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Modelling attention control using a convolutional neural network designed after
the ventral visual pathway
Chen-Ping Yua,c, Huidong Liua, Dimitrios Samarasa and Gregory J. Zelinskya,b

aDepartment of Computer Science, Stony Brook University, Stony Brook, NY, USA; bDepartment of Psychology, Stony Brook University, Stony
Brook, NY, USA; cDepartment of Psychology, Harvard University, Cambridge, MA, USA

ABSTRACT
We recently proposed that attention control uses object-category representations consisting of
category-consistent features (CCFs), those features occurring frequently and consistently across a
category’s exemplars [Yu, C.-P., Maxfield, J. T., & Zelinsky, G. J. (2016). Searching for category-
consistent features: A computational approach to understanding visual category representation.
Psychological Science, 27(6), 870–884.] Here we extracted from a Convolutional Neural Network
(CNN) designed after the primate ventral stream (VsNet) CCFs for 68 object categories spanning
a three-level category hierarchy, and evaluated VsNet against the gaze behaviour of people
searching for the same categorical targets. We also compared its success in predicting attention
control to two other CNNs that differed in their degree and type of brain inspiration. VsNet not
only replicated previous reports of stronger attention guidance to subordinate-level targets, but
with its powerful CNN-CCFs it predicted attention control to individual target categories.
Moreover, VsNet outperformed the other CNN models tested, despite these models having more
trainable convolutional filters. We conclude that CCFs extracted from a brain-inspired CNN can
predict goal-directed attention control.
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The brain’s ability to flexibly exert top-down control
over motor behaviour is key to achieving visuomotor
goals and performing everyday tasks (Ballard &
Hayhoe, 2009), but a neurocomputational understand-
ing of goal-directed attention control is still in its
infancy. Here we introduce VsNet, a neurocomputa-
tional model inspired by the primate ventral stream
of visually-responsive brain areas, that predicts atten-
tion control by learning the representative visual fea-
tures of an object category.

VsNet advances existing models of attention
control in several respects. First, it is image comput-
able, meaning that it accepts the same visually
complex and unlabelled imagery that floods continu-
ously into the primate visual system (see also Adeli,
Vitu, & Zelinsky, 2017; Zelinsky, Adeli, Peng, &
Samaras, 2013). This is essential for a model aimed
at understanding attention control in the real world,
as objects do not come with labels telling us what
and where they are. Note that although there are
several excellent image-computable models of
fixation prediction (Bylinskii, Judd, Oliva, Torralba, &

Durand, 2016), these are all in the context of a free-
viewing task and therefore outside of our focus on
goal-specific attention control.1 Second, VsNet is
among the first uses of a convolutional neural
network (CNN) to predict goal-directed attention.
CNNs are one class of artificial deep neural networks
that have been setting new performance benchmarks
over diverse domains, not the least of which is the
automated (without human input) recognition of visu-
ally-complex categories of objects (He, Zhang, Ren, &
Sun, 2016; Krizhevsky, Sutskever, & Hinton, 2012; Rus-
sakovsky et al., 2015; Simonyan & Zisserman, 2015).
However, CNN models that predict goal-directed
attention control are still uncommon (Adeli & Zelinsky,
2018; Zhang et al., 2018). A third and core source of
VsNet’s capacity to predict attention control is its
extraction of the visual features from image exemplars
that are most representative of an object category. In
short, VsNet harnesses the power of deep learning to
extract the category-consistent features (Yu, Maxfield, &
Zelinsky, 2016) used by the ventral visual areas to
control the goal-directed application of attention.
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VsNet is novel in that it is a brain-inspired CNN. There
is the start of an interesting new discussion about how
biological neural networks might inform the design of
artificial deep neural networks (Grill-Spector, Weiner,
Gomez, Stigliani, & Natu, 2018; Kietzmann, McClure,
& Kriegeskorte, 2019), and VsNet is the newest
addition to this discussion. Our approach is neurocom-
putational in that, given the many ways that CNNs can
be built, we look to the rich neuroscience literature for
design inspiration and parameter specification. Most
broadly, VsNet is a multi-layered deep network,
making its architecture analogous to the layers of
brain structures existing along the ventral pathway.
The brain’s retinotopic application of filters throughout
most of these ventral areas also embody a parallelized
convolution similar to unit activation across a CNN’s
layers (Cadieu et al., 2014; Hong, Yamins, Majaj, &
DiCarlo, 2016; Khaligh-Razavi & Kriegeskorte, 2014;
Yamins et al., 2014). This parallel between a CNN
and the ventral stream’s organization has not gone
unnoticed (Kriegeskorte, 2015), and unit activation
across the layers of a CNN has even been used to
predict neural activity recorded from brain areas in
response to the same image content (Cadieu et al.,
2014; Yamins et al., 2014). VsNet extends this work
by making the architecture of its layers also brain-
inspired, each modelled after a specific brain area in
the primate ventral stream. In contrast, existing neuro-
computational efforts have used either AlexNet (Kriz-
hevsky et al., 2012) or one of its feed-forward
variants (Simonyan & Zisserman, 2015; Szegedy, Liu,
Jia, Sermanet, & Reed, 2015; Zeiler & Fergus, 2014),
which are pre-trained CNNs designed purely to win
image classification competitions (e.g., the
ILSVRC2012 challenge, also known as ImageNet, Russa-
kovsky et al., 2015) without regard for the structural
and functional organization of the primate ventral
visual system. The same disregard for neurobiological
constraint applies to later generations of deep net-
works using different architectures (He et al., 2016;
Huang, Liu, Van Der Maaten, & Weinberger, 2017;
Zagoruyko & Komodakis, 2016). Determining how
VsNet’s performance compares to less brain-inspired
CNNs is one broad aim of our study, with our hypoth-
esis being that a model’s predictive success will
improve as its architecture becomes more like that
of the primate brain.

A second broad aim is to predict people’s goal-
directed allocation of overt attention as they search

for categories of objects. CNNs have been used to
predict the bottom-up allocation of attention in
scenes (Huang, Shen, Boix, & Zhao, 2015; Li & Yu,
2015; Wang & Shen, 2017), but they have only just
started to be used to model the top-down control
of attention (Adeli & Zelinsky, 2018; Zhang et al.,
2018). We operationally define attention control as
the degree that eye movements from human partici-
pants are guided to targets in a categorical search
task. The spatial locations fixated via eye movements
are an ideal behavioural ground truth for our
purpose, as an eye movement is the most basic
observable behaviour linked to a covert shift of
spatial attention (Deubel & Schneider, 1996). Our
focus on categorical search is similarly perfect. Categ-
orical search, the search for an object designated only
by its category name, can be contrasted with exem-
plar search, the more common task where partici-
pants are cued with an image showing the exact
object that they are to search for. Categorical
search therefore blends a highly nontrivial object
classification task with a gold-standard measure of
attention control, the oculomotor guidance of gaze
to a target (Zelinsky, 2008).

While historically a neglected task for studying
attention control (see Zelinsky, Peng, Berg, &
Samaras, 2013, for discussion), interest in categorical
search has accelerated in recent years (e.g., Cohen,
Alvarez, Nakayama, & Konkle, 2016; Hout, Robbins,
Godwin, Fitzsimmons, & Scarince, 2017; Nako, Wu, &
Eimer, 2014; Peelen & Kastner, 2011), a growth
fuelled by several key observations: (1) that attention
can be guided to target categories, as exemplified
by the above-chance direction of initial search sac-
cades to target category exemplars in search arrays
(Yang & Zelinsky, 2009), (2) that the strength of the
control signal guiding attention to categorical
targets depends on the amount of target-defining
information provided in the category cue (e.g., stron-
ger guidance for “work boot” than “footwear”;
Schmidt & Zelinsky, 2009), (3) that search is guided
to distractors that are visually similar to the target cat-
egory (guidance to a hand fan when searching for a
butterfly; Zelinsky, Peng, & Samaras, 2013), (4) that gui-
dance improves with target typicality (stronger gui-
dance to an office chair than a lawn chair; Maxfield,
Stalder, & Zelinsky, 2014), and (5) that guidance
becomes weaker as targets climb the category hierar-
chy (the guidance to “race car” is greater than the
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guidance to “car,” which is greater than the guidance
to “vehicle”; Maxfield & Zelinsky, 2012). It is this latter
effect of category hierarchy on attention control that
was the manipulation of interest in the present study.

Methods

Behavioural data collection

Behavioural data were obtained from Yu et al. (2016)
and were collected using the SBU-68 dataset. This
dataset consisted of crossly-cropped images of 68
object categories that were distributed across three
levels of a category hierarchy. There were 48 subordi-
nate-level categories, which were grouped into 16
basic-level categories, which were grouped into 4
superordinate-level categories. A categorical search
task was used, and the participants were 26 Stony
Brook University undergraduates. On each trial a
text cue designating the target category was dis-
played for 2500 ms, followed by a 500 ms central
fixation cross and then a six-item search display con-
sisting of objects positioned on a circle surrounding
starting fixation. Distractors were from random non-
target categories and on target-present trials the
target was selected from one of the 48 subordinate-
level categories. Participants responded “present” or
“absent” as quickly as possible while maintaining
accuracy, and there were 144 target-present and
144 target-absent trials presented in random order.
For each target-present trial, a participant’s goal-
directed attention guidance was measured as the
time taken to first fixate the cued target. Refer to
Yu et al. (2016) for full details of the behavioural
stimuli and procedure.

Category-consistent features

Previous work used a generative model to predict the
strength of categorical search guidance across the
subordinate (e.g., taxi), basic (e.g., car), and superordi-
nate (e.g., vehicle) levels of a category hierarchy (Yu
et al., 2016). Briefly, its pipeline was as follows. SIFT
(Lowe, 2004) and colour histogram features were
extracted from 100 image exemplars of 48 object cat-
egories, and the Bag-of-Words (BoW; Csurka, Dance,
Fan, Willamowski, & Bray, 2004) method was used to
put these features into a common feature space. The
features most visually representative of each of

these categories were then selected, what we
termed to be their Category-Consistent Features
(CCFs). Specifically, responses were obtained for each
BoW feature to all the images of each of a category’s
exemplars, and these responses were averaged over
the exemplars and then divided by the standard devi-
ation in the responses to obtain a feature-specific
Signal-to-Noise Ratio (SNR). A feature having a high
SNR would therefore be one that occurred both fre-
quently and consistently across a category’s exem-
plars. CCFs for each of the categories were obtained
by clustering the features’ SNRs and selecting the
highest.

This BoW-CCF model was able to predict how
behavioural performance was affected by target spe-
cification at the three levels of the category hierarchy.
For example, one specific finding was that the time it
took gaze to first land on the target (time-to-target)
increased with movement up the hierarchy, what
was termed the “subordinate-level advantage.” BoW-
CCF modelled almost perfectly the observed subordi-
nate-level advantage as a simple count of the number
of CCFs extracted for object categories at each hier-
archical level; more CCFs were selected for categories
at the subordinate level than either the basic or super-
ordinate levels. This result was interpreted as evidence
that attention control improves with the number of
CCFs used to represent a target category (Yu et al.,
2016, should be consulted for more details). The
present method adopts the SNR definition of CCFs
from Yu et al. (2016), but critically uses VsNet to
extract these features (see next section). Also bor-
rowed from the previous work is the method of pre-
dicting search guidance from the number of
extracted CCFs, a measure that we find desirable in
that it is relatively simple and intuitive (more CCFs =
better attention control).

Extracting CNN-CCFs
The CCF method selects representative features
(which may or may not be discriminative) that
appear both frequently and consistently across the
exemplars of an object category, but the method
itself is largely feature independent. In previous work
(Yu et al., 2016) these CCFs were selected from a
large pool of BoW features; in our current adaptation
we select CCFs from the even larger pool of features
from a trained CNN, where each trained convolutional
filter is considered a feature and a potential CCF. We
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hypothesize that the more powerful CNN-CCF features
will represent more meaningful visual dimensions of
an object category. For example, whereas BoW-CCFs
might have coded the fact that many taxis are
yellow and represented the various intensity gradi-
ents associated with their shape, a CNN-CCF rep-
resentation of taxis might additionally capture tires,
headlights, and the signs typically mounted to their
roofs. We further hypothesize that these richer
feature representations, to the extent that they are
psychologically meaningful, will enable better predic-
tions of attention control.

The specific CNN-CCF selection process is illustrated
in Figure 1 for the taxi category and a hypothetical
network. Given an object category with n exemplars
of size m×m, and a trained CNN with L convolutional
layers each containing K filters, we forward pass all
exemplars through the network to obtain an acti-
vation profile of sizem×m× n for every convolutional
filter, Y (l)

k , where l and k are indices to the layer and
filter number, respectively. To remove border artefacts
introduced by input padding, the outer 15% of each
m×m activation map is set to zero. Each Y (l)

k is then
reduced to a 1 × n vector, y(l)k , by performing global
sum-pooling over each image’s m×m activation
map. This pooling yields the overall activation of
each filter in response to an exemplar image. Having

these exemplar-specific filter responses, we then
borrow from the BoW-CCF pipeline and compute a
SNR for each filter:

SNR(l)k = mean (y(l)k )

std (y(l)k )
, (1)

where the mean and standard deviation are com-
puted over the exemplars. Applying this equation to
the activation profile from each filter produces a distri-
bution of SNRs. Higher SNRs would indicate stronger
and more consistent filter responses, making these
filters good candidates for being CCFs. To identify
these CCFs we fit a two-component Gamma-Mixture-
Model to the SNR distribution, a method similar to
Parametric Graph Partitioning (Yu, Hua, Samaras, &
Zelinsky, 2013; Yu, Le, Zelinsky, & Samaras, 2015). We
use a Gamma distribution because it has been
shown to model spiking neuron activity (Li et al.,
2017; Li & Tsien, 2017), and we observed that it
describes our CNN SNR distributions very well. The
CCFs are then defined as the filters having SNRs
higher than the crossover point of the two Gamma
components. This pipeline for extracting CNN-CCFs
was applied on each convolutional layer indepen-
dently, as filter activations have different ranges at
different layers. Of the 500 training and 50 validation

Figure 1. Pipeline of the CNN-CCF extraction method. (A) A set of category exemplars, in this case images of taxis, are input into a
trained CNN. (B) Activation maps (or feature maps) in response to each exemplar are obtained for every convolutional filter at each
layer. Shown are 64-cell activation maps in a hypothetical layer, where each cell indicates a convolutional filter’s response to a
given exemplar. In this example, 64 SNRs would be computed (12 shown) by analyzing activation map values for each of the 64
filters across the taxi exemplars. (C) A two-component Gamma mixture model is fit to the distribution of SNRs, (D) and the cross-
over point determines the CCF selection threshold. (E) Filters having SNRs above this threshold are retained as the CCFs for a given
category (√); filters having below-threshold SNRs are dropped (×).
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images that were used for each of the 48 tested cat-
egories (see the ImageNet Training section for
details), only the 50 validation images were used to
extract a given category’s CCFs. The training images
were therefore used to learn the filters, whereas the
validation images were used to extract the CCFs.

Designing and comparing brain-inspired CNNs
To date, the design of neural network architectures
has focused on improving network performance
across a range of applications, the vast majority of
which are non-biological. Design choices have there-
fore been largely ad hoc and not informed by either
the voluminous work on the organization and function
of the primate visual system, or by the equally volumi-
nous literature on visual attention and its role in con-
trolling behaviour. Our broad perspective is that, to
the extent one’s goal is to understand the primate
visual system by building a computational model, it
is a good idea to use these literatures to inform the
design of new model architectures so as to be more
closely aligned with what is known about the
primate brain. This is particularly true for the primate
visual attention system, where there are rich theoreti-
cal foundations in the behavioural and neuroscience
literatures that are relatively easy to connect to CNN
modelling methods.

VsNet is a rough first attempt to build such a brain-
inspired deep neural network, and its detailed pipeline
is shown in Figure 2 (top). This effort is “rough”
because the neural constraints that we introduce
relate only to the gross organization of brain areas
along the primate ventral visual stream. There are far
more detailed levels of system organization that we
could had also considered, but as a first pass we
decided to focus on only the gross network architec-
ture. In our opinion this level would likely reveal the
greatest benefit of a brain-inspired design, with the
expectation that future, more detailed brain-inspired
models would only improve prediction of attention
control.

Specifically, we designed VsNet to reflect four
widely accepted and highly studied properties of the
ventral pathway. First, VsNet’s five convolutional
layers are mapped to the five major ventral brain
structures (DiCarlo & Cox, 2007; Kobatake & Tanaka,
1994; Kravitz, Kadharbatcha, Baker, Ungerleider, &
Mishkin, 2013; Mishkin, Ungerleider, & Macko, 1983;
Serre, Kreiman, et al., 2007). VsNet has a V1, a V2, a

combined hV4 and LOC1/2 layer that we refer to as
V4-like, a PIT, and a CIT/AIT layer, with these five con-
volutional layers followed by two fully-connected
classification layers. Second, the number of filters in
each of VsNet’s five convolutional layers are pro-
portional to the number of neurons, estimated by
brain surface area (Orban, Zhu, & Vanduffel, 2014;
Van Essen et al., 2001), in the corresponding five
brain structures. Third, the range of filter sizes at
each layer is informed by the range of receptive field
sizes for visually responsive neurons in the corre-
sponding structures. And fourth, VsNet differs from
other strictly feedforward architectures in that it
adopts a brain-inspired implementation of bypass
connections based on known connectivity between
layers in the primate ventral visual stream. See
Figure 2 and the VsNet Design section for additional
architectural design details.

Our CNN-CCF extraction algorithm is general, and
can be applied to the filter responses from any pre-
trained CNN. This makes model comparison possible.
In addition to extracting CNN-CCFs from VsNet, we
used the identical algorithm to extract CNN-CCFs
from two other CNNs. One of these was AlexNet (Kriz-
hevsky et al., 2012), a widely used CNN also consist-
ing of five convolutional and two fully-connected
layers. Although AlexNet’s design was not brain-
inspired, it has been used with good success in
recent computational neuroscience studies (Cadieu
et al., 2014; Hong et al., 2016; Khaligh-Razavi & Krie-
geskorte, 2014) and is therefore of potential interest.
More fundamentally, it will serve as a baseline against
which the more brain-inspired networks can be com-
pared, which is important to gauge broadly how the
inclusion of neural constraints in a CNN’s design
translates into improved prediction performance.
We also extracted CNN-CCFs from a model that we
are calling Deep-HMAX, our attempt to create a
CNN version of the influential HMAX model of
object recognition (Serre, Oliva, & Poggio, 2007).
HMAX was designed to be a biologically plausible
model of how the recognition of visually complex
objects might be implemented in ventral brain circui-
try (Riesenhuber & Poggio, 1999; Tarr, 1999), but it
cannot be fairly compared to more recent and power-
ful convolutional network architectures. Our Deep-
HMAX model keeps the basic architectural design
elements of HMAX intact, with the most central
among these being the inclusion of simple and
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complex cell units, but replaces the originally hand-
crafted units with convolutional layers that learn the
simple and complex cell responses from visual
input, thereby making possible a more direct com-
parison to VsNet. Figure 2 (bottom) shows the archi-
tecture of Deep-HMAX, and additional details can be
found in the ImageNet Training section. Broadly, the
model has a very different architecture than VsNet,
with one example being that it uses 10 convolutional
and two fully-connected layers. By comparing Deep-
HMAX and VsNet it is therefore possible to see how
a fairly gross level of brain organization might affect
network performance. Note also that VsNet was com-
putationally disadvantaged in these comparisons
because it used the smallest number of convolutional
filters to predict attention control; AlexNet has 1152
filters, Deep-HMAX 1760, but VsNet only 726 (exclud-
ing 1 × 1 dimensionality-reduction filters). This con-
servative design means that, to the extent that
VsNet better predicts attention control than the
other models, this benefit would likely be due to its

brain-inspired architecture and not simply greater
computational power.2

Vsnet design

VsNet is brain-inspired in three key respects: the
number of filters at each convolutional layer is pro-
portional to the estimated number of neurons in the
corresponding brain structure, the sizes of filters at
each layer are proportional to neuron receptive field
sizes in corresponding structures, and the gross con-
nectivity between its layers is informed by connec-
tivity between structures in the primate ventral
visual stream. Each of these brain-inspired constraints
will be discussed in more detail. With respect to
VsNet’s broad mapping of convolutional layers to
brain structures, the mappings of its first layer to V1
and its second layer to V2 are relatively noncontrover-
sial. However, we wanted VsNet’s third convolutional
layer to map to V4, a macaque brain area, and identi-
fying a homolog to V4 in humans is less

Figure 2. The architectures of VsNet and Deep-HMAX. Each blue box represents a convolutional layer, with the corresponding ventral-
pathway area labelled above. Pink circles are Depth-Concat layers that concatenate the input maps from the depth dimension. Arrows
indicate input to output direction, dashed arrows represent max-pooling layers and their kernel sizes and strides, yellow arrows rep-
resent dimensionality reduction via 1 × 1 filters, and blue arrows are skip connections that can be either a direct copy (dark blue) or a
dimensionality-reduced copy (light blue) via 1 × 1 filters. Green rectangles within each layer represent a set of filters, where the number
of filters is in red, followed by the filter size, stride size, and the corresponding receptive field (RF) size in visual angle shown in par-
entheses (assuming 1° spans 5 pixels). Note that both VsNet and Deep-HMAX attempt to match the RF sizes of the convolutional filters
in each layer to the range of the RF size estimates in each of the five human ventral visual pathway areas. These target RF size ranges are
indicated at the bottom of each VsNet layer (see the Receptive Field Size section for details on how these estimates were obtained). Each
convolutional filter is followed by a Batch Normalization layer (BatchNorm; Ioffe & Szegedy, 2015) and a Rectified Linear activation layer
(ReLU).
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straightforward. A structure has been identified as
“human V4” (hv4), and neurons in this structure are
organized retinotopically (Brewer, Liu, Wade, &
Wandell, 2005; Fize et al., 2003; McKeefry & Zeki,
1997) like macaque V4, but their feature selectivities
are somewhat different. Macaque V4 neurons are
selective to colour, shape, and boundary conformation
(Cadieu et al., 2007; Desimone, Schein, Moran, &
Ungerleider, 1985; Pasupathy & Connor, 2002),
whereas neurons in hV4 respond mainly to just
colour and occupy a proportionally much smaller cor-
tical surface area (Brewer et al., 2005; Larsson &
Heeger, 2006; McKeefry & Zeki, 1997). For humans,
shape and boundary and other object-related proces-
sing likely occurs in lateral occipital areas 1 and 2 (LO1/
2; Larsson & Heeger, 2006). LO1/2 is also retinotopi-
cally organized and is anatomically adjacent to hV4
(Van Essen et al., 2001). In an effort to obtain a
sufficiently large number of learnable mid-level fea-
tures, we therefore map VsNet’s third convolutional
layer to a combination of hV4 and LO1/2, referred to
here as “V4-like.” Our intent was to map VsNet’s
deeper layers to IT, and decisions had to be made
about these mappings as well. To keep congruence
with the monkey neurophysiology literature, we
specifically wanted to identify human homologs to
macaque TEO and TE. For VsNet’s fourth layer we
settled on a structure anterior to hV4, termed
“human TEO” in (Beck, Pinsk, & Kastner, 2005;
Kastner et al., 2001; Kastner, Weerd, Desimone, &
Ungerleider, 1998) and PIT elsewhere (Orban et al.,
2014), and for its fifth layer we chose central and
anterior inferotemporal cortex (CIT + AIT; Rajimehr,
Young, & Tootell, 2009), roughly macaque TE. We will
show that CNN-CCFs extracted from VsNet, a CNN
having this more primate-like architecture, better pre-
dicts primate behaviour.

Ventral stream surface areas
The numbers of convolutional filters in VsNet’s layers
were based on estimates of human brain surface
areas in the mapped structures. Specifically, V1, V2
and V4-like surface areas were estimated to be
2323 mm2, 2102 mm2, and 2322 mm2, respectively
(Larsson & Heeger, 2006). For PIT and CIT + AIT, we
estimated their surface areas to be approximately 9
times larger than the surface areas in the correspond-
ing macaque structures (TEO and TE, respectively;
Orban et al., 2014), based on reported differences in

cortical size between macaque and human (Van
Essen et al., 2001). This resulted in an estimate of PIT
having a surface area of 3510 mm2, and of CIT + AIT
having a surface area of 3420 mm2. Having these
surface area estimates, one approach might make pro-
portional allocations of convolutional filters at each
layer, but this would ignore the fact that some of
these structures have a retinotopic organization. Reti-
notopy requires that the RFs of neurons having similar
feature selectivities are tiled across the visual field in
order to obtain location-specific information, and
this duplication of neurons is a major factor determin-
ing the surface area of some brain structures. CNNs
have no retinotopy; their filters are convolved with a
visual input rather than duplicated and tiled over an
image. To equate the two, we derive a duplication
factor that estimates the latent number of uniquely
selective neurons within each brain structure, and
then makes the number of convolutional filters in
the corresponding layer proportional to this estimate.
In doing this we make a simple assumption. If the
average RF size for a neuron in a ventral stream struc-
ture is as large as the entire visual field, then there
would be no need for the retinotopic duplication of
this type of neuron for the purpose of capturing infor-
mation from across the visual field. This would lead to
a duplication factor of 1. However, if in this example
the average RF size for a neuron covers only a
quarter of the visual field, then there would minimally
need to be four neurons of this type organized retino-
topically to cover the entire visual field. This would
lead to a duplication factor of 4. More generally, the
following formulas were used to calculate the dupli-
cation factor for a given ventral stream structure and
to determine the number of convolutional filters in
VsNet’s corresponding layer:

# filters/ surface area
duplication

, duplication

= log
visual area
RF size

( )
, (2)

where both the area of the visual field and neuron RF
size are expressed in degrees squared. We take the log
of these values’ proportion in order to scale down the
increase in the numbers of filters from lower to higher
layers, so as to stay within hardware constraints. For
the current implementation, 1° of visual angle equal-
led 5 pixels, making the 224 × 224 pixel input
images subtend approximately 45° × 45° of visual
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area in the model’s “field of view.” For each ventral
stream area, we then take the average RF size at 5.5°
eccentricity to be representative of neuron RF sizes
in that structure (i.e., we currently do not capture the
foveal-to-peripheral increase in RF sizes within a struc-
ture, due to computational limitations, but see the
Receptive Field Size section below). Doing these calcu-
lations, we obtained the representative RF size esti-
mates of 1°, 3°, 5°, 7°, and 12° for V1, V2, V4-like, PIT,
and CIT + AIT, respectively (see also Kravitz et al.,
2013). Finally, using these values in the duplication
factor calculation, and setting the total number of
filters in the first convolutional layer (V1) to 64 (to be
directly comparable to AlexNet), we obtain the final
VsNet architecture consisting of 64, 82, 110, 198, and
272 filters across its 5 convolutional layers, excluding
1 × 1 dimensionality-reduction filters (see Figure 2,
top).

Receptive field size
In primates, the RFs of visually-responsive neurons
increase in size with distance along the ventral
stream; neurons in structures early in this pathway
have small RFs, whereas those in later structures
have larger RFs (Freeman & Simoncelli, 2011; Kravitz
et al., 2013). Moreover, within visual structures preser-
ving reasonable retinotopy (V1 to V4) cortical magnifi-
cation causes neurons coding the central visual field to
have relatively small RFs, and neurons coding increas-
ingly peripheral locations to have increasingly larger
RFs (Engel, Glover, & Wandell, 1997; Freeman & Simon-
celli, 2011; Harvey & Dumoulin, 2011; Wade, Brewer,
Rieger, & Wandell, 2002). VsNet was designed to
grossly capture both of these properties. However,
this latter relationship between RF size and visual
eccentricity is difficult to implement in a CNN, where
models are computationally constrained to have
filters of only a single size within each of their convo-
lutional layers (He et al., 2016; Krizhevsky et al., 2012;
Simonyan & Zisserman, 2015; Zeiler & Fergus, 2014),
with a current exception being the Inception Module
from Szegedy et al. (2015). This is because the convo-
lutional filters in a CNN were specifically designed not
to be applied at specific image locations (i.e., shared
weights), making the modelling of a changing retino-
topy difficult. But we approximate the variability in RF
sizes due to scaling with eccentricity, and we do this
by using parallel sets of 3 × 3, 5 × 5, and 7 × 7 pixel
convolutional filters in each of VsNet’s layers (except

for layers 3 and 4, which used only 3 × 3 and 5 × 5
filters). These sizes were chosen so as to approximate
the range of RF sizes within each of the corresponding
structures (Harvey & Dumoulin, 2011; Kastner et al.,
2001; Rousselet, Thorpe, & Fabre-Thorpe, 2004;
Smith, Williams, & Greenlee, 2001). Given our use of
5 screen pixels to represent 1° of visual angle, the
224 × 224 pixel ImageNet images used for training
subtended a visual angle of 45°. More importantly, a
3 × 3 filter In VsNet’s V1 layer spanned 0.6°, a 5 × 5
filter spanned 1°, and a 7 × 7 filter spanned 1.4°. This
range of RF sizes (0.6° to 1.4°) maps closely onto the
range of RF sizes in V1 (0.25° to about 2°). These
filters are convolved with the input, producing
feature maps that we concatenate in depth, such
that the convolutional filters at the next higher layer
(V2) receives responses from filters having three
different sizes. For example, the stacking of layer 2’s
3 × 3 filters on top of layer 1’s 3 × 3, 5 × 5, and 7 × 7
filters, results in layer 2’s 3 × 3 filters having RF sizes
of 1.4°, 1.8°, and 2.2°, respectively (the parenthetical
values listed in Figure 2 for VsNet’s 3 × 3 V2 filters).
Doing this also for the 5 × 5 and 7 × 7 filters produced
a range of sizes again corresponding well to the range
of RF sizes observed in V2 neurons (the values below
each blue box in Figure 2, top). A similar procedure
was followed for VsNet’s V4-like layer, which produced
similarly good estimates of neuron RF sizes. Over
VsNet’s first three layers, the filters at each higher
layer therefore had, not only larger RFs, but also a
broader range of RF sizes. For VsNet’s PIT and CIT +
AIT layers, the same numbers of filters were allocated
in the parallel sets, reflecting the relaxation of a retino-
topic organization in the corresponding ventral struc-
tures. Note also that GoogLeNet’s Inception Module
(Szegedy et al., 2015) has a similar parallel-filter archi-
tecture, but it is unlikely that the design of this model
was inspired by the primate visual system.

Bypass connections
In addition to the feed-forward projections that
connect each lower-level ventral stream area with
areas at the next higher level along the pathway,
good evidence also exists for connections that skip
or bypass neighbouring ventral structures (Kravitz
et al., 2013; Nakamura, Gattass, Desimone, & Ungerlei-
der, 1993; Nassi & Callaway, 2009). VsNet captures
both types of ventral stream connectivity, although
it should be considered only a first-pass attempt to
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do so; capturing the minutia of this brain connectivity
is currently beyond its scope. The direct connections
are already embedded in its feed-forward design, so
the focus here will be on detailing its bypass connec-
tions. Major bypass connections exist from V2 to TEO
(Nakamura et al., 1993; Tanaka, 1997) and from V4 to
TE (Tanaka, 1997), with a weaker bypass connection
known to exist between V1’s foveal region to V4
(Gattas, Sousa, Mishkin, & Ungerleider, 1997; Naka-
mura et al., 1993; Ungerleider, Galkin, Desimone, &
Gattass, 2007). These three bypass connections were
designed into VsNet. We added a weak bypass con-
nection from layer 1 (V1) to layer 3 (V4-like), a full
bypass from layer 2 (V2) to layer 4 (PIT), and another
full bypass from layer 3 (V4-like) to layer 5 (CIT + AIT).
We implemented these bypass connections by conca-
tenating in the depth dimension the lower layer’s
output to the target layer’s input. Note that this conca-
tenation method is different from the summation
method used by ResNet (He et al., 2016), but is con-
ceptually similar to the Inception Module design
used by GoogLeNet (Szegedy et al., 2015). Following
Szegedy et al. (2015), we also use 1 × 1 filters before
each of VsNet’s convolutional layers (except layer 1,
where they are not needed) for dimensionality
reduction and memory conservation (yellow arrows
in Figure 2, top). We chose this concatenation
method in order to give VsNet maximum flexibility
in how bypassed information is best combined with
information at the target layer, which we believe is
preferable to assuming that the cortex simply sums
this information. Specifically, a full bypass was
implemented by concatenating in the depth dimen-
sion a complete copy of the source layer’s output
feature map to the end of the target layer’s input
map. We implemented a weak bypass similarly, but
now the source layer’s output map was depth-
reduced (dimensionality reduced by half via 1 × 1 con-
volutional filters) before being concatenated with the
target layer’s input feature map.

Imagenet training

VsNet, AlexNet, and Deep-HMAX were trained using
ImageNet (Russakovsky et al., 2015). All training and
validation images were resized to have the shortest
side be 256 pixels while keeping the original aspect
ratio, and the standard data augmentation methods
of random crops (224 × 224) and random horizontal

flips were employed. Centre crops were used to
compute validation accuracies at the end of each
training epoch. The training batch-size for AlexNet,
Deep-HMAX, and VsNet was 128, 64, and 60, respect-
ively, determined by GPU limitation. Each network
was trained using 4-threads, with image data stored
on a solid-state drive, and 60 training epochs took
roughly 2–4 days to complete using a 2.93 Ghz Intel
Xeon x3470 processor with 32 Gb of memory and a
single Titan X GPU. Networks were implemented
using Torch7, and the method from He, Zhang, Ren,
and Sun (2015) was used for parameter initializations.

Following ImageNet training, networks were fine-
tuned using the SBU-68E dataset (https://github.
com/cxy7452/CNN-CCF/tree/master/SBE-68E/), an
expanded version of the SBU-68 dataset. The original
SBU-68 dataset contained 4800 images of objects,
which were grouped into 100 exemplars from each
of 48 subordinate-level categories (Yu et al., 2016).
These images were further combined hierarchically
to create an additional 16 basic-level categories and
4 superordinate-level categories, yielding 68 cat-
egories in total. The expanded SBU-68E dataset built
on the earlier dataset by exploiting Google, Yahoo,
and Bing image searches to obtain 1500 exemplars
from each of the same 48 subordinate-level cat-
egories, thereby making it more suitable for deep
network training. GIST descriptors (Oliva & Torralba,
2001) were used to meticulously remove image dupli-
cates, followed by a manual pruning of the images to
ensure that those with incorrect class labels were
removed and that the retained images were well-
cropped around the labelled object. These exclusion
criteria yielded 500 training and 50 validation images
per category, for a total of 24,000 training and 2400
validation images in the expanded set. All images
were resized such that the shortest side was 256
pixels wide while retaining the original aspect ratio.

Results

CNN-CCFs predict visual attention control

Although all of the implementedmodels were trained for
object classification and therefore have no dimension of
time, we exploited a finding from Yu et al. (2016) that
allowed us to relate model performance to search
efficiency. This study showed that the number of BOW-
CCFs extracted from their model accurately predicted
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the time that participants took to first fixate a target cat-
egory cued at each of the three tested hierarchical
levels. Our first evaluation was therefore to obtain CNN-
CCFs from the convolutional layers of identically-trained
VsNet, AlexNet, and Deep-HMAX networks using the pre-
viouslydescribedCNN-CCF feature selectionmethod, and
determine whether the number of CNN-CCFs extracted
from these three deep networks also predicted the
effect of a target category’s hierarchical level on attention
control. As shown in Figure 3(A), all of the models tested
were highly successful in capturing the behavioural trend
of increasing time-to-target with movement up the cat-
egory hierarchy. This demonstration is important in
showing that the number of CCFs is highly generalizable
in its ability to predict the effect of hierarchical level on
categorical guidance; across four very different models,
more CCFs were extracted for subordinate-level cat-
egories compared to basic, and for basic-level categories
compared to superordinate, with the assumption that
greater numbers of these features formbetter target tem-
plates that can more efficiently guide attention to the
target categories.

Capturing the behavioural trend in guidance across
category levels is one thing, using CCFs to predict
attention control to individual categories is a different
and far more challenging goal. Our experimental
logic, however, is the same; the more CCFs that can
be extracted for a target category, the better attention

should be able to bias the features representing an
unseen exemplar of that category in the visual input,
with the behavioural expression of this biasing being
the guidance of gaze to the target’s location. Across
categories we therefore predict a negative correlation
between the number of CCFs and the search time-to-
target measure, with more CCFs leading to shorter
target fixation times. But recall that each network
layer is extracting its own CCFs, and it is unreasonable
to believe that the attention control mechanism
would disregard network depth and weigh all of
these features equally. We therefore found a CCF
weighting across each network’s convolutional layers
that optimized a correlation (Spearman’s ρ) between
the number of CCFs extracted at each layer and the
time-to-target measure of attention control, with
each network model having its own optimized layer
weights. The advantage of this formulation is that it
allowed Spearman’s ρ to be used directly as an objec-
tive function to optimize the layer-wise weights, W,
which we did using beam search with random steps
(Vicente, Hoai, & Samaras, 2015).

Figure 3(B) shows these category-specific predic-
tions of guidance efficiency at each hierarchical level
and for the four tested CCF models. Note that predic-
tion success is indicated by higher negative corre-
lations, plotted upward on the y-axis. Predictions
from the BoW-CCF model were poor for subordinate

Figure 3. (A) Predictions of human attention control (time to fixate the target) for one CCF model using Bag-of-Words (BoW) and three
CNN-CCF models: AlexNet, Deep-HMAX, and VsNet. Results are grouped by level in the categorical hierarchy, and model performances
are linearly scaled to best fit the behaviour (i.e., the models’ results are put in the behavioural scale). All four models successfully pre-
dicted the subordinate-level advantage in attention guidance to categorical targets. (B) Model predictions of attention control to indi-
vidual target categories within each hierarchical level, evaluated using the leave-one-out method. Given the inverse correlation
between number of CCFs and the time needed to fixate a target (Yu et al., 2016), more negative correlations indicate better predictions
of attention control. Grey regions indicate performance ceilings on how well a model can predict attention guidance, based on +/− one
standard deviation in mean guidance from a “subject model.” The subject model was also computed using leave-one-out, only now we
found the Spearman’s ρ between n−1 participants and the participant who was left out (the mean and standard deviation was obtained
by repeating this for all participants). The results show that models using BoW or AlexNet to extract CCFs are unable to predict human
behaviour. However, the more brain-inspired CNN-CCF models perform better, with VsNet being the best and on par with a human
subject model. (C) Best-fitted weights by convolutional layer for each CNN-CCF model, grouped by hierarchical level. VsNet’s
weight distribution suggests that categorical guidance at both subordinate and basic levels is driven by low-level features, while gui-
dance at the superordinate level is driven by high-level features.
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and basic-level categories and significantly worse than
those from VsNet and Deep-HMAX. A very good pre-
diction was obtained at the superordinate level, but
given that there were only four categories at this
level a high correlation might simply have resulted
from chance. Interestingly, the number of CNN-CCFs
extracted from the widely-used AlexNet model failed
entirely in predicting attention guidance to individual
target categories. Of the two evaluated brain-inspired
CNNs: prediction success from Deep-HMAX was not
reliably different from VsNet at the subordinate level
(p = 0.059), was significantly lower than VsNet at the
basic level (p < 0.001), and non-existent at the super-
ordinate level, while VsNet’s predictions remained
very good. Indeed, for individual categories at all
three hierarchical levels, VsNet’s predictions were
well within the performance ceilings (grey regions)
computed by having n−1 participants predict the
behaviour of the participant left out. This means that
VsNet’s predictions were as good as can be expected
given variability in the participant behaviour, and it
is the only model of the four tested for which this
was consistently the case. These results suggest that
not all brain-inspired CNNs are created equal; a CNN
designed after the ventral visual pathway is more pre-
dictive of attention control than the architecture used
in Deep-HMAX.

CNNs have been criticized as being “black boxes”;
they perform well but the reason for their success
defies understanding. We prefer to think of CCNs as
“transparent boxes,” ones that can be probed and
peered into in attempts to decipher how they work.3

As one example, Figure 3(C) plots the optimized
layer weights (W ), grouped by level in the category
hierarchy, for each of the three CNN models tested.
For subordinate and basic-level targets, VsNet’s distri-
bution of CCF weights showed a very clear dominance
for early visual features, meaning that these features
best predicted attention control for targets specified
at these categorical levels. However, for superordi-
nate-category targets the CCFs learned by its CIT +
AIT layer were the most predictive. VsNet’s CCF layer
weighting therefore captures what has become a
core finding in the categorical search literature; that
lower-level features dominate attention control
when relatively clear visual properties of the target
can be discriminated (as is often likely to be true for
subordinate and basic-level targets), but that higher-
level features must be used to control attention to

targets that do not have clearly representative visual
properties (such as targets specified at the superordi-
nate level). In contrast, the optimized CCF layer
weightings for Deep-HMAX across its 10 layers
seemed more erratic (although perhaps suggesting
the emergence of a pattern similar to VsNet), and
the very weak correlations from AlexNet made its opti-
mized CCF layer weights uninterpretable. Once again,
the type of brain-inspired design of the CNN matters.
Here we show that differences in CNN architectures
have consequences, one of which is that different
CCFs are extracted at different layers. We believe
that the distribution of CCF layer weights in the CNN
“box” is a meaningful pattern that we can observe,
analyse, and potentially use to generate predictions
for further behavioural studies of attention control.

CNN-CCF visualization

VsNet is also a transparent box in that it is possible to
peer inside to see what image patterns its CCFs were
coding – the representative visual features of an
object category. The CCFs for a given category can
be visualized by finding the regions in input images
that best activate a given CCF (a particular convolu-
tional filter). Specifically, we first forward-pass an
image of a category exemplar through VsNet to
obtain the maximally-responsive locations in a
feature map for the CCF of interest, and then probe
backwards from the filter’s most activated location
to the pixels in the image that was causing this
maximal response (Zeiler & Fergus, 2014). Figure 4(A)
visualizes the image regions eliciting the five largest
responses from CCFs, based on a ranking of their
SNR scores, at each of VsNet’s layers for one exemplar
image from the taxi category. Note that these maxi-
mally-active CCFs seem in some cases to be represent-
ing object parts that are specific to typical taxis, such
as the rooftop advertisements, but also parts that
are more broadly representative of cars, such as
wheels, windows, and side mirrors. This observation
also illustrates the generative nature of CCFs; they
code the features that are common to a category
(rooftop signs and wheels, in the case of taxis) regard-
less of whether these features are discriminative
(police and race cars also have wheels, but only taxis
have rooftop signs).

The aggregated locations of maximally-active CNN-
CCFs can also be used to detect categories of objects.
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Figure 4. (A) A CNN-CCF visualization for the taxi category. The visualized patches are the top 5 CCFs, ranked based on their SNR, for
each convolutional layer in VsNet in response to one taxi image exemplar (upper-left). The CNN-CCFs seem to preferentially code object
parts that are representative of a typical taxi, such as tires, headlights, windows, and the rooftop sign. (B) Examples of CNN-CCF acti-
vation maps used for object detection: original images (top row), activation maps from AlexNet (middle row), and activation maps from
VsNet (bottom row). Activation maps show the combined activity for a given category’s CNN-CCFs, where warmer colours indicate
greater activation. Categories from left to right: shirt (basic), folding chair (subordinate), and speedboat (subordinate).
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This is because CCFs broadly capture the different parts
of an object category, at different scales, making it poss-
ible to detect the presence of a target object category in
an image simply by detecting its constituent representa-
tive parts. As qualitative examples, Figure 4(B) shows
images depicting the object categories of shirt, folding
chair, and speedboat (top row), paired with the com-
binedactivationmaps fromCCFsextracted for those cat-
egories by VsNet (bottom row). None of these images
were part of the training set. Note that the CCFs for
the shirt category precisely differentiate that object
from the categorical siblings of jacket and pants, and
that the CCFs for the category of folding chair are
clearly coding the chair’s legs, which is a part that dis-
criminates that subordinate-level category from other
chairs. The speedboat example illustrates the difference
between bottom-up saliency and top-down goal-
directed attention control; CCFs activate strongly to
the small boat but almost not at all to its far more
salient white wake. Also significant about this demon-
stration is that this precise object localization was
accomplished simply by combining the CCF activation
maps without the need for additional processing costs.
Object detection was, in a sense, free (Zhou, Khosla,
Lapedriza, Oliva, & Torralba, 2014).

For comparison, we also plot in Figure 4(B) localiz-
ations using CNN-CCFs extracted from AlexNet
(middle row). Note that we did not do this for Deep-
HMAX due to the more complex architecture of that
model making this localization method difficult to
implement. The comparable CCFs visualized from
AlexNet were more hit or miss; sometimes they were
reasonable (e.g., folding chair) whereas other times
the visualizations were clearly subpar (e.g., speedboat)
or inexplicable (e.g., shirt). This suggests that not all
CCN-CCFs are created equal, with those from VsNet
producing consistently better object detection across
these examples than those from AlexNet, speculatively
due to VsNet’s brain-inspired design. However, we
believe that the broader message from this analysis
is that CCFs look generally good when visualized,
and although VsNet may be more successful in this
regard than AlexNet they both produced reasonable
results because they both extracted CNN-CCFs.

Large-scale image classification

Prior to extracting CCFs from the three CNN models,
the networks must be trained to learn an initial set

of features. This initial training, and later validation,
was done using ImageNet (Russakovsky et al., 2015)
following standard training procedures (see the Ima-
geNet Training section for details). Although not
directly within this study’s question of focus (goal-
directed attention control), comparing classification
performance from initial training results can indicate
feature quality differences between the different
network architectures. Given their ready availability,
we therefore discuss these results briefly here.
Another motivation for raising this topic is that we
believe VsNet produced interesting behaviour, and
this might make it also of interest to readers doing
large-scale object classification.

Table 1 summarizes model performance on Ima-
geNet’s validation set. Classification accuracies for all
models were high, indicating that the networks were
successfully trained. However, VsNet achieved the
highest classification accuracy while AlexNet achieved
the lowest. This is a notable finding because VsNet’s
design was specifically engineered after the ventral
stream of visual brain areas, and was specifically not
designed or optimized for classification accuracy.
Yet, it outperformed a model that was designed to
optimize classification – AlexNet – by what is con-
sidered a significant margin in the computer vision lit-
erature. Moreover, although deeper CNN architectures
generally outperform shallower networks (Simonyan &
Zisserman, 2015), in VsNet we found an exception to
this rule. While Deep-HMAX, the deepest network of
the three, outperformed AlexNet in classification accu-
racy, it was less accurate than the shallower VsNet.

Also notable is the fact that VsNet achieved the
highest accuracies despite having fewer convolutional
filters than either Deep-HMAX or AlexNet (726, 1760,
1152 filters, respectively, excluding 1 × 1 dimensional-
ity-reduction filters). Similar to network depth, the
number of non-1 × 1 convolutional filters typically cor-
relates highly with network performance in the com-
puter vision literature: ResNet (He et al., 2016) has

Table 1. Top-1 and top-5 validation accuracies for the three CNN
models on the ImageNet dataset (Russakovsky et al., 2015). The
overall high accuracies indicate the low likelihood of overfitting.
Note that network performance improved with the degree of
brain inspiration in its design.
ImageNet AlexNet Deep-HMAX VsNet

Top-1 Accuracy 57.7% 59.6% 61.5%
Top-5 Accuracy 80.6% 82.4% 83.9%
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more filters and is more powerful than GoogLeNet
(Szegedy et al., 2015), which is larger and more power-
ful than VGG (Simonyan & Zisserman, 2015), which is
larger and more powerful than AlexNet (Krizhevsky
et al., 2012). Although VsNet is not alone in this
regard (see Canziani, Culurciello, & Paszke, 2017), it is
an example of a CNN outperforming networks
having many more convolutional filters. This reversal
of trend suggests that VsNet was able to learn better
representations despite having a smaller pool of fea-
tures from which to sample. We believe that this
greater convolutional kernel efficiency (Figure 5) is a
meaningful benefit of VsNet’s brain-inspired design.

Discussion

This study is among the first to use a CNN to predict a
goal-directed, attention-controlled behaviour – the
guidance of gaze to a categorically-defined target
(see also Adeli & Zelinsky, 2018). Previous work
showed that a computationally-explicit generative
model (BoW-CCF) could predict a relationship
between a target’s level in a category hierarchy and
the efficiency of attention control (Yu et al., 2016),
but the predictive success of this BoW-CCF model
was limited to only three hierarchical levels, essentially
three data points. When this model attempted to
predict the degree of attention guidance to individual
target categories, it failed (see Figure 3(B)). However,
the BoW method has been largely replaced in recent

years by deep learning models, which are able to
learn far richer feature representations (Razavian, Aziz-
pour, Sullivan, & Carlsson, 2014) that lead to signifi-
cantly better performance in large scale image
classification (Krizhevsky et al., 2012; Sanchez, Perron-
nin, Mensink, & Verbeek, 2013). Here we show that cat-
egory-consistent features (CCFs) selected by a CNN can
predict, not just the overall effect of hierarchical level
on attention control, but also the degree of attention
control to individual target categories across this same
three-level hierarchy. This generalization across cat-
egories is testimony to the robustness of CCFs that
are extracted from a CNN model. We consider this
CNN-CCF method to be the more important and
lasting contribution of this work. Computational
models of cognitively complex behaviours, to the
extent they are successful, tend to have short lives
(e.g., http://saliency.mit.edu/results_mit300.html),
and we expect that VsNet will soon be replaced by
even more brain-inspired models. However, we
believe that the selection of category-consistent fea-
tures from a deep network, and the use of these fea-
tures to predict attention control, are ideas that
might drive research in attention modelling for years
to come.

VsNet is (currently) significant in that it is an artificial
deep network whose design is broadly informed by
the architecture of the primate ventral visual stream.
We compared VsNet to another brain-inspired model
(Deep-HMAX) and a popular, yet brain-uninspired
model (AlexNet), and showed that VsNet best pre-
dicted attention control. Computationally, this dem-
onstration is significant in two respects. First,
AlexNet has 58% more learnable filters than VsNet,
and Deep-HMAX has 142% more, yet VsNet was
more predictive than both. Although similar excep-
tions have been noted (Canziani et al., 2017), the far
more common relationship is that prediction success
increases with the number of convolutional filters
(ResNet > GoogLeNet > VGG > AlexNet). VsNet violates
this general trend by predicting attention control
better than more powerful networks having signifi-
cantly more convolutional filters. Second, given that
deeper CNN architectures generally outperform shal-
lower architectures (Simonyan & Zisserman, 2015), it
is notable that Deep-HMAX, a 10-layer CNN, did not
compare more favourably to VsNet, a network with
half its depth. We speculate that this might be due
to Deep-HMAX’s long parallel branches (forming

Figure 5. Plotted is a measure of the efficiency of a convolutional
kernel (filter), defined as accuracy per convolutional filter. Kernel
efficiency is shown for Top-1 (percentage of cases in which the
model’s most confident prediction was correct) and Top-5 (per-
centage of cases in which the correct object category was
among the five-most confident predictions from the model)
evaluation metrics. VsNet was found to have the highest convo-
lutional kernel efficiency, followed by AlexNet. Deep-HMAX was
the least efficient network, possibly due to its long parallel
branches learning redundant features.
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after its V2 layer) creating a redundancy in the filters
that it learns, in contrast to VsNet that uses short
bypass connections to route lower-level information
more directly to higher layers. Indeed, it is plausible
that this more direct routing of visual inputs from
lower to higher layers is exactly what was responsible
for VsNet’s better prediction of attention control.
Determining the specific sources of VsNet’s success,
and why other brain-inspired designs fail, will be an
important direction for future work. For now we
must limit our conclusion to the fact that VsNet, a
comparatively simple network in terms of its number
of trainable filters, learned target-category represen-
tations that best predicted human attention control
in the tested search task. We further speculate that
the CNN-CCFs learned by VsNet approximate the
local target-feature circuits learned along the ventral
visual stream that form the representations that can
be biased by a goal-specific attention target. VsNet
does not, however, currently address the compu-
tational mechanism by which the attention target
biases these features, and adding this will be
another direction for future work (see also Adeli &
Zelinsky, 2018; Zhang et al., 2018).

A theoretically important implication of our study is
that different model architectures produced different
CCFs at different layers, and that this impacted the
prediction of human search behaviour. These CCF
differences occurred despite all the models being
able to classify the target categories quite well. The
suggestion from VsNet is that early and intermedi-
ate-level visual features – those preceding the features
used for large-scale object classification – can be
biased for the purpose of directing attention to the
location of a target goal. Note that this restates a
view of attention control that is widely accepted in
the visual search literature (Wolfe, 1994; Zelinsky,
2008), although there are more recent suggestions
that search may additionally be guided by recognized
objects (Einhäuser, Spain, & Perona, 2008) and scene
context (Neider & Zelinsky, 2006). VsNet, Deep-
HMAX, and AlexNet could all classify the tested
object categories, but only the CNN-CCFs extracted
from VsNet predicted the guidance of overt attention
to the locations of these categories in visual inputs.
Why? The importance of intermediate levels of rep-
resentation is sometimes lost in the modelling litera-
ture, where the goal is often to achieve higher
classification accuracy over an increasingly broad

range of categories. However, high classification accu-
racy does not mean that a particular architecture has
learned good representations for guiding overt atten-
tion. It may be that these higher-level representations
become highly unreliable for peripherally-degraded
visual inputs (Zelinsky, Peng, Berg, et al., 2013), a
speculation that dovetails well with the very rapid
decline in human object recognition ability with
increasing visual eccentricity (Nelson & Loftus, 1980;
Thorpe, Gegenfurtner, Fabre-Thorpe, & Bülthoff,
2001). If objects are difficult to recognize in the
degraded visual periphery, this would necessarily
lessen the contribution of higher, object-based layers
of a network to guide search. It is also possible that
VsNet learned rich feature representations that are
capable of obtaining evidence for the target category
in a peripherally-degraded visual input, and that this
translated into its better ability to predict search
behaviour. Future work will selectively “lesion” VsNet
by relaxing its biological constraints for select layers
and observing the effect of this lesion on predicting
attention control. Such a lesion study approach will
be valuable in experimentally isolating the CNN-CCFs
that can be biased by goal-directed attention. For
now, our take-away message is simple: if one’s goal
is to model primate attention control, it makes sense
to design your model’s architecture to be more like
that of the visual system embodied in the primate
brain.

Far from being a black box, VsNet’s use of CNN-
CCFs hints at how attention control and object classifi-
cation processes might interact across the layers of a
deep network. One clue comes from the observation
that the CNN-CCFs extracted by VsNet segregated
reasonably across its layers, with CCFs for subordinate
and basic-level categories extracted at the lower layers
and CCFs for superordinates extracted at the higher
layers. Another clue comes from the promising
object localization made possible by projecting CNN-
CCF activation from higher layers back to lower
layers. This method exploits the high-resolution
spatial information coded by lower-level target fea-
tures (in the early visual layers) to estimate the
spatial inputs used by the rich higher-level represen-
tations learned for good classification. The demon-
stration also has implications for Biased-Competition
Theory (Desimone & Duncan, 1995; Tsotsos et al.,
1995). It shows how a top-down bias can effectively
delineate a target object goal in space, which is a
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prerequisite computation for the selective routing of
visual inputs from that region to higher brain areas
for classification. Under this framework, attention
control and classification are therefore locked in a
cycle of optimization; better classification leads to
stronger attention control, which in turn leads to
better classification. We believe that the most impor-
tant function of attention control is to mediate good
object classification, and that an understanding of
goal-directed behaviour requires that the currently
largely separated attention control and object classifi-
cation literatures be conceptualized as two parts of a
broader object-interaction system (Allport, 1980).
Brain-inspired CNN models are a promising tool to
begin understanding the neurocomputational archi-
tecture needed to interact with real-world objects.

Notes

1. In referring to “attention control” we draw a distinction
between an “attention target”, which we define as the
high-level semantic representation specifying an
immediate behavioural or cognitive goal (e.g., a desig-
nated target category in a search task), and “target fea-
tures”, which we define to be the lower-level visual
features representing the attention target in a perceptual
input. It therefore follows that “attention control” is the
goal-specific biasing of lower-level target features for
the purpose of controlling an interaction with the atten-
tion target (e.g., directing the fovea to the location of a
target goal in a visual input), and a measure of attention
control is one that evaluates the success or efficiency in
achieving this goal (e.g., the time required to align the
fovea with the target). Understanding both the attention
target and the target features is essential to understand-
ing attention control and goal-directed behaviour. There
could be a top-down attention target reflecting a desire
to find a Pekin duck in a pond, but this visual goal could
not be realized unless features of Pekin ducks have been
learned by the visual system and are therefore available
for top-down biasing.

2. Note that our model quantification treats two filters as
equivalent in complexity despite their having different
numbers of free parameters. Quantifying model com-
plexity in terms of free parameters is arguably not mean-
ingful with respect to higher-level perceptual and
cognitive behaviours, such as categorical search. It essen-
tially places more weight on the number of connections
comprising a representation rather than the represen-
tation itself. A 100 × 100 filter covers more area (and
has 9900 more parameters) than a 10 × 10 filter, but
the larger filter is not likely to be 10× more predictive
than the smaller filter; the information coded by the
two simply differs in scale and type. Moreover, applying

such a quantification scheme to the visual system would
imply that the responses from neurons having large
receptive fields are more predictive than the responses
of neurons having smaller receptive fields, when the
opposite is arguably more likely to be true. Our quantifi-
cation approach draws an equivalency between filters
(the units at each layer) and features (or feature maps,
as these are derived by convolution with a filter), which
is how complexity has historically been conceptualized
in the attention literature.

3. We thank Aude Oliva for this term, which she used in
a personal communication at the Vision Sciences
Society annual meeting (May, 2017); see also Bau, Zhou,
Khosla, Oliva, & Torralba, 2017, for a similar sentiment.
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