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Abstract

Segmentation algorithms are prone to topological errors on fine-scale structures,
e.g., broken connections. We propose a novel method that learns to segment
with correct topology. In particular, we design a continuous-valued loss function
that enforces a segmentation to have the same topology as the ground truth, i.e.,
having the same Betti number. The proposed topology-preserving loss function
is differentiable and we incorporate it into end-to-end training of a deep neural
network. Our method achieves much better performance on the Betti number error,
which directly accounts for the topological correctness. It also performs superiorly
on other topology-relevant metrics, e.g., the Adjusted Rand Index and the Variation
of Information. We illustrate the effectiveness of the proposed method on a broad
spectrum of natural and biomedical datasets.

1 Introduction
Image segmentation, i.e., assigning labels to all pixels of an input image, is crucial in many computer
vision tasks. State-of-the-art deep segmentation methods [27, 22, 10, 11, 12] learn high quality
feature representations through an end-to-end trained deep network and achieve satisfactory per-
pixel accuracy. However, these segmentation algorithms are still prone to make errors on fine-scale
structures, such as small object instances, instances with multiple connected components, and thin
connections. These fine-scale structures may be crucial in analyzing the functionality of the objects.
For example, accurate extraction of thin parts such as ropes and handles is crucial in planning robot
actions, e.g., dragging or grasping. In biomedical images, correct delineation of thin objects such
as neuron membranes and vessels is crucial in providing accurate morphological and structural
quantification of the underlying system. A broken connection or a missing component may only
induce marginal per-pixel error, but can cause catastrophic functional mistakes. See Fig. 1 for an
example.

We propose a novel deep segmentation method that learns to segment with correct topology. In
particular, we propose a topological loss that enforces the segmentation results to have the same
topology as the ground truth, i.e., having the same Betti number (number of connected components
and handles). A neural network trained with such loss will achieve high topological fidelity without
sacrificing per-pixel accuracy. The main challenge in designing such loss is that topological informa-
tion, namely, Betti numbers, are discrete values. We need a continuous-valued measurement of the
topological similarity between a prediction and the ground truth; and such measurement needs to be
differentiable in order to backpropagate through the network.

To this end, we propose to use theory from computational topology [15], which summarizes the
topological information from a continuous-valued function (in our case, the likelihood function f is
predicted by a neural network). Instead of acquiring the segmentation by thresholding f at 0.5 and
inspecting its topology, persistent homology [15, 16, 47] captures topological information carried
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(a) (b) (c) (d)
Figure 1: Illustration of the importance of topological correctness in a neuron image segmentation
task. The goal of this task is to segment membranes which partition the image into regions correspond-
ing to neurons. (a) an input neuron image. (b) ground truth segmentation of the membranes (dark
blue) and the result neuron regions. (c) result of a baseline method without topological guarantee [18].
Small pixel-wise errors lead to broken membranes, resulting in merging of many neurons into one.
(d) Our method produces the correct topology and the correct partitioning of neurons.

by f over all possible thresholds. This provides a unified, differentiable approach of measuring the
topological similarity between f and the ground truth, called the topological loss. We derive the
gradient of the loss so that the network predicting f can be optimized accordingly. We focus on 0-
and 1-dimensional topology (components and connections) on 2-dimensional images.

Our method is the first end-to-end deep segmentation network with guaranteed topological correctness.
We show that when the topological loss is decreased to zero, the segmentation is guaranteed to be
topologically correct, i.e., have identical topology as the ground truth. Our method is empirically
validated by comparing with state-of-the-arts on natural and biomedical datasets with fine-scale
structures. It achieves superior performance on metrics that encourage structural accuracy. In
particular, our method significantly outperforms others on the Betti number error which exactly
measures the topological accuracy. Fig. 1 shows a qualitative result.

Our method shows how topological computation and deep learning can be mutually beneficial. While
our method empowers deep nets with advanced topological constraints, it is also a powerful approach
on topological analysis; the observed function is now learned with a highly nonlinear deep network.
This enables topology to be estimated based on a semantically informed and denoised observation.

Related work. The closest method to ours is by Mosinska et al. [29], which also proposes a topology-
aware loss. Instead of actually computing and comparing the topology, their approach uses the
response of selected filters from a pretrained VGG19 network to construct the loss. These filters
prefer elongated shapes and thus alleviate the broken connection issue. But this method is hard to
generalize to more complex settings with connections of arbitrary shapes. Furthermore, even if this
method achieves zero loss, its segmentation is not guaranteed to be topologically correct.

Different ideas have been proposed to capture fine details of objects, mostly revolving around
deconvolution and upsampling [27, 10, 11, 12, 32, 37]. However these methods focus on the prediction
accuracy of individual pixels and are intrinsically topology-agnostic. Topological constraints, e.g.,

Figure 2: An overview of our method.
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connectivity and loop-freeness, have been incorporated into variational [21, 26, 41, 38, 45, 20] and
MRF/CRF-based segmentation methods [43, 33, 46, 6, 2, 40, 34, 17]. However, these methods focus
on enforcing topological constraints in the inference stage, while the trained model is agnostic of
the topological prior. In neuron image segmentation, some methods [19, 42] directly find an optimal
partition of the image into neurons, and thus avoid segmenting membranes. These methods cannot be
generalized to other structures, e.g., vessels, cracks and roads.

For completeness, we also refer to other existing works on topological features and their applications
[1, 36, 25, 5, 31, 9, 45]. In graphics, topological similarity was used to simplify and align shapes [35].
Chen et al. [8] proposed a topological regularizer to simplify the decision boundary of a classifier.
As for deep neural networks, Hofer et al. [23] proposed a CNN-based topological classifier. This
method directly extracts topological information from an input image/shape/graph as input for CNN,
hence cannot generate segmentations that preserve topological priors learned from the training set.
To the best of our knowledge, no existing work uses topological information as a loss for training a
deep neural network in an end-to-end manner.

2 Method
Our method achieves both per-pixel accuracy and topological correctness by training a deep neural
network with a new topological loss, Ltopo(f, g). Here f is the likelihood map predicted by the
network and g is the ground truth. The loss function on each training image is a weighted sum of the
per-pixel cross-entropy loss, Lbce, and the topological loss:

L(f, g) = Lbce(f, g) + λLtopo(f, g), (2.1)
in which λ controls the weight of the topological loss. We assume a binary segmentation task. Thus,
there is one single likelihood function f , whose value ranges between 0 and 1.

In Sec. 2.1, we introduce the mathematical foundation of topology and how to measure topology of a
likelihood map robustly using persistent homology. In Sec. 2.2, we formalize the topological loss
as the difference between persistent homology of f and g. We derive the gradient of the loss and
prove its correctness. In Sec. 2.3 we explain how to incorporate the loss into the training of a neural
network. Although we fix one architecture in experiments, our method is general and can use any
neural network that provides pixel-wise prediction. Fig. 2 illustrates the overview of our method.

2.1 Topology and Persistent Homology

Given a continuous image domain, Ω ⊆ R2 (e.g., a 2D rectangle), we study a likelihood map
f(x) : Ω→ R, which is predicted by a deep neural network (Fig. 3(c)).2 Note that in practice, we
only have samples of f at all pixels. In such case, we extend f to the whole image domain Ω by
linear interpolation. Therefore, f is piecewise-linear and is controlled by values at all pixels. A
segmentation, X ⊆ Ω (Fig. 3(a)), is calculated by thresholding f at a given value α (often set to 0.5).

Given X , its d-dimension topological structure, called a homology class [15, 30], is an equivalence
class of d-manifolds which can be deformed into each other within X .3 In particular, 0-dim and
1-dim structures are connected components and handles, respectively. For example, in Fig. 3(a),
the segmentation X has two connected components and one handle. Meanwhile, the ground truth
(Fig. 3(b)) has one connected component and two handles. Given X , we can compute the number of
topological structures, called the Betti number, and compare it with the topology of the ground truth.

However, simply comparing Betti numbers of X and g will result in a discrete-valued topological
error function. To incorporate topological prior into deep neural networks, we need a continuous-
valued function that can reveal subtle difference between similar structures. Fig. 3(c) and 3(d) show
two likelihood maps f and f ′ with identical segmentations, both with incorrect topology comparing
with the ground truth g (Fig. 3(b)). However, f is more preferable as we need much less effort to
change it so that the thresholded segmentation X has a correct topology. In particular, look closely
to Fig. 3(c) and 3(d) near the broken handles and view the landscape of the function. To restore the
broken handle in Fig. 3(d), we need to spend more effort to fill a much deeper gap than Fig. 3(c). The
same situation happens near the missing bridge between the two connected components.

2f depends on the network parameter ω, which will be optimized during training. For convenience, we only
use x as the argument of f .

3To be exact, a homology class is an equivalent class of cycles whose difference is the boundary of a
(d+ 1)-dimensional patch.
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Figure 3: Illustration of topology and topology of a likelihood. For visualization purposes, the higher
the function values are, the darker the area is. (a) an example segmentation X with two connected
components and one handle. (b) The ground truth with one connected component and two handles.
It can also be viewed as a binary valued function g. (c) a likelihood map f whose segmentation
(bounded by the red curve) is X . The landscape views near the broken bridge and handle are drawn.
Critical points are highlighted in the segmentation. (d) another likelihood map f ′ with the same
segmentation as f . But the landscape views reveal that f ′ is worse than f due to deeper gaps.

To capture such subtle structural difference between different likelihood maps, we need a holistic
view. In particular, we use the theory of persistent homology [16, 15]. Instead of choosing a fixed
threshold, persistent homology theory captures all possible topological structures from all thresholds,
and summarize all these information in a concise format, called a persistence diagram.

Fig. 3 shows that only considering one threshold α = 0.5 is insufficient. We consider thresholding the
likelihood function with all possible thresholds. The thresholded results, fα := {x ∈ Ω|f(x) ≥ α}
at different α’s, constitute a filtration, i.e., a monotonically growing sequence induced by decreasing
the threshold α : ∅ ⊆ fα1 ⊆ fα2 ⊆ ... ⊆ fαn = Ω, where α1 ≥ α2 ≥ ... ≥ αn. As α decreases,
the topology of fα changes. Some new topological structures are born while existing ones are killed.
When α < αn, only one connected component survives and never gets killed. See Fig. 4(a) and 4(d)
for filtrations induced by the ground truth g (as a binary-valued function) and the likelihood f .

For a continuous-valued function f , its persistence diagram, Dgm(f), contains a finite number of
dots in 2-dimensional plane, called persistent dots. Each persistent dot p ∈ Dgm(f) corresponds
to a topological structure born and dies in the filtration. Denote by birth(p) and death(p) the birth
and death time/threshold of the structure. For the connected component born at global minimum
and never dies, we say it dies at maxx f(x) = 1. The coordinates of the dot p in the diagram
are (1 − birth(p), 1 − death(p)).4 Fig. 4(b) and 4(e) show the diagrams of g and f , respectively.
Instead of comparing discrete Betti numbers, we can use the information from persistence diagrams
to compare a likelihood f with the ground truth g in terms of topology.

To compute Dgm(f), we use the classic algorithm [15, 16] with an efficient implementation [7, 44]:
we first discretize an image patch into vertices (pixels), edges and squares. Note we adopt a cubical
complex discretization, which is more suitable for images. The adjacency relationship between these
discretized elements and their likelihood function values are encoded in a boundary matrix, whose
rows and columns correspond to vertices/edges/squares. The matrix is reduced using a modified
Gaussian elimination algorithm. The pivoting entries of the reduced matrix correspond to all the dots
in Dgm(f). This algorithm is cubic to the matrix dimension, which is linear to the image size.

2.2 Topological Loss and its Gradient
We are now ready to formalize the topological loss, which measures the topological similarity between
the likelihood f and the ground truth g. We abuse the notation and also view g as a binary valued
function. We use the dots in the persistence diagram of f as they capture all possible topological
structures f potentially has. We slightly modify the Wasserstein distance for persistence diagrams [14].
For persistence diagrams Dgm(f) and Dgm(g), we find a best one-to-one correspondence between
the two sets of dots, and measure the total squared distance between them.5 An unmatched dot will
be matched to the diagonal line. Fig. 4(c) shows the optimal matching of the diagrams of g and f .
Fig. 4(f) shows the optimal matching of Dgm(g) and Dgm(f ′). The latter is clearly more expensive.

4Unlike traditional setting, we use 1− birth and 1− death as the x and y axes, because we are using an
upperstar filtration, i.e., using the superlevel set, and decreasing α value.

5To be exact, the matching needs to be done on separate dimensions. Dots of 0-dim structures (blue markers
in Fig. 4(b) and 4(e)) should be matched to the diagram of 0-dim structures. Dots of 1-dim structures (red
markers in Fig. 4(b) and 4(e)) should be matched to the diagram of 1-dim structures.
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Figure 4: An illustration of persistent homology. Left the filtrations on the ground truth function
g and the likelihood function f . The bars of blue and burgundy colors are connected components
and handles respectively. (a) For g, all structures are born at α = 1.0 and die at α = 0. (d) For
f , from left to right, birth of two components, birth of the longer handle, segmentation at α = 0.5,
birth of the shorter handle, death of the extra component, death of both handles. (b) and (e) the
persistence diagrams of g and f . (c) the overlay of the two diagrams. Orange arrows denote the
matching between the persistent dots. The extra component (a blue cross) from the likelihood is
matched to the diagonal line and will be removed if we move Dgm(f) to Dgm(g). (f) the overlay of
the diagrams of g and the worse likelihood Dgm(f ′). The matching is obviously more expensive.

The matching algorithm is as follows. A total of k (=Betti number) dots from ground truth (Dgm(g))
are at the upper-left corner pul = (0, 1), with birth(pul) = 1 and death(pul) = 0 (Fig. 4(b)). In
Dgm(f), we find the k dots closest to the corner pul and match them to the ground truth dots. The
remaining dots in Dgm(f) are matched to the diagonal line. The algorithm computes and sorts the
squared distances from all dots in Dgm(f) to pul. The complexity is O(n log n), n = the number of
dots in Dgm(f). In general, the state-of-the-art matches two arbitrary diagrams in O(n3/2) time [24].

Let Γ be the set of all possible bijections between Dgm(f) and Dgm(g). The loss Ltopo(f, g) is:

min
γ∈Γ

∑
p∈Dgm(f)

||p− γ(p)||2 =
∑

p∈Dgm(f)

[birth(p)− birth(γ∗(p))]2 + [death(p)− death(γ∗(p))]2

(2.2)
where γ∗ is the optimal matching between two different point sets.

Intuitively, this loss measures the minimal amount of necessary effort to modify the diagram of
Dgm(f) to Dgm(g) by moving all dots toward their matches. Note there are more dots in Dgm(f)
(Fig. 4(c)) than in Dgm(g) (Fig. 4(b)); there will usually be some noise in predicted likelihood map.
If a dot p cannot be matched, we match it to its projection on the diagonal line, {(1− b, 1−d)|b = d}.
This means we consider it as noise that should be removed. The dots matched to the diagonal line
correspond to small noisy components or noisy loops. These dots will be pushed to the diagonal.
And their corresponding components/loops will be removed or merged with others.

In this example, the extra connected component (a blue cross) in Dgm(f) will be removed. For
comparison, we also show in Fig. 4(f) the matching between diagrams of the worse likelihood f ′
and g. The cost of the matching is obviously higher, i.e., Ltopo(f ′, g) > Ltopo(f, g). As a theoretical
reassurance, it has been proven that this metric for diagrams is stable, and the loss function Ltopo(f, g)
is Lipschitz with regard to the likelihood function f [13].

The following theorem guarantees that the topological loss, when minimized to zero, enforces the
constraint that the segmentation has the same topology and the ground truth.
Theorem 1 (Topological Correctness). When the loss function Ltopo(f, g) is zero, the segmentation
by thresholding f at 0.5 has the same Betti number as g.

Proof. Assume Ltopo(f, g) is zero. By Eq. (2.2), Dgm(f) and Dgm(g) are matched perfectly, i.e.,
p = γ∗(p),∀p ∈ Dgm(f). The two diagrams are identical and have the same number of dots.
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Since g is a binary-valued function, as we decrease the threshold α continuously, all topological
structures are created at α = 1. The number of topological structures (Betti number) of gα for any
0 < α < 1 is the same as the number of dots in Dgm(g). Note that for any α ∈ (0, 1), gα is the
ground truth segmentation. Therefore, the Betti number of the ground truth is the number of dots
in Dgm(g). Similarly, for any α ∈ (0, 1), the Betti number of fα equals to the number of dots
in Dgm(f). Since the two diagrams Dgm(f) and Dgm(g) are identical, the Betti number of the
segmentation f0.5 is the same as the ground truth segmentation.6

Topological gradient. The loss function (Eq. (2.2)) depends on crucial thresholds at which topo-
logical changes happen, e.g., birth and death times of different dots in the diagram. These crucial
thresholds are uniquely determined by the locations at which the topological changes happen. When
the underlying function f is differentiable, these crucial locations are exactly critical points, i.e.,
points with zero gradients. In the training context, our likelihood function f is a piecewise-linear
function controlled by the neural network predictions at pixels. For such f , a critical point is always a
pixel, since topological changes always happen at pixels. Denote by ω the neural network parameters.
For each dot p ∈ Dgm(f) , we denote by cb(p) and cd(p) the birth and death critical points of the
corresponding topological structure (See Fig. 3(c) for examples).

Formally, we can show that the gradient of the topological loss∇ωLtopo(f, g) is:∑
p∈Dgm(f)

2[f(cb(p))− birth(γ∗(p))]
∂f(cb(p))

∂ω
+ 2[f(cd(p))− death(γ∗(p))]

∂f(cd(p))

∂ω (2.3)

To see this, within a sufficiently small neighborhood of f , any other piecewise linear function will
have the same super level set filtration as f . The critical points of each persistent dot in Dgm(f)
remains constant within such small neighborhood. So does the optimal mapping γ∗. Therefore, the
gradient can be straightforwardly computed based on the chain rule, as Eq. (2.3). When function
values at different vertices are the same, or when the matching is ambiguous, the gradient does not
exist. However, these cases constitute a measure zero subspace in the space of likelihood functions.
In summary, Ltopo(f, g) is a piecewise differentiable loss function over the space of all possible
likelihood functions f .

Intuition. During training, we take the negative gradient direction, i.e.,−∇ωLtopo(f, g). For each
topological structure the gradient descent step is pushing the corresponding dot p ∈ Dgm(f) toward
its match γ∗(p) ∈ Dgm(g). These coordinates are the function values of the critical points cb(p)
and cd(p). They are both moved closer to the matched persistent dot in Dgm(g). We also show the
negative gradient force in the landscape view of function f (blue arrow in Fig. 3(c)). Intuitively, force
from the topological gradient will push the saddle points up so that the broken bridge gets connected.

2.3 Training a Neural Network
We present some crucial details of our training algorithm. Although our method is architecture-
agnostic, we select one architecture inspired by DIVE [18], which was designed for neuron image
segmentation tasks. Our network contains six trainable weight layers, four convolutional layers and
two fully connected layers. The first, second and fourth convolutional layers are followed by a single
max pooling layer of size 2 × 2 and stride 2 by the end of the layer. Particularly, because of the
computational complexity, we use a patch size of 65× 65 during all the training process.

We use small patches (65 × 65) instead of big patches/whole image. The reason is twofold. First,
the computation of topological information is relatively expensive. Second, the matching process
between the persistence diagrams of predicted likelihood map and ground truth can be quite difficult.
For example, if the patch size is too big, there will be many persistent dots in Dgm(g) and even more
dots in Dgm(g). The matching process is too complex and prone to errors. By focusing on smaller
patches, we localize topological structures and fix them one by one.

Topology of small patches and relative homology. The small patches (65 × 65) often only
contain partial branching structures rather than closed loops. To have meaningful topological
measure on these small patches, we apply relative persistent homology as a more localized
approach for the computation of topological structures. Particularly, for each patch, we con-
sider the topological structures relative to the boundary. It is equivalent to padding a black
frame to the boundary and compute the topology to avoid trivial topological structures. As

6Note that a more careful proof should be done for diagrams of 0- and 1-dimension separately.
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Table 1: Quantitative results for different models on several medical datasets.

Dataset Method Accuracy ARI VOI Betti Error

ISBI12

DIVE 0.9640 ± 0.0042 0.9434 ± 0.0087 1.235 ± 0.025 3.187 ± 0.307
U-Net 0.9678 ± 0.0021 0.9338 ± 0.0072 1.367 ± 0.031 2.785 ± 0.269
Mosin. 0.9532 ± 0.0063 0.9312 ± 0.0052 0.983 ± 0.035 1.238 ± 0.251

TopoLoss 0.9626 ± 0.0038 0.9444 ± 0.0076 0.782 ± 0.019 0.429 ± 0.104

ISBI13

DIVE 0.9642 ± 0.0018 0.6923 ± 0.0134 2.790 ± 0.025 3.875 ± 0.326
U-Net 0.9631 ± 0.0024 0.7031 ± 0.0256 2.583 ± 0.078 3.463 ± 0.435
Mosin. 0.9578 ± 0.0029 0.7483 ± 0.0367 1.534 ± 0.063 2.952 ± 0.379

TopoLoss 0.9569 ± 0.0031 0.8064 ± 0.0112 1.436 ± 0.008 1.253 ± 0.172

CREMI

DIVE 0.9498 ± 0.0029 0.6532 ± 0.0247 2.513 ± 0.047 4.378 ± 0.152
U-Net 0.9468 ± 0.0048 0.6723 ± 0.0312 2.346 ± 0.105 3.016 ± 0.253
Mosin. 0.9467 ± 0.0058 0.7853 ± 0.0281 1.623 ± 0.083 1.973 ± 0.310

TopoLoss 0.9456 ± 0.0053 0.8083 ± 0.0104 1.462 ± 0.028 1.113 ± 0.224

shown in the figure on the right, with the additional frame, a Y -shaped branching structure
cropped within the patch will create two handles and be captured by persistent homology.

Training using these localized topological loss can be very efficient via random
patch sampling. Specifically, we do not partition the image into patches. Instead,
we randomly and densely sample patches which can overlap. As Theorem 1
guarantees, Our loss enforces correct topology within each sampled patch. These
overlaps between patches propagate correct topology everywhere. On the other
hand, correct topology within a patch means the segmentation can be a deformation
of the ground truth. But the deformation is constrained within the patch. The patch
size controls the tolerable geometric deformation. During training, even for a same
patch, the diagram Dgm(f), the critical pixels, and the gradients change. At each epoch, we resample
patches, reevaluate their persistence diagrams, and the loss gradients. After computing topological
gradients of all sampled patches from a mini-batch, we aggregate them for backpropagation.

3 Experiments

We evaluate our method on six natural and biomedical datasets: CREMI7, ISBI12 [4], ISBI13 [3],
CrackTree [48], Road [28] and DRIVE [39]. The first three are neuron image segmentation datasets.
CREMI contains 125 images of size 1250x1250. ISBI12 [4] contains 30 images of size 512x512.
ISBI13 [3] contains 100 images of size 1024x1024. These three datasets are neuron images (Electron
Microscopy images). The task is to segment membranes and eventually partition the image into neuron
regions. CrackTree [48] contains 206 images of cracks in road (resolution 600x800). Road [28] has
1108 images from the Massachusetts Roads Dataset. The resolution is 1500x1500. DRIVE [39] is a
retinal vessel segmentation dataset with 20 images. The resolution is 584x565. For all datasets, we
use a three-fold cross-validation and report the mean performance over the validation set.

Evaluation metrics. We use four different evaluation metrics. Pixel-wise accuracy is the percentage
of correctly classified pixels. The remaining three metrics are more topology-relevant. The most
important one is Betti number error, which directly compares the topology (number of handles)
between the segmentation and the ground truth8. We randomly sample patches over the segmentation
and report the average absolute difference between their Betti numbers and the corresponding ground
truth patches. Two more metrics are used to indirectly evaluate the topological correctness: Adapted
Rand Index (ARI) and Variation of Information (VOI). They are used in neuron reconstruction to
compare the partitioning of the image induced by the segmentation. ARI is the maximal F-score of
the foreground-restricted Rand index, a measure of similarity between two clusters. On this version
of the Rand index we exclude the zero component of the original labels (background pixels of the
ground truth). VOI is a measure of the distance between two clusterings. It is closely related to
mutual information; indeed, it is a simple linear expression involving the mutual information.

Baselines. DIVE [18] is a state-of-the-art neural network that predicts the probability of every
individual pixel in a given image being a membrane (border) pixel or not. U-Net [37] is a popular

7https://cremi.org/
8Note we focus on 1-dimensional topology in evaluation and training as they are more crucial in practice.
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Table 2: Quantitative results for different models on retinal, crack, and aerial datasets.

Dataset Method Accuracy ARI VOI Betti Error

DRIVE

DIVE 0.9549 ± 0.0023 0.8407 ± 0.0257 1.936 ± 0.127 3.276 ± 0.642
U-Net 0.9452 ± 0.0058 0.8343 ± 0.0413 1.975 ± 0.046 3.643 ± 0.536
Mosin. 0.9543 ± 0.0047 0.8870 ± 0.0386 1.167 ± 0.026 2.784 ± 0.293

TopoLoss 0.9521 ± 0.0042 0.9024 ± 0.0113 1.083 ± 0.006 1.076 ± 0.265

CrackTree

DIVE 0.9854 ± 0.0052 0.8634 ± 0.0376 1.570 ± 0.078 1.576 ± 0.287
U-Net 0.9821 ± 0.0097 0.8749 ± 0.0421 1.625 ± 0.104 1.785 ± 0.303
Mosin. 0.9833 ± 0.0067 0.8897 ± 0.0201 1.113 ± 0.057 1.045 ± 0.214

TopoLoss 0.9826 ± 0.0084 0.9291 ± 0.0123 0.997 ± 0.011 0.672 ± 0.176

Road

DIVE 0.9734 ± 0.0077 0.8201 ± 0.0128 2.368 ± 0.203 3.598 ± 0.783
U-Net 0.9786 ± 0.0052 0.8189 ± 0.0097 2.249 ± 0.175 3.439 ± 0.621
Mosin. 0.9754 ± 0.0043 0.8456 ± 0.0174 1.457 ± 0.096 2.781 ± 0.237

TopoLoss 0.9728 ± 0.0063 0.8671 ± 0.0068 1.234 ± 0.037 1.275 ± 0.192

Figure 5: Qualitative results of the proposed method compared to other models. From left to right,
sample images, ground truth, results for DIVE, U-Net, Mosin. and our proposed TopoLoss.

image segmentation method trained with cross-entropy loss. Mosin. [29] uses the response of selected
filters from a pretrained CNN to construct the topology aware loss. For all methods, we generate
segmentations by thresholding the predicted likelihood maps at 0.5.

Quantitative and qualitative results. Table 1 shows the quantitative results for three different
neuron image datasets, ISBI12, ISBI13 and CREMI. Table 2 shows the quantitative results for
DRIVE, CrackTree and Road. Our method significantly outperforms existing methods in topological
accuracy (in all three topology-aware metrics), without sacrificing pixel accuracy. Fig. 5 shows
qualitative results. Our method demonstrates more consistency in terms of structures and topology. It
correctly segments fine structures such as membranes, roads and vessels, while all other methods fail
to do so. Note that the topological error cannot be solved by training with dilated ground truth masks.
We run additional experiments on CREMI dataset by training a topology-agnostic model with dilated
ground truth masks. For 1 and 2 pixel dilation, We have Betti Error 4.126 and 4.431, respectively.
They are still significantly worse than TopoLoss (Betti Error = 1.113).

Ablation study: loss weights. Our loss (Eq. (2.1)) is a weighted combination of cross entropy loss
and topological loss. For convenience, we drop the weight of cross entropy loss and weight the
topological loss with λ. Fig. 6(b) and 6(c) show ablation studies of λ on CREMI w.r.t. accuracy,
Betti error and convergence rate. As we increase lambda, per-pixel accuracy is slightly compromised.
The Betti error decreases first but increases later. One important observation is that a certain amount
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Figure 6: (a) Cross Entropy loss, Topological loss and total loss in terms of training epochs. (b)
Ablation studies of lambda on CREMI w.r.t. accuracy, Betti error. (c) Ablation study of lambda on
CREMI w.r.t. convergence rate.

Figure 7: For a sample patch from CREMI, we show the likelihood map and segmentation at different
training epochs. The first row correspond to likelihood maps and the second row are thresholded
results. From left to right, original patch/ground truth, results after 10, 20, 30, 40 and 50 epochs.

of topological loss improves the convergence rate significantly. Empirically, we choose λ via cross-
validation. Different datasets have different λ’s. In general, λ is at the magnitude of 1/10000. This is
understandable; while cross entropy loss gradient is applied to all pixels, topological gradient is only
applied to a sparse set of critical pixels. Therefore, the weight needs to be much smaller to avoid
overfitting with these critical pixels.

Fig. 6(a) shows the weighted topological loss (λLtopo), cross entropy loss (Lbce) and total loss (L)
at different training epochs. After 30 epochs, the total loss becomes stable. Meanwhile, while Lbce
increases slightly, Ltopo decreases. This is reasonable; incorporating of topological loss may force
the network to overtrain on certain locations (near critical pixels), and thus may hurt the overall pixel
accuracy slightly. This is confirmed by the pixel accuracy of TopoLoss in Tables 1 and 2.

Rationale. To further explain the rationale of topological loss, we first study an example training
patch. In Fig. 7, we plot the likelihood map and the segmentation at different epochs. Within a
short period, the likelihood map and the segmentation are stabilized globally, mostly thanks to the
cross-entropy loss. After epoch 20, topological errors are gradually fixed by the topological loss.
Notice the change of the likelihood map is only at specific topology-relevant locations.
Our topological loss compliments cross-entropy loss by combating sampling bias. In Fig. 7, for most
membrane pixels, the network learns to make correct prediction quickly. However, for a small amount
of difficult locations (blurred regions), it is much harder to learn to predict correctly. The issue is these
locations only take a small portion of training pixel samples. Such disproportion cannot be changed
even with more annotated training images. Topological loss essentially identifies these difficult
locations during training (as critical pixels). It then forces the network to learn patterns near these
locations, at the expense of overfitting and consequently slightly compromised per-pixel accuracy.
On the other hand, we stress that topological loss cannot succeed alone. Without cross-entropy loss,
inferring topology from a completely random likelihood map is meaningless. Cross-entropy loss
finds a reasonable likelihood map so that the topological loss can improve its topology.

Acknowledgement. The research of Xiaoling Hu and Chao Chen is partially supported by NSF
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