
Sequence-to-Segments Networks
for Segment Detection

Zijun Wei1 Boyu Wang1 Minh Hoai1 Jianming Zhang2 Zhe Lin2

Xiaohui Shen3 Radomír Měch2 Dimitris Samaras1

1Stony Brook University, 2Adobe Research, 3ByteDance AI Lab

Abstract

Detecting segments of interest from an input sequence is a challenging problem
which often requires not only good knowledge of individual target segments, but
also contextual understanding of the entire input sequence and the relationships
between the target segments. To address this problem, we propose the Sequence-to-
Segments Network (S2N), a novel end-to-end sequential encoder-decoder architec-
ture. S2N first encodes the input into a sequence of hidden states that progressively
capture both local and holistic information. It then employs a novel decoding
architecture, called Segment Detection Unit (SDU), that integrates the decoder
state and encoder hidden states to detect segments sequentially. During training,
we formulate the assignment of predicted segments to ground truth as the bipartite
matching problem and use the Earth Mover’s Distance to calculate the localization
errors. Experiments on temporal action proposal and video summarization show
that S2N achieves state-of-the-art performance on both tasks.

1 Introduction

We address the problem of detecting temporal segments of “interest” in an input time series. Here
we define “interest” as an abstract concept that denotes the parts of the data that have the highest
(application dependent) semantic values. We assume there are training time series with annotated
segments of interest (e.g., labeled by humans), and our goal is to train a neural network that can
detect the segments of interest in unseen time series. This general problem arises in many situations
including temporal event detection [17, 18], video summarization [47, 48], sentence chunking [32],
gene localization [24], and discriminative localization [19, 31]. For human action detection, the
segments of interest are the ones that correspond to the temporal extents of human actions. For video
summarization, the segments of interest are the video snippets that summarize the video.

A typical approach to address this problem is to train a classifier to separate the annotated segments of
interest from some negative examples. Once trained, the classifier can be used to evaluate individual
candidate segments of the input time series in a sliding window approach to identify the segments of
interest. This approach however has two drawbacks. First, the computational complexity depends on
the number of candidate segments, and this scales quadratically with the length of the time series.
Second, the independent evaluation of each segment is suboptimal for many situations because
“interest” might be a contextual concept. To detect a set of target segments, not only do we need
to evaluate the local content of individual segments, but also their collective relationships and their
roles in the global context. Taking video summarization as an example, to summarize a video, it is
important to know and preserve the gist of the video, and this requires a holistic analysis of the video.
Furthermore, the set of selected video snippets should not overlap temporally or semantically, and
this can only be avoided by collectively evaluating the segments. The second drawback of the sliding
window classification approach is commonly addressed by applying a post-processing step such as

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

non-maximum suppression, but the addition of post processing steps creates a pipeline that cannot be
optimized end-to-end.

In this paper we propose the Sequence-to-Segments Network (S2N), a novel recurrent neural network
for analyzing a time series to detect temporal segments of interest. Our network is based on the
sequential encoder-decoder architecture [40]. The encoder network encodes the time series and
produces a sequence of hidden states that progressively capture from local to holistic information
about the times series. The decoder network takes the final state of the encoder network as its starting
state and outputs one segment of interest at a time. The state will be updated to incorporate what has
been already outputted. This alleviates the need for a post-processing step that may not have access
to the time series information. The whole encoder-decoder pipeline can be optimized end-to-end.
For the decoder network, we introduce a novel architecture, named Segment Detection Unit (SDU),
which outputs a segment based on the decoding state and the hidden states of the encoder. The SDU
localizes the segment of interest by pointing to the boundaries of the segment, similar to the pointer
network [43]. The SDU also outputs a confidence value for the selected segment. The computational
complexity of SDU is linear with respect to the length of the input sequence, which is more efficient
than the quadratic complexity of the sliding window approach.

To train an S2N, we optimize a loss function that is defined based on the localization offsets and
the recall rate of the proposed segments. This loss function is computed based on the minimum
matching cost between the target segments of interest and the sequence of detected segments [13, 39].
Inspired by [39], we use a lexicographic comparison function for the detection-target pairs and use
the Hungarian algorithm to find the best matching. In addition, we use the Earth Mover’s Distance
loss that accounts for the localization error to train the boundary pointing modules of the SDU.

The major contributions of this paper are: (1) We propose S2N, a novel network architecture for
detecting segments of interest in video. (2) We design a matching algorithm and an Earth Mover’s
Distance based loss function for the training of S2Ns. (3) We show that S2Ns outperform the state-of-
the-art methods in two real-world applications: human action proposal and video summarization.

2 Related Work

Recurrent Neural Networks (RNNs) have been the standard method for learning functions over
sequences from examples for a long time [34]. To further remove the constraint that the number of
outputs is dependent on the number of inputs, Sutskever et al. [40] recently proposed the sequence-
to-sequence paradigm that first uses one RNN to map an input sequence to a state and then applies
another RNN to output a sequence with arbitrary length based on the encoded state. Bahdanau
et al. augmented the decoder by propagating extra contextual information from the input using a
content-based attentional mechanism [1, 14]. Vinyals et al. [43] modified the attention model to allow
the model to directly point to elements in the input sequence, providing a more efficient and accurate
model for element localization. These developments have made it possible to apply RNNs to new
domains such as language translation [1, 40] and parsing [44], and image and video captioning [7, 45].
However, the current RNNs are designed to output each time one “token” in the input sequence, they
can not handle properly the segment detection task in which each time a continuous chunk of the
inputs is selected. Perhaps the most related work to ours is [13] which attempts to train RNNs to
label unsegmented sequences directly. But the goal of [13] is classification where the localization
information is not required in the output. The proposed S2N simultaneously detects segments and
estimate their confidence scores, thus can be applied to different problems such as temporal action
proposal generation and video summarization.

3 Sequence-to-Segments Network Architecture

In this section, we will describe the S2N. We first formally state the problem. We then describe the
overall S2N architecture and the details of the proposed Segment Detection Unit (SDU), the core
component of S2N for localizing a temporal segment of interest.

2

Segment Detection Unit

…

SDU

Start Position
Pointer

End Position
Pointer

Score
Predictor

GRU SDU …

Figure 1: An Encoder (green) processes the input sequence to create a set of encoding vectors
({e1, e2, ...eM}). At each decoding step, a Segment Detection Unit (SDU) updates the decoding state
with a GRU, and based on the updated state, the SDU points to the beginning (b) and ending positions
(d) with two separate pointing modules and estimates the confidence score (c) of the segment.

3.1 Problem Formulation

Let X = (x1,x2, · · · ,xM) be an input time series of length M , where xm ∈ Rd is the observation
feature vector at time m. Our goal is to learn an RNN that can localize a set of segments of interest
S = (S1, · · · , SN) from the input time series X . Here each segment Sn corresponds to a contiguous
subsequence of X and it is parameterized by a tuple of three elements (bn, dn, cn) indicating the
beginning position bn, the ending position dn, and the estimated interest score cn. There are no
explicit constraints on the locations and extents of the segments; the segments can overlap and their
union does not have to cover the entire sequence X . Intuitively, many problems that detect temporal
segments in a series such as action detection or video summarization can be formulated this way.

3.2 Model Overview

The proposed S2N is illustrated in Fig. 1. S2N is a sequential encoder-decoder with an attentional
mechanism [1]. S2N sequentially encodes an input sequence x1, · · · ,xM and obtains a corresponding
sequence of encoding state vectors e1, · · · , eM ; the encoding state vector em essentially contains
integrated information from x1 to xm [23, 40].

3.3 Segment Detection Unit (SDU)

A key component of the S2N is the Segment Detection Unit (SDU) for localizing a segment of
interest. As shown in Fig 1, each SDU has four components: a Gated Recurrent Unit (GRU) [5] for
updating and communicating states between time steps, two pointing modules [43] for pointing to
the beginning and ending positions of the segment, and a score estimator for evaluating the interest
score of the segment. Details about these components are described below.

GRU for state update. During decoding, at each step given the previous hidden state hj−1 (h0 is
the concatenation of the last hidden state and memory cell of the encoder), the GRU module updates
the current hidden state: hj = GRU(hj−1, z), where z is a learned input vector to the GRU at each
step. We refer the reader to [5] for further details about the GRU update function.

Note that S2N can be theoretically used with any RNN architecture, including LSTM, GRU, and
their variants (e.g., [26]). We propose to use GRU [5] because it has a simpler architecture and
fewer parameters than the others (which means higher training and testing efficiency). We also
experimented with LSTM but did not observe significant difference in terms of model accuracy. This
is consistent with prior observations [3] and empirical findings from prior work on deep recurrent
models in other domains [5, 6, 22].

Pointing modules for boundary localization. Given the current state hj of an SDU, we predict the
two boundary positions similar to the pointer networks (Ptr-Net) [43]. To localize the beginning

3

position bj of a segment, we use the pointer mechanism as follows:

bj = argmax
i

g(hj , ei),where g(hj , ei) = vTtanh(W1ei + W2hj). (1)

The beginning boundary is determined as the location that has the highest response to a pointer
function g. The output of this function depends on the state hj of the SDU and the encoding vector
ei of the encoder component.

One alternative of predicting the locations is to use regression (similar to [27, 33]), however, this
approach outputs a ratio in [0, 1], which does not respect the constraint that the outputs map back
exactly to the boundaries. As demonstrated in prior works [38, 43], the predictions are blurry over
longer sequences.

Note the difference compared to the original Ptr-Net [43]: the pointer function is defined based on the
encoding state vector ei instead of the input vector xi. The encoding state vector ei contains richer
information than the input vector xi; ei integrates the progression of the input time series up until
time i, and this information is crucial for determining the segment boundaries [29]. In the above, v,
W1 and W2 are learnable parameters of the pointing module that associates the decoding state with
the hidden encoding states.

Similarly, the ending position dj is determined using another independent Ptr-Net module. Thus, we
have two Ptr-Net modules for determining the locations of the beginning and ending positions.

Score predictor. Finally, we estimate the confidence score of the segment using a two layer 1D
convolution network with a ReLu activation layer in between.

No terminal output. We do not design a terminal output for S2N as in [1] because of two reasons.
First, the problem we address is to output a ranked list of temporal segments of interest, which is
different from the problem of sequence-to-sequence translation, in which there is a need for a terminal
state. Second, by not having a terminal state, S2N can output as many segments as needed, bringing
flexibility to different needs in real-world problems.

4 Training a Sequence-to-Segments Network

The S2Ns can be trained end-to-end. In this section, we first present the loss function, and then
describe how we match the sequence of predicted segments to the set of target segments.

Let G = {G1, · · · , GK} denote the set of ground truth segments and S = (S1, · · · , SN) the sequence
of segments produced by the S2N. Given an assignment strategy for matching G to S, we will have
an injection mapping: f : {1, · · · ,K} → {1, · · · , N}, where f(k) indicates that the ground truth
instance Gk should be matched to Sf(k). Then, the loss value for the predicted sequence of segments
and the set of ground truth instances is computed as follows:

L(G,S, f) = α

K∑
k=1

Lloc(Gk, Sf(k)) +

N∑
n=1

Lconf (Sn, δn), (2)

where δn is the desired confidence value for Sn (depending on whether Sn is matched to a ground
truth instance in G). Lloc and Lconf are the loss functions for localization and confidence score
prediction, which will be explained below.

Loss function for localization. For a given probability distribution over the location of the segment
boundary returned by the pointing module, one way to define the localization loss is to use the
cross-entropy loss as in [43]. However, this loss function is unsuitable for boundary localization
because it is insensitive to the amount of localization error; this loss function does not provide
meaningful gradients for the training process.

We propose to use a loss function that is defined based on the Earth Mover’s Distance (EMD) between
the probability distribution of the predicted boundary and the distribution that represents the ground
truth boundary. We now explain how this loss function can be computed for the beginning position
b (the loss for the ending position d is computed similarly). Recall from Eq. (1) that we determine
the beginning location of a segment as the maximum of a response function: b = argmaxi g(h, ei),
where h is the state vector of the SDU. We define the probability of picking i as the boundary point

4

based on the soft-max function Pr(b = i) = exp(g(h, ei))/
∑

i exp(g(h, ei)). Let p∗ be the binary
indicator vector for the ground truth location of segment boundary; p∗(i) = 1 if i is the ground
truth boundary and 0 otherwise. The EMD loss can be computed based on the differences the two
cumulative distributions:

Lb
loc =

M∑
m=1

(
m∑
i=1

Pr(b = i)−
m∑
i=1

p∗(i)

)2

. (3)

We use the squared loss in Eq. (3) because it usually converges faster than a L1 loss and is easier
to optimize with gradient descent [20, 28, 35]. The loss for the predicting the ending position is
similarly defined and the total localization loss is: Lloc = Lb

loc + Ld
loc.

Loss function for confidence estimation. Recall that the S2N predicts a confidence value cn for
each segment Sn. We can use the cross-entropy loss to measure the compatibility between cn and
δn: Lconf (Sn, δn) = −δn log(cn) − (1 − δn) log(1 − cn). For some applications, such as video
summarization, the desired confidence value for each segment Sn is not necessary binary. In this
case, we can use the L2 loss function, i.e., Lconf (Sn, δn) = (cn − δn)2.

Assignment Strategy. To implement the above loss functions, we need an assignment strategy to
match the target segments to the predicted ones. We follow the bipartite matching strategy based
on the Hungarian loss used in [39]. Specifically, we define the matching cost between a predicted
segment Sn and a ground truth Gk using a triplet cost function:

∆(Gk, Sn) = (okn, n, lkn). (4)

The function ∆ : G × S → <3 returns a tuple where lkn is the L1 distance between Gk and Sn. okn
indicates whether there is significant overlapping between Gk and Sn:

okn =

{
1 if IoU(Gk, Sn) ≥ 0.5

0 otherwise.
(5)

We can use the Hungarian algorithm to determine the best matching with lexicographic preference:

K∑
k=1

∆(Gk, Sf(k)) =

(
K∑

k=1

okf(k),

K∑
k=1

f(k),

K∑
k=1

lkf(k)

)
. (6)

In words, the Hungarian algorithm first finds the best matching based on o only. For tie-breaking, it
will consider n, and then l if necessary. For more details, see [39].

5 Experiments

5.1 Model Implementation and Hyper-parameters

We used the same architecture in all experiments even though better results can likely be achieved
by tuning the model to fit specific problems. Unless specified otherwise, the encoder is a 2 layer
bi-directional GRU with 512 hidden units with dropout rate 0.5, the GRU module in SDU is one-
directional with 1024 hidden units. All the models are trained with the Adam optimizer [25] for
50 epochs with an initial learning rate of 0.0001, which was decreased by a factor of 10 when the
training performance plateaued, batch size of 32 and L2 gradient clipping of 1.0. The trade-off factor
α in Eq. (2) is set to ensure that Lloc does not dominate in the total loss. A weight adjustment for
the score predictor is also used if necessary to account for the imbalance between the positive and
negative samples. The code is publicly available at https://www3.cs.stonybrook.edu/~cvl/
projects/wei2018s2n/S2N_NIPS2018s.html

5.2 Temporal Action Proposal

Temporal Action Proposal (TAP) generation, akin to generation of object proposals in images, is an
important problem as accurate extraction of semantically important segments (e.g., human actions)

5

https://www3.cs.stonybrook.edu/~cvl/projects/wei2018s2n/S2N_NIPS2018s.html
https://www3.cs.stonybrook.edu/~cvl/projects/wei2018s2n/S2N_NIPS2018s.html

101 102
Average number of proposals

0.0

0.2

0.4

0.6

Av
er

ag
e

Re
ca

ll

Random
Sliding Window
Sparse-prop
DAPs
TURN-C3D
TURN-FLOW
S2N (proposed)

(a) AR-N

10 1 100
Proposal frequency

0.0

0.2

0.4

0.6

Av
er

ag
e

Re
ca

ll

Random
Sliding Window
Sparse-prop
DAPs
TURN-C3D
TURN-FLOW
S2N (proposed)

(b) AR-F

0.0 0.2 0.4 0.6 0.8 1.0
tIoU

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
F=

1.
0

Random
Sliding Window
Sparse-prop
DAPs
TURN-C3D
TURN-FLOW
S2N (proposed)

(c) Recall@1.0-tIoU

Figure 2: S2N outperforms previous temporal and temporal action proposal generation approaches
on THUMOS-14 under various performance metrics.

from untrimmed videos is an important step for large-scale video analysis. In this section we show
that an S2N can be trained to generate action proposals.

Dataset. We evaluate S2Ns on the THUMOS14 dataset [21], a challenging benchmark for the action
proposal task. Following the standard practice, we train an S2N on the validation set and evaluate it
on the testing set. On these two sets, 200 and 212 videos have temporal annotations in 20 classes,
respectively. The average video duration in THUMOS14 is 233 seconds. The average number of
labeled actions in each video is around 15. The average action duration is 4 seconds and more than
99% of the actions are within 10 seconds. We train an S2N using 180 out of 200 videos from the
validation set and hold out 20 videos for validation.

Implementation For each video, we extract C3D features [41] following [3, 8]. To address the
problem of long videos, we split each video into overlapping chunks of 360 frames (~12s) and
subsample every 4 frames. We set the number of proposals generated from each chunk to be 15,
which is the largest possible number of ground truth proposals contained in a chunk during training.
We combine the proposals from chunks, sort them by their scores, and apply a Non-Maximum
Suppression (NMS) with a 75% temporal intersection over union (tIoU). Note this is the only
post-processing step used to address the overlap introduced in splitting the videos.

Metrics. We compare S2N with the baselines under the following metrics:

AR-N [46]: AR-N measures average recall (AR) as a function of number of proposals per video. Note
that the numbers of retrieved proposals (N) for all the test videos are the same regardless of their
lengths. Under this metric, we limit N to 300 considering that on average each video only contains
15 actions.

AR-F [9]: AR-F measures average recall (AR) as a function of proposal frequency (F), which denotes
the number of retrieved proposals per second for a video. For a video of length Li seconds and
proposal frequency of F , the retrieved proposal number of this video is Ni = F × Li.

Recall@F-tIoU [9]: this metric measures the recall rate at proposal frequency F with regard to
different tIoUs. In the evaluation, we set F = 1.0 following [9].

Baselines. We compare S2N to the state-of-the art TAP generation methods including DAPs [8]
that uses an encoder LSTM and a regression branch for localization, Sparse-prop [4] that applies
dictionary learning for class independent proposal generation over a large set of candidate proposals,
and TURN-TAP [9] that evaluates candidate proposals in a sliding window manner over different
temporal scales and level of contexts (we compare with variants of TURN-TAP based on different
features and denote them as TURN-C3D and TURN-FLOW). We also compare with sliding window
and random generators. For the DAPs, Sparse-prop, and TURN-TAPS, we plot the curves using the
generated proposals provided by the authors. The sliding window proposals and random proposals
are generated following [9].

Results. The comparison to baselines under AR-N, AR-F, and Recall@F=1.0-tIoU metrics are shown
in Fig 2. S2N outperforms the baselines by a significant margin over all the metrics. Note the gap
between S2N and DAPs partially implies the necessity of considering the contextual information

6

Table 1: F1 scores (%) of various video summary methods on the SumMe dataset [15]

Interesting[15] Submodularity[16] DPP-LSTM[47] GANsup[30] DR-DSNsup [48] S2N(proposed)

39.4 39.7 38.6 41.7 42.1 43.3

and the superiority of the proposed pointing mechanism. Also note that we did not apply any
post processing such as using the action length distributions as priors [9, 36], merging neighboring
proposals or boundary refinement [9, 37] other than a simple non-maximum suppression step.

101 102
Average number of proposals

0.0

0.2

0.4

0.6

Av
er

ag
e

Re
ca

ll

CLS-FIX
L2-HUG
L2-FIX
CLS-HUG
EMD-FIX
TURN-FLOW
S2N (proposed)

Figure 3: Comparing different action proposal
methods. Best viewed on a digital device.

Ablation Study. We explore the influence of differ-
ent label assignment strategies and loss functions on
the performance of S2N. Specifically we compare
the proposed S2N with the following variants:

CLS-FIX: optimize the localization errors using
cross-entropy classification loss as suggested in [43]
and assign labels to predictions base on a fixed order
matching).

CLS-HUG: optimize the localization errors with
cross-entropy loss and assign labels to predictions
base on the Hungarian matching algorithm described
in Sec. 4.

EMD-FIX: optimize the localization errors with the
EMD loss as in Eq. (3) and assign labels based on
the fixed order matching.

L2-FIX /HUG: optimize the localization errors with
the L2 loss as an alternative to EMD loss and assign
labels based on the fixed order matching or the Hungarian matching algorithm.

As shown in Fig. 3, the proposed strategy to train the S2N significantly outperforms its variants. The
variant methods tend to generate overlapping proposals so that the post-processing NMS reduces the
effective number of proposals significantly.

Speed. S2N is efficient since it does not require repeated computation over multi-scale context.
Specifically, S2N processes each frame in a sequence only once in the encoding stage and outputs a
fixed set of segments over the whole sequence in the decoding stage. It is more efficient than recent
models ([2, 3]) that evaluate on a dense set of highly-overlapped candidates at each temporal step
in a sequence. Quantitatively, it takes on average 0.028s to process a 12s, 30FPS video on a GTX
Titan X Maxwell GPU with 12GB memory. In the batch mode, it takes around 2s to generate over
1200 proposals for an 8-minute video (14400 frames sampled every 4 frames). This is more than two
times faster than the recently proposed models (1800 FPS v.s. 701 FPS [2] v.s. 308 FPS [3] v.s. 134
FPS [8]).

5.3 Video Summarization

Automatic video summarization provides a method for humans to browse and analyze video data.
A good video summarization algorithm need to select a small set of segments that are interesting,
diverse, and representative of the original video. In this section we show that S2N can be trained to
summarize long videos by generating a set of segments.

Dataset. We perform experiments on SumMe [15], a standard benchmark for video summarization.
SumMe consists of 25 user videos covering various topics such as holidays and sports. Each video
in SumMe ranges from 1 to 6 minutes and is annotated by 15 to 18 people (thus there are multiple
ground truth summaries for each video). We treat each annotation separately and consider all of
them ground truth. In this way, S2N is trained to model multiple segment combinations to account
for different user annotations (around 450 annotated video instances). We use the canonical setting
suggested in [47] for evaluation: we use the standard 5-fold cross validation (5FCV), i.e., 80% of
videos are for training and the rest for testing.

7

GT
Summary

Pred
Summary

 GT
 Pred

Figure 4: Visualization of the summarization results. S2N localizes the interesting events in the video
preferred by the annotators.

Implementation. Similar to temporal action proposal generation, we use C3D features. Each video
is split into overlapping chunks of 800 frames, subsampled every 8 frames as inputs. We limit
the maximum number of output segments to 6. To generate a summary, following the standard
practice [47, 48], we select segments based on their scores by maximizing the total scores while
ensuring that the summary length does not exceed a limit, which is usually 15% of the video length.
The maximization step is essentially the 0/1 Knapsack problem. To address the problem that SumMe
has limited training data. We train each split for exactly 10 epochs and report the performance based
on the last epoch.

Evaluation metric. We follow the commonly used protocol from [16, 47, 48]: we compute the
F1-score to assess the similarity between the predicted segments and the ground truth summaries. To
deal with the existence of multiple ground truth summaries [16], we evaluate the predictions w.r.t.
the nearest-human summary, i.e., the one that is the most similar to the automatically created one.

Baselines. We compare S2N to multiple state-of-the-art video summary algorithms including
interestingness-based summary [15], submodularity-based summary [16], and the recent deep
learning based models, including: DPP-LSTM [47] (based on LSTM and a determinantal point
processes [11]), GANsup [30] (based on GAN [12] with extra supervision), and DR-DSNsup [48]
(based on reinforcement learning with supervision).

Results. As shown in Tab 1, S2N outperforms all other methods. S2N is designed to capture
all the information needed for generating good summaries. We also visualize an example of the
summarization in Fig 4.

6 Conclusions and Future Work

We have proposed the Sequence-to-Segments Network (S2N), a novel architecture that uses Segment
Detection Units (SDU) to detect segments sequentially from an input sequence. We have shown that
S2N can be applied to real-world problems and achieve state-of-the-art performance.

There are a a few directions for future work. One direction is to augment the encoding stage to be
capable of recording longer sequences [26]. Another possible direction is to extend S2N to more
complex problems such as action detection in untrimmed videos. A third direction is to introduce
auxiliary losses to enforce explicit semantic constraints on S2N [2]. It is also possible to base S2N on
the fully convolutional encoder-decoder architecture [10, 42].

Acknowledgements. This project was partially supported by NSF-CNS-1718014, NSF-IIS-1763981,
NSF-IIS-1566248, the Partner University Fund, the SUNY2020 Infrastructure Transportation Security
Center, and a gift from Adobe.

8

References

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate.
In Proceedings of the International Conference on Learning and Representation, 2014.

[2] S. Buch, V. Escorcia, B. Ghanem, L. Fei-Fei, and J. Niebles. End-to-end, single-stream temporal action
detection in untrimmed videos. In Proceedings of the British Machine Vision Conference, 2017.

[3] S. Buch, V. Escorcia, C. Shen, B. Ghanem, and J. C. Niebles. Sst: Single-stream temporal action proposals.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[4] F. Caba Heilbron, J. Carlos Niebles, and B. Ghanem. Fast temporal activity proposals for efficient detection
of human actions in untrimmed videos. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[5] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine translation. In Proceedings of
International Conference on Empirical Methods in Natural Language Processing, 2014.

[6] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv:1412.3555, 2014.

[7] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell.
Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[8] V. Escorcia, F. C. Heilbron, J. C. Niebles, and B. Ghanem. Daps: Deep action proposals for action
understanding. In Proceedings of the European Conference on Computer Vision, 2016.

[9] J. Gao, Z. Yang, K. Chen, C. Sun, and R. Nevatia. Turn tap: Temporal unit regression network for temporal
action proposals. In Proceedings of the International Conference on Computer Vision, 2017.

[10] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence to sequence
learning. Proceedings of the International Conference on Machine Learning, 2017.

[11] B. Gong, W.-L. Chao, K. Grauman, and F. Sha. Diverse sequential subset selection for supervised video
summarization. In Advances in Neural Information Processing Systems, 2014.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in Neural Information Processing Systems, 2014.

[13] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In Proceedings of the International Conference
on Machine Learning, 2006.

[14] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv:1410.5401, 2014.

[15] M. Gygli, H. Grabner, H. Riemenschneider, and L. Van Gool. Creating summaries from user videos. In
Proceedings of the European Conference on Computer Vision, 2014.

[16] M. Gygli, H. Grabner, and L. Van Gool. Video summarization by learning submodular mixtures of
objectives. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[17] M. Hoai and F. De la Torre. Max-margin early event detectors. International Journal of Computer Vision,
107(2):191–202, 2014.

[18] M. Hoai, Z.-Z. Lan, and F. De la Torre. Joint segmentation and classification of human actions in video. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[19] M. Hoai, L. Torresani, F. De la Torre, and C. Rother. Learning discriminative localization from weakly
labeled data. Pattern Recognition, 47(3):1523–1534, 2014.

[20] L. Hou, C.-P. Yu, and D. Samaras. Squared earth mover’s distance-based loss for training deep neural
networks. arXiv:1611.05916, 2016.

[21] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and R. Sukthankar. THUMOS
challenge: Action recognition with a large number of classes. http://crcv.ucf.edu/THUMOS14/,
2014.

[22] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network architectures.
In Proceedings of the International Conference on Machine Learning, 2015.

[23] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding recurrent networks. In Proceedings
of the International Conference on Learning and Representation, 2016.

[24] D. R. Kelley, Y. A. Reshef, D. Belanger, C. McLean, J. Snoek, and M. Bileschi. Sequential regulatory
activity prediction across chromosomes with convolutional neural networks. Genome research, 2018.

9

http://crcv.ucf.edu/THUMOS14/

[25] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the International
Conference on Learning and Representation, 2015.

[26] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao. Independently recurrent neural network (indrnn): Building a
longer and deeper rnn. arXiv:1803.04831, 2018.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox
detector. In Proceedings of the European Conference on Computer Vision, 2016.

[28] D. G. Luenberger. Introduction to linear and nonlinear programming. Addison-Wesley publishing
company, 1973.

[29] S. Ma, L. Sigal, and S. Sclaroff. Learning activity progression in lstms for activity detection and early
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[30] B. Mahasseni, M. Lam, and S. Todorovic. Unsupervised video summarization with adversarial lstm
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[31] M. H. Nguyen, L. Torresani, F. De la Torre, and C. Rother. Weakly supervised discriminative localization
and classification: a joint learning process. In Proceedings of the International Conference on Computer
Vision, 2009.

[32] N. Peng and M. Dredze. Named entity recognition for chinese social media with jointly trained embeddings.
In Proceedings of International Conference on Empirical Methods in Natural Language Processing, 2015.

[33] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[34] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by error propagation. In
Parallel Distributed Processing, volume 1, chapter 8, pages 318–362. MIT Press, Cambridge, MA, 1986.

[35] S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1-regularized loss minimization. Journal of
Machine Learning Research, 12(Jun):1865–1892, 2011.

[36] Z. Shou, D. Wang, and S.-F. Chang. Temporal action localization in untrimmed videos via multi-stage
cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[37] Z. Shou, J. Chan, A. Zareian, K. Miyazawa, and S.-F. Chang. Cdc: convolutional-de-convolutional
networks for precise temporal action localization in untrimmed videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[38] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsupervised learning of video representations using
lstms. In Proceedings of the International Conference on Machine Learning, 2015.

[39] R. Stewart, M. Andriluka, and A. Y. Ng. End-to-end people detection in crowded scenes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[40] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Advances
in Neural Information Processing Systems, 2014.

[41] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d
convolutional networks. In Proceedings of the International Conference on Computer Vision, 2015.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

[43] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information Processing
Systems, 2015.

[44] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton. Grammar as a foreign language. In
Advances in Neural Information Processing Systems, 2015.

[45] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[46] G. Yu and J. Yuan. Fast action proposals for human action detection and search. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[47] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman. Video summarization with long short-term memory. In
Proceedings of the European Conference on Computer Vision, 2016.

[48] K. Zhou and Y. Qiao. Deep reinforcement learning for unsupervised video summarization with diversity-
representativeness reward. In Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

10

