convolutional neural
network (CNN) methods (FCN [20], EncNet [21], PSANet [
use the same training setting with the SGD optimizer, where
initial learning rate is 0.01, momentum is 0.9, weight decay
is 0.0005, and poly learning rate schedule with power as 0.9
in the whole training process. Segmenter [23] uses initial
learning rate as 0.001 without weight decay. SETR [24] uses
initial learning rate as 0.01 without weight decay. All models
are trained with 1000 iterations. Other settings follow the
default one of each method. For data preprocessing, each
image with size of HxW (H<W) is cropped to two square
images with size of HxH, covering the original whole image.
The right side of one image is overlapped with the left side
of the other image. This leads to 100 training images and
24 validation images. For data augmentation, random resize,
random crop, and random flip are applied to all methods.

Tab. 1 shows the results of different methods on the pro-
posed COCTA. All methods exhibit degraded performance

on the mouse cortex compared to common medical segmen-
tation benchmarks. A primary factor is the complexity and
density of the cortical vasculature. Additionally, CNN-based
methods outperform transformer-based approaches, such as
Segmenter [23] and SETR [24]. This could be partially due
to the modest dataset size, which is insufficient to fully train
transformers, as they typically require more data than CNNs.
Data augmentation could help mitigate this issue by expand-
ing the training set. Furthermore, all methods perform better
on Layerl compared to Layer2. The vessels in Layer2 are
generally smaller and more dense than Layer1’s, as illustrated
in Fig. 5, making segmentation more challenging. Fig. 5 also
provides a comparison of the same subject under both anes-
thetized and awake conditions. In the awake images, motion
artifacts are observed as prominent horizontal stripes. Both
EncNet [21] and SETR [24] exhibit the capability to mitigate
motion artifacts through training. However, these methods
demonstrate relatively low sensitivity to small vessels, indi-
cating that they have not yet achieved optimal performance
in cortical vessel segmentation. Future advancements will be
driven by the development of more effective methods and the
incorporation of larger datasets.

4. CONCLUSION

Cortical vasculature plays a crucial role in neuron studies. In
this paper, we introduce an OCTA dataset of mouse cortex to
mitigate the data insufficiency for brain vessel segmentation.
Our OCTA images are projected from deeper volumes than
retina OCTA and contains multiple real-world noise types like
speckle noise, motion artifacts, and background noise. Anno-
tators create clear masks despite these challenging heteroge-
neous noises. Instead of interacting with mouse, we introduce
the stylus pen to ensure a mask of good vesselness. Our so-
lution takes advantage of the seamless integration of a stylus
pen, a smart tablet, and webKnossos to enable intuitive and
accurate annotation. Last but not least, we provide a bench-
mark of segmentation with mainstream methods. We discuss
the performance of each approach, which can be instructive
to the development of new approaches in OCTA.

We plan to collect more images, annotate deeper layers
with severe noises, and design methods to effectively address
complex noise challenges.
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