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1. Optimal Transport Regularization
1.1. Proof of the Existence of yσ(j)

In this section, first we prove that for every xj , we can always find a yσ(j) such that H∗σ(j)−H
∗
j = c(xj , yσ(j)) in Section

3.2.

Proof. We first prove that if H∗i and H∗j are the optimal solutions to the following problem:

max
Hi,Hj

1

m

∑
i∈I

Hi −
1

n

∑
j∈J

Hj

s.t. Hi −Hj ≤ c(xj , yi),
∀i ∈ I, ∀j ∈ J

(1)

where I and J are disjoint sets, then for each xj , there exists a t ∈ I, such that H∗t −H∗j = c(xj , yt).
We prove this by contradiction, i.e., there exists one xs, s ∈ J , such that we cannot find a yi such that H∗i − H∗s =

c(xs, yi), ∀i ∈ I. This means that H∗s > supi∈I{H∗i − c(xs, yi)}. We can construct H ′, such that H ′i = H∗i ,∀i ∈ I,
H ′j = H∗j ,∀j ∈ J − {s}, and H ′s = supi∈I{H∗i − c(xs, yi)}. It can be verified that H ′ satisfies the constraints in Eq.
(1), and the objective of Eq. (1) achieved at H ′ is greater than that achieved at H∗. This contradicts that H∗ is the optimal
solution to Eq. (1). Therefore, for every xj , we can find a yt, t ∈ I, such that H∗t −H∗j = c(xj , yt).

Next, we will show that ifH∗t −H∗j = c(xj , yt), then t = σ(j). Since c(xj , yt) = K
2 ||xj−yt||

2
2, we have K

2 ||xj−yt||
2
2 +

H∗j −H∗i = 0. According to the definition of σ(j) in Eq. (6), and the fact that H∗t −H∗j ≤ c(xj , yt), we have t = σ(j).

1.2. Proof of Eq. (8)

We will show that Theorem 1.17 in Santambrogio’s optimal transport [8], which is based on Brenier’s theorem [1], can
also be used to prove Eq. (8). First we will introduce the following theorem.

Theorem 1.17 in [8] Given ν and µ on a compact domain Ω ⊂ Rd, there exists an optimal transport plan γ for the cost
c(x, y) = h(x − y) with h being strictly convex. Provided ν is absolutely continuous and ∂Ω is negligible, there exists a
Kantorovich potential D. The transport map T can be represented as

T (x) = x+ (∇h)−1(∇D(x)) (2)

where (∇h)−1(·) denotes the inverse mapping of∇h(·).
Next, we show that the above theorem can also be used to prove Eq. (8).

Proof. According to the definition of σ in Eq. (6), we know that xj is transported to yσ(j) [9], i.e., T (xj) = yσ(j). If
c(x, y) = K

2 ||x− y||
2
2, then

T (x) = x+
1

K
∇D(x) (3)



For every xj , we have

T (xj) = yσ(j) = xj +
1

K
∇D(xj) (4)

and hence
∇D(xj) +K(xj − yσ(j)) = 0 (5)

This proves Eq. (8).

From the above analysis we can see that Theorem 1.17 in [8] can also lead to the same result shown in Eq. (8).

2. Proofs of Lemmas and Theorems
Theorem 1 in Section 3
If the discriminator in Eq. (10) has sufficient capacity such that the optimal objective of Eq. (10) is 0, then for any γ > 0,

and any optimal solution D∗w to Eq. (10),

1

m

∑
i∈I

D∗w(yi)−
1

n

∑
j∈J

D∗w(xj) (6)

is the quadratic Wasserstein distance between X̂ and Ŷ .

Proof. If D∗w is an optimizer to Eq. (10), and Dw has sufficient capacity, then all the three terms in Eq. (10) are 0s when
optimal, i.e., 1

m

∑
i∈I D

∗
w(yi) = 1

m

∑
i∈I H

∗
i , and D∗w(xj) = H∗j ,∀j ∈ J . Since 1

m

∑
i∈I H

∗
i − 1

n

∑
j∈J H

∗
j is the

quadratic Wasserstein distance between X̂ and Ŷ , 1
m

∑
i∈I D

∗
w(yi)− 1

n

∑
j∈J D

∗
w(xj) is the quadratic Wasserstein distance

between X̂ and Ŷ .

Lemma 1 in Section 4
The second order derivative of the regularization term

LR =
λ

2
EPs(x)[

(
||∇xDw(x)|| − ||yT (x) − x||

)2
] (7)

with respect to (w, θ) at the equilibrium point is given by:

MR = λ · EPs(x)[∇w,xDw∗(x)∇w,xDw∗(x)ᵀ] (8)

Proof. At the equilibrium point (w∗, θ∗), every point x is transported to yT (x), and x = yT (x). Therefore, at the equilibrium
point, the regularization term is

L′R =
λ

2
EPs(x)[||∇xDw(x)||2] (9)

The first order derivative at the equilibrium point is ∇wL′R = λ · EPs(x)[∇w,xDw∗(x)∇xDw∗(x)]. By applying the chain
rule to ∇wL′R and use∇xDw∗(x) = 0 (r(w∗) = 0 in Eq. (18) and Ps(x) = Pr(y) at the equilibrium point), we have
MR = λ · EPs(x)[∇w,xDw∗(x)∇w,xDw∗(x)ᵀ]

Lemma 2 in Section 4
The Jacobian of the gradient field g(w, θ) at the equilibrium point (w∗, θ∗ ) is given by:

g′(w∗, θ∗) =

(
MDD +MR MGD

0 0

)
(10)

where MR is defined in Lemma 1,

MDD = EPr(y)[∇wDw∗(y)] · EPr(y)[∇wDw∗(y)ᵀ] + EPr(y)[∇wDw∗(y)∇wDw∗(y)ᵀ] (11)

,
MGD = −EPs(x)[∇

2
w,xDw∗(x)∇θGθ∗(z)ᵀ] (12)

and MDD +MR is positive definite.



Proof. We give the first order derivatives of LD and LG below:

∇wLD(w, θ) =
(
EPr(y)[Dw(y)]− EPr(y)[Hr(y)]

)
· EPr(y)[∇wDw(y)] + EPs(x)[(Dw(x)−Hs(x))∇wDw(x)] +∇wLR

(13)
∇θLG(w, θ) = −EP(z)[∇θGθ(z)∇xDw(x)] (14)

Then, we apply the chain rule to Eqs. (13) and (14). We give the second order derivatives below:

∇2
wLD(w, θ)

=
(
EPr(y)[Dw(y)]− EPr(y)[Hr(y)]

)
· EPr(y)[∇

2
wDw(y)] + EPr(y)[∇wDw(y)] · EPr(y)[∇wDw(y)ᵀ]

+ EPs(x)[(Dw(x)−Hs(x))∇2
wDw(x)] + EPs(x)[∇wDw(x)∇wDw(x)ᵀ] +∇2

wLR

(15)

∇2
θ,wLD(w, θ) = EPs(x)[(Dw(x)−Hs(x))∇θGθ(z)∇2

x,wDw(x)] + EPs(x)[∇θG(z)∇xDw(x)∇wDw(x)ᵀ] (16)

∇2
w,θLG(w, θ) = −EPs(x)[∇

2
w,xDw(x)∇θGθ(z)ᵀ] (17)

∇2
θLG(w, θ) = −EP(z)[∇θGθ(z)∇2

xDw(x)∇θGθ(z)ᵀ]− EP(z)[∇2
θGθ(z)∇xDw(x)] (18)

Since at equilibrium, Dw∗(x) = Dw∗(y) = 0, ∇xDw∗(x) = 0, Dw∗(x) = Hs(x), Dw∗(y) = Hr(y), x = yT (x)

and ∇2
wLR = MR, we have ∇2

wLD(w∗, θ∗) = MDD + MR, ∇2
θ,wLD(w∗, θ∗) = 0, ∇2

w,θLG(w∗, θ∗) = MGD, and
∇2
θLG(w∗, θ∗) = 0.
By applying Assumption II in our paper and the reparametrization technique in [7], the proof that MR is positive definite

is identical to the proof that LDD is positive definite in Lemma D.5 in [7]. As MDD is non-negative definite, MDD +MR is
positive definite.

Lemma 3 in Section 4
For simultaneous gradient updates of (w, θ) in WGAN-QC using Eq. (15), if w = w∗, then θ = θ∗.

Proof. First we show that ||∇xDw∗(x)|| = 0,∀x ∼ Ps(x). According to the definition of w∗ in Eq. (17), we can find a
θ∗, such that LD(w∗, θ∗) = 0. According to the definition of θ∗ in Eq. (17), we know that ||yT (x) − x|| = 0,∀x ∼ Ps(x).
Therefore, EPs(x)[||∇xDw∗(x)||22] = 0, and hence ||∇xDw∗(x)|| = 0,∀x ∼ Ps(x).

Since all the eigenvalues of the Jacobian of the gradient field g(w, θ) are non-negative, and the positive ones are the
same as the eigenvalues of the Hessian of the discriminator loss in Eq. (12), when w reaches w∗ of an equilibrium point
in WGAN-QC using simultaneous gradient update (Eq. (15)), w is also an optimal solution to Eq. (12) for some θ. Thus,
LD(w∗, θ) = 0, and we have

EPs(x)[
(
||∇xDw∗(x)|| −K||yT (x) − x||

)2
] = 0 (19)

Recall that ||∇xDw∗(x)|| = 0, and hence we have ||yT (x) − x|| = 0,∀x ∼ Ps(x). So, we have Ps(x) = Pr(y). Therefore, θ
also reaches its optimum θ∗, and (w, θ) is an equilibrium point.

In practice, WGAN-QC is performing an alternating gradient descent between the discriminator and generator whereas
the update operator in Eq. (15) is for simultaneous gradient descent. Therefore, we provide the following lemma to build the
connection between the simultaneous and alternating gradient descent 1.

Lemma 4
In a local neighbourhood of an equilibrium point, for alternating gradient descent of the discriminator updating kD > 0

times and the generator updating kG times per alternating round of WGAN-QC with small enough learning rate α > 0, all
the eigenvalues of the Jacobian of the update operator Û = ÛkGθ ◦ ÛkDw will be arbitrarily close to those of the Jacobian of
the gradient operator U(w, θ) of simultaneous gradient descent at (w∗, θ∗), where Ûw on (w, θ) is defined as

Ûw(w, θ) =

(
w − α∇wLD(w, θ)

θ

)
(20)

1This generalizes Lemma A.5 in [7]



and Ûθ on (w, θ) is defined as

Ûθ(w, θ) =

(
w

θ − α∇θLG(w, θ)

)
(21)

ÛkDθ (w, θ) and ÛkGθ (w, θ) mean performing Ûθ(w, θ) and Ûθ(w, θ), kD and kG times, respectively.

Proof. We adopt a similar proof to that of Lemma A.5 in [7]. The Jacobian of U(w, θ) is expressed as:

U(w, θ)′ = I − αg′(w, θ) (22)

where g′(w, θ) is defined in Eq. (16) in the main paper. Therefore, U(w∗, θ∗)′ = I − αg′(w∗, θ∗).

Û(w∗, θ∗)′ = Û ′θ(w
∗, θ∗)kG · Û ′w(w∗, θ∗)kD = (I − αg′θ(w∗, θ∗))kG · (I − αg′w(w∗, θ∗))kD (23)

where

g′w(w∗, θ∗) =

(
∇2
wLD(w∗, θ∗) 0

0 0

)
(24)

and

g′θ(w
∗, θ∗) =

(
0 0
0 ∇2

θLG(w∗, θ∗)

)
(25)

For small enough learning rate α, we have

Û(w∗, θ∗)′ = I − α(g′θ(w
∗, θ∗) + g′w(w∗, θ∗)) +O(α2)I (26)

At the equilibrium point, g′θ(w
∗, θ∗) = 0 and g′(w∗, θ∗) in Lemma 2 has the same eigenvalues as g′w(w∗, θ∗). Hence, for

small enough learning rates, all the eigenvalues of Û = ÛkGθ ◦ ÛkDw will be arbitrarily close to those of U(w, θ) at the
equilibrium point (w∗, θ∗).

Theorem 2 in Section 4
Suppose Assumptions 1 and 2 are satisfied, then for small enough learning rate α, there exists λ such that WGAN-QC

converges to a local equilibrium point.

Proof. According to Lemma 4, for small enough learning rate, the eigenvalues of the Jacobian of the alternating gradient
update operator are arbitrarily close to that of the simultaneous gradient update operator. Hence we analyze the Jacobian of
simultaneous gradient of WGAN-QC.

At an equilibrium point, all the eigenvalues of the Jacobian of the gradient field g(w, θ) are non-negative, and the positive
ones are the same as the eigenvalues of the Hessian, MDD +MR, of the discriminator loss. This allows us to study the con-
vergence of only w rather than (w, θ) near equilibrium. Since MDD +MR is positive definite by Lemma 2, for simultaneous
gradient descent, the discriminator parameters w converge to optimum.

According to Lemma 3, when w converges to the optimum, θ also converges to its optimum. Therefore, (w, θ) converge
to a local equilibrium point.

3. Experiments
3.1. Experimental Settings

In all the experiments, we preform one discriminator iteration per generator iteration for WGAN-QC. On the Dirac distri-
bution experiment, we set γ = 10 in CRGAN, k = 2 and p = 6 in WGAN-div as suggested in the original papers. We use
gradient descent for all the methods and the learning rate for all the methods is 0.01.

On the CelebA and the LSUN datsets, we crop the image size to 64×64. On the CelebA-HQ dataset, we resize the image
size to 256×256. On the ImageNet dog dataset, we crop the image size to 128×128. For WGAN-GP [2], WGAN-div [10]
and CRGAN [7], we use the default parameters and architectures suggested in their papers. As suggested in the WGAN-div
paper [10], we perform 100,000 and 200,000 iterations for WGAN-div on the CelebA and LSUN datasets, respectively. We
perform the same numbers of iterations as WGAN-div on the two datasets for WGAN-GP and CRGAN. For WGAN-QC,
we perform 60,000, 125,000, 100,000 and 150,000 iterations on the CelebA, CelebA-HQ, LSUN and ImageNet dog datasets,



respectively. On these real world datasets, we use the Adam optimizer [5] for WGAN-QC in all the experiments. Learning
rate, weights β1 and β2 in Adam on all the datasets are set to 1e-4, 0.5 and 0.999, respectively. We decay the learning rate to
1e-5 starting from the 120,000 iteration on the ImageNet dog dataset for WGAN-QC. Weight γ for WGAN-QC is set to 0.1
on the CelebA [6] and LSUN [11] datasets, and set to 0.05 on the CelebA-HQ dataset [4]. We use the exponential moving
average method [12] on the generator with a decay of 0.999 during the last 5000 iterations for WGAN-QC.

3.2. Network Architectures

The architectures of the discriminators and generators in WGAN-QC for image sizes 64 × 64, 128 × 128 and 256 × 256
are shown in Tables 1 - 6. Same as the CRGAN paper [7], we multiply the residual part by 0.1 in every ResNet Block. We
use leaky ReLU as the non-linear activation. We use batch normalization [3] only for the generator. The batch size for the
CelebA and LSUN datasets is set to 64, for the CelebA-HQ dataset is set to 16 because of memory constraints.

Table 1. The discriminator architecture for WGAN-QC 64×64 image size.
Discriminator Filter size Resampling Output size
Conv 3×3 - 64 × 64 × 64
ResNet Block [3×3] × 2 Down 128 × 32 × 32
ResNet Block [3×3] × 2 Down 256 × 16 × 16
ResNet Block [3×3] × 2 Down 512 × 8 × 8
ResNet Block [3×3] × 2 Down 512 × 4 × 4
ResNet Block [3×3] × 2 - 512 × 4 × 4
Linear - - 1

Table 2. The generator architecture for WGAN-QC 64×64 image size.
Discriminator Filter size Resampling Output size
Noise - - 128
Linear - - 512 × 4 × 4
ResNet Block [3×3] × 2 - 512 × 4 × 4
ResNet Block [3×3] × 2 Up 512 × 8 × 8
ResNet Block [3×3] × 2 Up 256 × 16 × 16
ResNet Block [3×3] × 2 Up 128 × 32 × 32
ResNet Block [3×3] × 2 Up 64 × 64 × 64
Conv, tanh - - 3 × 64 × 64

Table 3. The discriminator architecture for WGAN-QC 128×128 image size.
Discriminator Filter size Resampling Output size
Conv 3×3 - 64 × 128 × 128
ResNet Block [3×3] × 2 Down 128 × 64 × 64
ResNet Block [3×3] × 2 Down 256 × 32 × 32
ResNet Block [3×3] × 2 Down 512 × 16 × 16
ResNet Block [3×3] × 2 Down 512 × 8 × 8
ResNet Block [3×3] × 2 Down 512 × 4 × 4
ResNet Block [3×3] × 2 - 512 × 4 × 4
Linear - - 1



Table 4. The generator architecture for WGAN-QC 128×128 image size.
Discriminator Filter size Resampling Output size
Noise - - 128
Linear - - 512 × 4 × 4
ResNet Block [3×3] × 2 - 512 × 4 × 4
ResNet Block [3×3] × 2 Up 512 × 8 × 8
ResNet Block [3×3] × 2 Up 512 × 16 × 16
ResNet Block [3×3] × 2 Up 256 × 32 × 32
ResNet Block [3×3] × 2 Up 128 × 64 × 64
ResNet Block [3×3] × 2 Up 64 × 128 × 128
Conv, tanh - - 3 × 128 × 128

Table 5. The discriminator architecture for WGAN-QC 256×256 image size.
Discriminator Filter size Resampling Output size
Conv 3×3 - 64 × 256 × 256
ResNet Block 3×3 Down 128 × 128 × 128
ResNet Block 3×3 Down 256 × 64 × 64
ResNet Block 3×3 Down 512 × 32 × 32
ResNet Block 3×3 Down 512 × 16 × 16
ResNet Block 3×3 Down 512 × 8 × 8
ResNet Block 3×3 Down 512 × 4 × 4
ResNet Block 3×3 - 512 × 4 × 4
Linear - - 1

Table 6. The generator architecture for WGAN-QC 256×256 image size.
Discriminator Filter size Resampling Output size
Noise - - 128
Linear - - 512 × 4 × 4
ResNet Block 3×3 - 512 × 4 × 4
ResNet Block 3×3 Up 512 × 8 × 8
ResNet Block 3×3 Up 512 × 16 × 16
ResNet Block 3×3 Up 512 × 32 × 32
ResNet Block 3×3 Up 256 × 64 × 64
ResNet Block 3×3 Up 128 × 128 × 128
ResNet Block 3×3 Up 64 × 256 × 256
Conv, tanh - - 3 × 256 × 256

3.3. Results

We show larger versions of the figures in the main paper here. We show more randomly generated images and interpolation
results on the CelebA-HQ dataset by WGAN-QC (Figs. 5 and 6). All images shown in Figs. 1-4 and Figs. 7-10 are 64×64
images. All images shown in Figs. 5 and 6 are 256×256 images.



Figure 1. Larger version of Figure 3 (a) in the main paper (WGAN-GP). Obvious failure cases are marked with red boxes.



Figure 2. Larger version of Figure 3 (b) in the main paper (WGAN-div). Obvious failure cases are marked with red boxes.



Figure 3. Larger version of Figure 3 (c) in the main paper (CRGAN). Red boxes in (c) suggest the mode collapse problem of CRGAN.



Figure 4. Larger version of Figure 3 (d) in the main paper (WGAN-QC). All images generated by WGAN-QC are complete, smooth and
distinct from each other.



Figure 5. Face images randomly generated by WGAN-QC on the CelebA HQ dataset (image size is 256×256).



Figure 6. Face interpolation by WGAN-QC on the CelebA-HQ dataset. Transitions between the leftmost and rightmost faces appear smooth
and plausible.



Figure 7. Larger version of Figure 6 (a) in the main paper (WGAN-GP). Obvious failure cases are marked with red boxes.



Figure 8. Larger version of Figure 6 (b) in the main paper (WGAN-div). Obvious failure cases are marked with red boxes.



Figure 9. Larger version of Figure 6 (c) in the main paper (CRGAN). Obvious failure cases are marked with red boxes.



Figure 10. Larger version of Figure 6 (d) in the main paper (WGAN-QC). Obvious failure cases are marked with red boxes.
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