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Abstract—Conventional streaming solutions for streaming 360-
degree panoramic videos are inefficient in that they download
the entire 360-degree panoramic scene, while the user views
only a small sub-part of the scene called the viewport. This
can waste over 80% of the network bandwidth. We develop a
comprehensive approach called Mosaic that combines a powerful
neural network-based viewport prediction with a rate control
mechanism that assigns rates to different tiles in the 360-degree
frame such that the video quality of experience is optimized
subject to a given network capacity. We model the optimization
as a multi-choice knapsack problem and solve it using a greedy
approach. We also develop an end-to-end testbed using standards-
compliant components and provide a comprehensive performance
evaluation of Mosaic along with four other streaming techniques
— two for conventional adaptive video streaming and two for 360-
degree tile-based video streaming. Mosaic outperforms the best
of the competition by as much as 50% in terms of median video
quality.

Keywords—360-degree video streaming, adaptive video stream-
ing, MPEG-DASH, Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN)

I. INTRODUCTION

With video streaming proliferating on the Internet [1] inter-
est is growing for immersive video applications. An important
application in this space is 360-degree video [2]. 360-degree
video is a panoramic video recorded using omni-directional
cameras [3]. It is then projected onto 2D using one of the
available mapping techniques (e.g. equirectangular, cube, and
pyramid). Typically, the user watches the 360-degree video
using head mounted display (HMD) or commodity mobile
devices (e.g., [4]).

Regardless of the actual mapping used, the existing video
streaming ecosystem delivers the full 360-degree scene, while
the user views only part of the scene at a given time, called
viewport. A viewport is about 90° — 120° horizontally, 90°
vertically, less than 20% of the full 360-degree scene. This
amounts to a significant wastage of network bandwidth by
fetching bits that is never used in actual viewing. Thus, with
the prevalent Internet connection speeds [5] the video can only
be viewed at a compromised quality. Fig. 1 shows the total
download video file size in MB, consumed by conventional
360-degree video streaming compared with the download
consumed by only the current viewport. This is shown for
multiple video qualities (or bit rates). The highest of the bit
rates used is equivalent to the 4K video quality.
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Fig. 1. Total downloaded size vs. download size for only the viewport watched
(in MB) for an actual 360-degree video streaming experiment with video
encoded in different bit rates. The video is about 1 min long. Further details
about the experiments are discussed in Section III.

Clearly, the perfect solution is a video streaming system
that fetches only the information related to the viewport and no
more. The challenge here is as follows: 1) In a video streaming
system the video frames are fetched in advance of playing and
thus the user’s viewport must be predicted in advance in order
to do this. 2) The viewport depends on user’s attention and
thus cannot always be predicted perfectly in advance though
several techniques have been proposed recently with varying
prediction performance [6]-[9]. Imperfect prediction must be
handled adequately. For example, with imperfect prediction,
part of the viewport may be missing and thus the user’s quality
of experience (QoE) will drop — causing the player to either
ignore these missing parts or stall until these missing parts are
fetched. 3) Viewport prediction must be integrated seamlessly
with bit rate control.

As an example, consider Fig. 2. The Subfigure 2(a) shows
the scenario where the entire frame is downloaded at a
low quality (video bit rate) subject to the available network
bandwidth. Subfigure 2(b) shows a scenario when only the
viewport portion is downloaded but now at a much higher bit
rate. However, if the viewport prediction is imperfect the user
may miss part of the viewport (Subfigure 2(c)) leading to a
poor quality of experience. The alternative we pursue in this
work is to use utilize the viewport prediction to determine
which parts of the frame to be fetched at what quality. Thus,
the portion of the frame that is highly probable is fetched at a
higher quality and other less probable areas are still fetched,
but at a lower quality and other lower probability areas are
not fetched at all (Subfigure 2(d)).

Even for conventional videos, adequate bit rate control is
a challenging problem and is still a matter of active research
interest [10]-[15]. With 360-degree video a new dimension is



(b) Download predicted viewport only

(a) Download Full 360 ° video

(c) Download predicted viewport only,
but prediction inaccurate

(d) Download rate adapted tiles
based on viewport prediction

Fig. 2. Example illustrating the tradeoff between accuracy of viewport
prediction and video resolution.

now added to this: a temporal domain problem now transforms
to a spatio-temporal problem. As the example with Fig. 2 has
illustrated, appropriate video bit rates both across space and
time must now be determined.

While a number of studies have recently looked into op-
timizing 360-degree video streaming [16]-[23], these have
not developed a complete end-to-end solution including bit
rate allocation/control across both space and time along with
advanced viewport prediction. Though a more recent study
[24] proposed such a system, in this study the server has to
manage client status, decide which client HTTP request of
video it should respond to, making them difficult to scale. It
also suffers from low prediction accuracy. In contrast, Mosaic
does not require any changes to the MPEG-DASH standard.
Moreover, Mosaic also uses state-of-the-art vision techniques
such as 3D-Convolutional Neural Networks (3D-CNN) [25] to
ensure that it can achieve accurate prediction for much longer
segments than previous studies. This significantly reduces both
the computation and network overhead. See a comprehensive
review in Section V.

In this work, we develop an end-to-end 360-degree video
delivery system, Mosaic, that streams spatial subparts of the
video at appropriate encoding rates to maximize the estimated
user’s quality of experience subject to the prevalent network
capacity. (See Fig. 3 for an overview of the major com-
ponents.) To achieve this, Mosaic spatially partitions video
frames into rectangular regions called tiles, encodes them in in
multiple bitrates, and packages them for adaptive 360-degree
video streaming.

To utilize the existing video streaming ecosystem, we use
MPEG-DASH with spatial relation description (SRD) [26].
We predict the user’s viewport based on features such as head
tracking data, motion map and saliency map using advanced
machine learning methods. We then use a variant of the knap-
sack problem to choose an optimal video resolution for each
tile, given available network capacity and prediction. To handle
the prediction error, we factor in a penalty of missing tiles
and incorporate this cost within the rate adaptation equation.
We evaluate Mosaic for 360-degree video streaming on the
Internet with a rate-limited client network link and compare
its performance with state-of-the-art algorithms for both con-
ventional video streaming and 360-degree video streaming.
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Fig. 3. Overview of Mosaic design: a tile-based adaptive 360-degree video
Streaming using user viewport prediction.

Mosaic provides about 50% better median user perceived
video quality than its nearest competitor in our evaluations.
Median rebuffering is 3 times less than that of the competitor
over WiFi and similar of 4G/LTE emulated network.

The rest of the paper is structured as follows. We discuss
the background and develop the Mosaic system design in
Section II. Section III reports the experiment methodology and
explains our implementation. We describe the experimental
results and our observations in Section IV. We discuss related
works in Section V and conclude in Section VI.

II. MOSAIC SYSTEM DESIGN
A. Background

The first step of adaptive streaming of 360-degree videos
is to divide the video across both space and time. Across
space, the 360-degree frame is split into multiple tiles after
an equirectangular projection [17], [26]. Across time, each
tile is split into multiple chunks of fixed duration, called
segments. We evaluate tiling/segmentation overhead against
4sec chunk 1x1 tile encoding. We find 4x6 encoding is optimal
considering the viewport horizontal and vertical degree and
number of HTTP request of tiles. While 1 sec chunk is used
in previous studies [6], [24], our evaluation shows that our
encoding overhead reduces by 50% using 2sec chunks. A
<tile,segment> is the unit of encoding, storage or network
communication. Each <tile,segment> is encoded in multiple
qualities (i.e., resolutions or video bit rates) at the video server.

The client dynamically chooses the playback bitrate of each
segment based on the network capacity and/or client player
buffer levels and sends HTTP requests to the server to prefetch
the future segments of selected set of tiles. Ideally, the only
tiles that need to be fetched are those corresponding to the
user’s viewport. We assume that the tiles are smaller than the
viewport. In other words, multiple tiles are needed to cover the
viewport. Since the viewport at the (future) playback time is
unknown when video data is being fetched we first predict the
viewport corresponding to the segment being fetched. Given
the prediction is always imperfect, the prediction is modeled
as a probability distribution over all possible tiles. This in turn
provides a probability distribution over viewports for the 360-
degree video frame. Given this input, our task is to select the
tiles along with their playback bit rates for the next segment



to be fetched subject to the prevalent network capacity. This
is fundamentally an optimization problem — maximizing the
user’s quality of experience subject to the network capacity.

B. Modeling Quality of Experience

In this section, we develop a model for the proposed tile-
based adaptive video streaming system for 360-degree videos.
We use a control theoretic approach similar to [27].

We model the quality of experience metric of an individual
segment, (), as consisting of two distinct components. The
first component is the average bitrate perceived by the user.
The second component is the quality penalty when tiles are
missed. Note that higher bitrate improves the quality, whereas
missed tiles hurt the quality. The quality of the segment is
modeled as a linear combination of the bitrate perceived and
tiles missed.

Asssume that N tiles cover the 360-degree scene, T is the
j' tile of the segment, R; is the rate selected for T and
D; is the size of the Tj for rate R;. R, and R,,,, are
the minimum and maximum rate available respectively. If T}
is not to be fetched, then R; = 0. Viewports are indicated
by V;, and Py; is probability that viewport V; is actually
viewed. Since the viewport spans over some tiles, this in turn
defines P; is probability that tile 7T} is actually viewed. Then
the user’s perceived video QoE is assumed to be proportional
to the sum of the qualities of the tiles composing the viewport.
Mathematically, we define the user perceived video bitrate as:

N
B; =Y q(R;)0; )
j=1

where ¢(R) is a function that maps a video bitrate R to the
perceived quality and O;; is overlapping ratio of viewport V;
and Tj.

The set of tiles that are not fetched but still overlap with user
viewport are called missing tiles. They cause QoE degradation
either by projecting poor quality video (part of the viewport
missing) or by stalling to fetch these missing tiles. We define
penalty function for such missing tiles as

N
Si=Y_ Pja(Rmin) Ly, )
j=1
where L; = 1 if T} is skipped (not fetched), else L; = 0.
Combining the above two models, the estimated QoE is
modeled as:

Q =71PviB; — 7S5, 3)

where 7; and v are weights modeling the relative importance
of tiles seen vs. unseen. Our objective is to select and assign
rate I; for each tile T} (if the tile is not selected to be fetched,
L; =1 and R; = 0) such that @) is maximized, subject to the
estimated network capacity C'. So the optimization problem to
be solved is:

N
Maximize Q subject to Y D;(1—-L;) <C. (4
j=1
Similar to [15], [27], we consider several different quality
functions ¢(.):

o Linear: ¢(R) =R.

o Ratio: ¢(R) = R/Rumin of R/Rpaz-

e Index: ¢(R) is an index into a table of R.
Note that our algorithm is generic in nature and works for
any quality function. We present the results with the linear
function in this paper. We model the optimization problem in
Equation 4 as a multi-choice knapsack problem and solve it
using a greedy algorithm.

Algorithm 1 Tiled Adaptive Video Streaming

1: Initialize

2: for k < 1 to M do /* M segments in video*/
3 Estimate current capacity C

4: Estimate tile probabilities Pj, Vj =1... N
5 Estimate viewport probabilities Py ;, Vi =1...V
6

[R1...RN] = SelectRates ([Py,,...,Pv,], [P1...,Pn], C,
[D1,...,Dn])
7: Download the tiles in segment k with video rates [R;]

Algorithm 2 SelectRates: Viewport Based Rate Adaptation
Input: viewport probabilities Py-;, tile probabilities P;, capacity esti-
mated C, tile size D
Output: Rates, bitrates selected for tiles

1: max + —o0

2: Rates < {0,0,..0} /*initial condition */

3: isSelected < False

4: while Rates is updated do

5: Rimp < Rates

6: for i < 1 to V do /* viewport index*/

7: R+ Rtmp

8: for j <— 1 to NV do /* tile index*/

9: if Oi’j > 0 then

10: R; < min(R; + 1, Rymaxz)

11: if Zj-V:le(l — Lj)> C & isSelected then
12: continue; /* too aggressive.*/

13: else

14: Q + mPyiBi —72S;

15: if Q > max then

16: isSelected < True

17: maz +— Q

18: Rates < R /*update optimal rates*/

19: return Rates

C. Greedy Algorithm

Algorithm 1 selects tiles and their bit rates for each segment
to be downloaded. We use the network capacity C' observed
while downloading the previous segment as a proxy for the
current network capacity. We acknowledge that more sophis-
ticated network capacity estimation techniques may possibly
provide better results. The viewport and tile probabilities Py,
and P; are estimated based on (offline) analysis of the video
and user’s head tracking data upto this point of the video. The
function SelectRates (Algorithm 2) is called with C, Py;’s,
P;’s and Dj;’s as inputs to determine the selection and rates
for each tile T}.

We implement a greedy knapsack-based solution in Al-
gorithm 2. We choose a greedy algorithm as opposed to
more sophisticated dynamic programming based solution to
minimize the overhead. Our algorithm works as follows. In
each iteration (line 7-18), the goal is to find the viewport V;
that maximizes the user perceived quality given C. Best rate
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Fig. 4. Mosaic Prediction Algorithms: CNN+RNN (LSTM) and 3DCNN.

selection is at Rates. The precondition for each viewport rate
selection is at Ryepmp. For each V;, we increase the quality of
the overlapping tiles R;, if T); overlaps with V; , O; ; > 0 (line
9). If downloading tiles based on rate selection R exceeds the
capacity C (line 11), we discard the selection (line 12).

If rate selection is within the capacity estimate C' (line 13),
we evaluate the expected quality @ (line 14) and check if it is
greater than the best quality so far, max (line 15). The quality
function evaluated using Equation 3. If the new rate selection
has the maximum quality, we assign this rate R to Rates as
the optimal rate that provides the highest expected quality so
far (line 18). We evaluate the next viewport in same manner
(line 7-18). We repeat this while Rates updates (line 4) and
total download is within C.

To compute the time complexity of Algorithm 2, we note
that we iterate over each tile (line 8) and over each view-
port(line 6), thus having O(V x N) number of steps, where
V is the number of viewports and N is the number of tiles.
Since there is only a small number of available rates for each
tile, we consider this as a constant. Thus, the time complexity
of Mosaic’s algorithm is equal to O(V x N) per segment. In
Mosaic, we have a relatively small number of viewports with
different overlapping tiles. Thus, as shown in the evaluation,
the overhead of rate adaptation is relatively small.

D. Viewport Prediction

We develop two different viewport prediction mechanisms.
The output of the viewport prediction system is the probabil-
ities of different viewports indicating how likely the user is
to view the viewport. One can assume that the viewport is
defined by its center point inside the 360-degree frame.

The basis of viewport prediction is that users tend to look
at interesting (salient) features in the scene that captures their
attention. Video analysis can reveal these features. In addi-
tion, temporally meaningful correlation exists in the viewer’s
attention. Overall, a combination of video analysis (static) and
head tracking for the user in the past (real time, dynamic)
can be used to predict the user’s viewport in near future (say,
next several seconds). We use suitable machine learning (ML)
algorithms to predict the viewport. The saliency and motion
maps of the video and user head tracking trace are used as
input for the prediction.

The saliency of a pixel indicates how much this pixel
stands out from its neighboring pixels, and thus saliency is

TABLE I
HYPERPARAMETERS OF LSTM AND 3DCNN-BASED VIEWPORT
PREDICTION
256
0.01
Stochastic Gradient Descent
Binary Cross Entropy
0.01
1024 / 200
ReLU
Binary Cross Entropy

LSTM Hidden Units

Learning rate

Updater

Loss

Learning rate

FC layer 1/2 Hidden Units
Activation

Loss

3DCNN

directly related to how likely a pixel/part of an image can
attract the viewer’s attention. The motion map captures the
movement of each pixel in two consecutive images in a video.
In particular, each pixel of a motion map describes how much
the corresponding pixel has moved from the previous frame
in the original video.

The choice of the actual algorithms are important. Our
initial approach used simpler approaches such as linear re-
gression and SVM (similar to prior work [8]). However, this
resulted in poor accuracy (<65%) for lookaheads of more
than 1sec. This led us seek out more sophisticated models
using neural networks that can capture latent features of the
video. In the work we present here, we use convolutional
neural networks (CNNs) to capture spatial features in the video
and Recurrent Neural Networks (RNN) [28] to capture the
temporal features. We take a similar approach to [7], where
we combine CNN and RNN with motion and saliency maps of
the video. However, they create two separate networks making
the prediction cumbersome and slow. Instead, we extract the
saliency and motion maps of the video via off-line analysis and
embed them with the viewport trajectory of the current user
(this is obtained from the head tracking data at the client)
and use this combined information as an input to a single
network. We also propose an alternative design using 3DCNN
to improve the prediction performance. The two prediction
mechanisms used are described below.

CNN+RNN (LSTM): We use the motion and saliency maps
along with users’ head tracking data, feed it to a CNN model
combined with RNN. More specifically, we collect motion
map and saliency map for each frame, encode in a common
vector and consider it as single input instance to the CNN. We
use a pre-trained ResNet-101 model [29] to extract the spatial
features. The CNN’s spatial features are then combined with
the head tracking data and fed into an RNN. In this way,
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this model computes the tile probabilities by modeling the
spatial region that users are likely to pay more attention. Fig.
4a shows the architecture of our CNN+RNN model. As an
RNN, we use Long Short Term Memory (LSTM) [28] that
captures long term dependencies among the frames.

3DCNN: The CNN+RNN model learns the spatial feature
and the temporal feature of the video independently and sep-
arately. However, in reality, there often exists spatio-temporal
correlation in a user’s gaze movement (e.g., a user’s attention
following a flying bird in the sky as time goes by). Inspired
by the works in action recognition [30], we adopt a 3DCNN
model to extract the spatio-temporal feature from the videos.
Fig. 4b depicts the architecture of our 3DCNN approach.
Specifically, we use the pre-trained I3D [25] as our 3DCNN
component and apply a simple two-layer fully connected (FC)
network to map from the feature space to the tile probability
map space. Notably, compared with the CNN+RNN model,
the prediction latency of 3DCNN is significantly lower as
the 3DCNN applies a simple two FC layers for prediction
while CNN+RNN applies an RNN model (e.g., LSTM) which
requires much more computation. Both models are trained off-
line using the hyperparameters listed in TABLE I.

III. EVALUATION TESTBED

We evaluate Mosaic and compare its performance with
other state-of-the-art methods using a testbed. The testbed
consists of a video server, a client and the viewport prediction
system (see Fig. 5). In the following we describe these system
components and also the data set to be used for evaluation. A
high-level block diagram appears in Fig. 3.

A. System Components and Data Set

The server uses MPEG-DASH compliant HTTP adaptive
streaming [31] on a Linux platform (Ubuntu 16.04). The player
is implemented based on an open-source tile-based adaptive
streaming video player, MP4Client [32]. The viewport predic-
tion system interfaces with the player. The training part of the
viewport prediction is done off line and only the inference runs
on the client. The overhead of the viewport prediction and rate
control algorithms (Algorithms 1 and 2) are negligible in our
implementation.

For evaluation we use ten popular 360-degree videos of
different categories for which head tracking dataset is available
(50 users for each video) [33]. Each trace in the head tracking

data set contains a user’s head position (yaw, pitch and roll)
for every frame. From this the viewport and viewport-specific
tiles are derived. For each of these videos, we also extract
the saliency and motion maps as described in Section II. The
videos are typically about 1min long. Each video is split
temporally in 2 sec long segments.!

Each video is encoded and projected using equirectangular
projection using 4K quality (3840 x 1920). Since we need
multiple qualities for our experiments, we transcode the video
in 8 different bit rates — 512 Kbps, 1 Mbps, 2 Mbps, 3 Mbps,
5Mbps, 10Mbps, 15Mbps and 20 Mbps. We use the open
source HEVC encoder kvazaar [34] for the transcoding.
HEVC ‘motion constrained’> 6 x 4 tiling is used in the
transcoding. Using the GPAC MP4Box [35], we package the
HEVC encoded videos in MP4 containers and generate the
necessary MPD (Media Presentation Description) including
SRD (Spatial Relational Description) [26]. The MPD file
serves as the manifest which client references as the video
catalog for HTTP requests for various tiles for video segments.
The MPD file contains two sets of elements— Adaptation-
Set and RepresentationSet. One AdaptationSet in the MPD
specifies each tile with tile index, encoded bitrates each
at a RepresentationSet, bandwidth required, and the media
(audio/video) file name. Client requests the video tiles with
specific qualities selected by the rate adaptation algorithm.
This enables the standard MPEG-DASH SRD capable server
to work with Mosaic, without server side modification.

We implement the CNN+RNN (LSTM) and 3DCNN based
prediction using PyTorch [36] and train the network using the
saliency map, motion map, and head tracking dataset [33].
Specifically, we use 6 videos out of 10 available and randomly
sample 100 video segments from each video. We randomly
select 12 users’ head tracking data of which 80% is used for
training and 20% for validation. For testing, we use the other 4
videos and the head tracking data of 20 different users (neither
the videos nor the users’ head tracking data are seen during
the training phase). Given 30 video frames and head tracking
data, the prediction system outputs the viewport probabilities
of next 30 frames (assuming 30 frames/sec framerate).

To implement the client, we extend the MP4Client [35]
adding an interface to the prediction system, rate adaptation
and additional logging for evaluating the QoE metrics (to
be described in the next subsection). Note that MP4Client
requires downloading all the tiles of the first segment and
the first tile of each subsequent segment to use the in-
formation for decoding. Without modification, we use the
existing MP4Client modules such as bandwidth estimation,
scheduling and downloading of MPD file and tiles, MPD
parser, video buffer management, decoding and rendering.
Bandwidth estimation directly affect the rate control and the
buffer management determines how much to pre-fetch to avoid
rebuffering, which are crucial part of rate adaptation. We

'We have experimented with other segment lengths. But 2sec segments
work well.

2This signifies that the decoding and rendering can be done independently
on the tiles [22].



plan to enhance the rate adaptation using more advanced
data-driven machine learning techniques in the future. We
empirically determine the weight parameters, v; for B; and
~2 for S;, 0.9 and 0.3 respectively (Equation 3).

B. Network Setup

The client connects to the server over the Internet through a
WiFi network using commodity Access Point (2.4 GHz band)
capable of providing a throughput upto 60 Mbps. We use
tc to emulate different challenging network conditions and
configure multiple realistic traffic control settings: bandwidth
limit of 3, 5, 7, and 10 Mbps and average delay about 20-
40 ms. To evaluate rate adaptation using realistic network
condition, we use throughput traces of existing 4G/LTE dataset
[37]. A number of studies have evaluated the system over
emulated network using public throughput traces [15], [24],
[27]. To reflect prevalent Internet connection speed [5], we
shape the bandwidth by scaling it down to average bandwidth
around 16.68 Mbps and standard deviation of 6.6 Mbps. To
save space, we present the results over WiFi with 10 Mbps
bandwidth limit and emulated network using five traces of the
4G/LTE dataset.

C. QoE Evaluation Metrics

While the rate adaptation algorithm uses prediction prob-
abilities, user perceived quality is measured in deterministic
fashion. In this section, we define several QoE metrics and
empirically evaluate the performance of Mosaic based on these
metrics:

a) User Perceived Video Quality: We define user per-
ceived video quality as the sum of the qualities (¢(.) function,
II-B) of viewed tiles during playback. If a tile is only partially
in view, the overlapping ratio is used to weight the contribution
of this tile. Missing tiles within the viewport contribute zero,
¢(0) = 0. To include the contribution of rebuffering periods
(stalls) during playback, we assume that these periods are
counted as contributing zero rate; thus ¢(0) = 0 during these
periods for the entire viewport. Note that we use linear quality
function of video bitrate. We plan to evaluate this metric
with subjective evaluation. Mathematically, this is somewhat
similar to Equation 1 but only relates to the actual viewport
used by the user and considers what happens during playback,
including stalls for rebuffering. B?, the user perceived quality
during the *" unit interval during playback is given by,

N
B'=> 4(R;)O0i;, ©)
j=1

where R; is the rate of tile 7j in this interval, O;; is
overlapping ratio of this interval’s viewport and 7. Note that
we reuse the notations with a slightly different definition.

b) Quality Variation Within Viewport: It is possible
that the tile quality varies across different tiles within the
user’s viewport during playback. This is because no special
mechanisms have been used to ensure same qualities. This
may impact the QoE. To evaluate this we define V;, the quality
variation among tiles within a viewport as standard deviation

of weighted qualities of tiles that overlaps the viewport of the

segment during playback.
M

1 .
Vi= ;lsmnev [¢(Rj)Or;| j =1,...,N] (©6)

where Oy, ; is overlapping ratio of viewport of k" segment
during playback and tile 7; and StdDev is standard deviation
of weighted qualities of the tiles.

¢) Quality Variation Across Segments: Quality variation
across segments during playback also impacts QoE. Similar to
a metric used for regular adaptive video streaming [27], we
use V; to quantify quality change at each segment transition,
averaged over all such transitions. If there are M segments

M
e SO IB - B ™

=2
The above formulation tacitly assumes that there are no
rebuffering stalls. In case of any stall, any quality change
between the segments before and after the stall is not counted.

d) Miss Ratio: Miss ratio evaluates the fraction of the
viewport that user sees as missing during playback (i.e.,
relevant tiles are not downloaded at the time of playing). The
miss ratio M* of the i*" segment is defined as

‘/S:

N
M'=>"0i,L;. ®)
j=1

L; =1, if tile T} is missing during the playback interval.

¢) Rebuffering: While we run rate adaptation within the
estimated capacity, network delays and capacity fluctuation
could cause the playback buffer to deplete and the client player
to stall until the content for the player is downloaded. The
rebuffering duration is an important QoE metric.

Normally, the initial start time would also be an important
QoE metric. We do not present this here, however, as this is
similar across all mechanisms we evaluated, since all tiles are
to be downloaded for the first segment in our implementation
of the client regardless of the mechanism used.

IV. EVALUATION RESULTS

The goal in this section is to evaluate Mosaic in our testbed
and compare its performance vis-a-vis other state-of-the-art
and baseline methods. We also separately evaluate the perfor-
mance of the viewport prediction method. The algorithms we
consider for comparative evaluation are described first. Then
we proceed with the evaluation results.

A. Suite of Algorithms

We consider two state-of-the-art algorithms for regular, non-
tiled adaptive video streaming [12], [14]. These provide the
baseline for our comparisons. We also consider two variations
of tiled adaptive video streaming algorithms [7], [22]. In our
knowledge these are two most recent works closest to Mosaic.
The four algorithms are described briefly below.

BBA (Buffer-Based Algorithm): BBA [12] is a buffer-based
rate adaptation algorithm for conventional adaptive video
streaming with no tiling. The entire frame is downloaded
regardless of user’s viewport. We use BBA implemented in
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Fig. 6. Miss ratios over WiFi.

TABLE 11
PREDICTION ACCURACY

LSTM Accuracy Precision Recall F1
Same videos/same users 89.80 73.69 59.16 0.66
Diff videos/diff users 88.43 67.04 56.03 0.61
3DCNN

Same videos/same users 92.21 83.85 83.83 0.79
Diff videos/diff users 91.69 83.99 71.92 0.77

the GPAC MP4Client described before and assume that the
entire frame is just a single tile (i.e., 1 x 1 tiling).

BOLA (Buffer Occupancy-Based Lyapunov Algorithm):
BOLA [14] also does not use tiling and is another example of
state-of-the-art in adaptive video streaming. BOLA formulates
bitrate adaptation as a utility maximization problem that uses
Lyapunov optimization techniques. We use BOLA in our
testbed using a similar approach as BBA by downloading a
single (or, 1 x 1) tile in a segment with a selected quality.

VP_Only (Viewport Only): This is an implementation of a
recent work [7] that downloads the tiles in the viewport as
predicted by the LSTM-based technique similar to what we
described before. All tiles with probability of appearing in the
viewport greater than a threshold (0.5) are downloaded in high-
est quality available and the other tiles are not downloaded.

VP_Plus (Viewport Plus): This technique downloads tiles
with a high probability of appearing in the viewport with the
highest quality and all other tiles in the lowest quality [22].?

In the evaluation, we implement Mosaic using two predic-
tion techniques indicated by labels Mosaic-1 and Mosaic-2 for
the CNN+RNN (LSTM) and 3DCNN prediction respectively.

B. Results for Viewport Prediction

We first evaluate the viewport prediction component of
Mosaic. We evaluate LSTM and 3DCNN-based predictions in
two categories given the available ground truth head tracking
data [33] that provides the instantaneous user viewport: i)
testing and training data from the same videos and the same
users, but each video segment randomly sampled, ii) testing
and training data randomly sampled from different videos and
different users.

TABLE 1II shows the prediction accuracy, precision, recall
and Fl-score of the LSTM and 3DCNN-based predictions.
Note that as expected the 3DCNN-based method performs
somewhat better than LSTM in general. Training and testing
with different videos/users (as opposed to the same) have
negligible impact on performance. This shows that these

3The evaluation presented in [22] uses a ‘static’ viewport which obviously
presents very poor results in a real situation. Their evaluation has a different
goal. We do not present any viewport prediction method. So, we apply the
same viewport prediction as used for VP_Only for ease of comparison.

Mosaic-1
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....... VP_only
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Fig. 9. Video bitrate over LTE traces.

Fig. 8. Miss ratios over LTE traces.

methods have tremendous potential. The video server just need
to collect enough training data to be effective. This does not
necessarily need to be from the same users.

While TABLE II uses only the video and head tracking data
set, Fig. 6 shows the the CDF of the miss ratio with actual
streaming video in action over WiFi. Fig. 8 shows results using
the 4G/LTE dataset. Note that the miss ratio for VP_Plus,
BBA and BOLA is always zero, as these techniques bring in
the entire frame always. They are thus not shown in the plots.
The miss ratios of the two Mosaic techniques are substantially
better than VP_Only. In WiFi experiment, with Mosaic about
20% of the viewport is missed at most 25% of the times
and about half of the viewport is missed at most 10% of the
times. Average miss ratio is 8%. Using the 4G/LTE dataset,
average miss ratio is 4.5%. The actual miss ratio depends on
the prediction technique used and the network condition.

The prediction computation is efficient. Excluding training
of the neural networks which can be done offline on the
server, the prediction takes about 0.6ms for 3DCNN, 12.7ms
for LSTM on a CPU (Intel Xeon E5-1650 v3 Haswell-EP
3.5GHz). The speed improves for LSTM when a GPU is used.
On Nvidia Titan X GPU, it takes 0.7ms for 3DCNN, 2.8ms for
LSTM. This is fast enough for a seamless video experience.
We have not yet evaluated the prediction performance on
commodity mobile systems. While similar performance may
be hard to achieve in a straightforward fashion on mobile
systems, we expect to gain from ongoing innovations in deep
learning on mobile devices [38].

C. Results for Streaming Performance

Fig. 7 and Fig. 9 plot the user perceived video quality during
playback in a CDF for all evaluated algorithms over WiFi and
emulated network using the 4G/LTE dataset respectively. With
Mosaic LSTM and 3DCNN-based predictions yield median
user perceived bitrates of 2.4 and 2.9 Mbps over WiFi, and
4.7 and 5.1 Mbps using the 4G/LTE dataset respectively. This
is in comparison to VP_Only and VP_Plus which offer in the
median about 2 and 2.1 Mbps over WiFi and 3.4 and 3.5 Mbps
over the 4G/LTE emulated network, respectively. Thus, Mosaic
with 3DCNN offers almost 50% improvement in quality at
the median versus the state-of-the-art. As expected, BBA and
BOLA both perform somewhat poorly as they download the
entire panoramic frame.

Fig. 10 and 11 plot several other metrics — rebuffering
ratio (fraction of playback time spent in stalls) for 1-minute
video playback, quality level variation within a viewport and
across the segments as explained at Section III-C. Note that
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rebuffering performance of Mosaic is among the best with
either LSTM and 3DCNN-based predictions over WiFi. Over
the 4G/LTE dataset, it is similar with other techniques. For
quality variation within viewport, the spatial quality changes,
again Mosaic with LSTM and 3DCNN are similar to VP_Only
and VP_Plus. Note, however, BBA and BOLA do not have
any variation as they do not use tiling but bring in the entire
frame always. For variation across segments we have similar
observations. Here, however, BBA performs better (almost
negligible variation) due to a conservative rate control.

We also measure the overhead of running the bitrate adap-
tation algorithm of Mosaic. In general, we find an overhead of
0.1 — 0.4 ms per segment. We note that this overhead is quite
small, and thus our technique is feasible even on smartphones.

Overall, Mosaic (specifically with 3DCNN) provides a
significantly better video quality during playback with about
similar amount of rebuffering stalls relative to other state-of-
the-art 360-degree video streaming.

V. RELATED WORK

Adaptive Video Streaming: Recent works on rate adaptation
to improve QOoE of streaming videos include Festive [11],
MPC [27], Pytheas [39], Pensieve [15], and CS2P [13].
Pensieve and CS2P use neural networks and data-driven rate
adaptation scheme respectively, while Festive and Pytheas
are based on throughput and network-capacity. There is also
another line of work such as BBA [12] based on client’s buffer
capacity and BOLA [14] as a utility maximization problem
using Lyapunov optimization techniques. Unlike Mosaic these
methods do not handle tiling with rate adaptation.

Streaming 360-degree Videos: Several recent papers consider
viewport-based adaptive streaming for 360-degree videos.
They either utilize run-time spatial splitting of frames into tiles
to deliver a subset [6], [7], [9], [17], [40], or utilize adaptive

compression rates based on the region-of-interest and network
capacity [21]. A recent work, Rubiks [41] maximizes the video
quality as a function of the tile bitrate and the user’s current
field of view. However, Rubiks does not adapt to changes in
the viewport since it does not utilize any viewport prediction.

While a tile-based approach enables reusing the existing
streaming ecosystem, it requires viewport prediction to be
really effective. A body of recent work has focused on such
prediction. The methods proposed vary from Liner Regression
(LR) and variations [6], [8] to advanced machine learning [7],
[9], [42]. However, relative to Mosaic these approaches have
various limitations: i) They bring in only the predicted view-
port [6], [7], [22] and unable to handle missing tiles. ii) Use
of rate adaptation is limited. Some of the schemes bring in
viewport tiles at the highest bitrate regardless of the network
capacity [7]. The work in [6] evenly allocates the bandwidth to
the predicted tiles. Some works employ a simple binary bitrate
adaptation — highest quality for predicted viewport and lowest
for outside viewport [16], [16], [22]. In [8] regression is used
to predict future viewports and a buffer-based approach is used
However, a buffer-based approach has limitation in case of
tile-based streaming, as higher buffer levels do not necessarily
mean that there is no rebuffering stalls. A more recent study
[24] with end to end system of viewport prediction and rate
adaptation uses server ticks to decide whether to respond to
client HTTP request. Mosaic complies with standard DASH
and does not require server side modification and can offer
longer duration of segment over 90% accuracy.

Also, many of these works including Mosaic play a crucial
role in streaming VR and/or AR content. For example, Flash-
Back [43] and Furion [44] are specifically developed for VR
ecosystem. While these methods are orthogonal to Mosaic,
our tile-based rate adaptation and prediction algorithms can
significantly improve these methods.



VI. CONCLUSIONS [13]
We have developed an end-to-end tiled adaptive video
streaming framework for 360-degree videos called Mosaic. [14]
Mosaic uses viewport prediction exploiting latest develop- [15]
ments in video analysis and deep learning to predict user
viewports in advance. The prediction uses saliency and motion  [16]
maps of the video and user’s head tracking data as input. We
have used two different techniques for prediction: one based |7
on a CNN followed by an LSTM-based RNN and the other
based on a 3DCNN. They both provide superior prediction [!8]
performance (about 90% accuracy), especially the latter. [19]
The rate adaptation part of Mosaic uses a control-theoretic
approach and allocates rates for the tiles of the next segment 20]
being fetched based on their viewing probabilities. We im-
plement Mosaic using the GPAC MP4Client reference video [21]
player. We evaluate Mosaic and compare its performance [22]
against the current state-of-the-art video streaming solutions
— both for regular and 360-degree video streaming. Our
evaluations in realistic network settings show that Mosaic [%3]
achieves at least 50% better video quality of experience (in |4
terms of the median of per-frame video bitrate) relative to
other state-of-the-art methods. (251
As future work, we plan to extend our work to 6-DOF VR
(videos with six degrees of freedom), where the problem of [26]
prediction is more challenging. We also plan to further validate
our work using actual user studies and larger datasets. [27]
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