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Abstract

The ability to recognize human actions in video has many

potential applications. Human action recognition, however,

is tremendously challenging for computers due to the com-

plexity of video data and the subtlety of human actions.

Most current recognition systems flounder on the inability

to separate human actions from co-occurring factors that

usually dominate subtle human actions.

In this paper, we propose a novel approach for training

a human action recognizer, one that can: (1) explicitly fac-

torize human actions from the co-occurring factors; (2) de-

liberately build a model for human actions and a separate

model for all correlated contextual elements; and (3) ef-

fectively combine the models for human action recognition.

Our approach exploits the benefits of conjugate samples of

human actions, which are video clips that are contextu-

ally similar to human action samples, but do not contain

the action. Experiments on ActionThread, PASCAL VOC,

UCF101, and Hollywood2 datasets demonstrate the ability

to separate action from context of the proposed approach.

1. Introduction

A human action does not occur in an isolated vacuum

tube, and it is not the only thing recorded in a video. A video

clip of a human action is the melting pot of the action and

various other ingredients including the background scene,

the object tools, the camera motion, the lighting condition,

the other body movements and actions. Many of these com-

ponents are totally unrelated to the action, while some are

contextual elements that frequently co-occur with the cat-

egory of action in consideration. For example, a cooking

action usually occurs in a kitchen so the kitchen scene is

a relevant context, but the rare incident of a bird landing

on a windowsill that also appears in the video would be

noise. Neither noise nor context corresponds to the actual

content of a human action, but they have different impacts.

Noise always hurts the performance of a recognition sys-

tem, while context may provide useful cues for recognition.

For example, recognizing the kitchen scene of a cooking
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Figure 1. How do we obtain an action classifier that focuses on

the action components and not the context? Unfortunately, such a

classifier cannot be obtained by the normal supervised learning ap-

proach, because training examples of human actions do not gener-

ally come with detailed human annotation that delineates the sub-

tle human actions (from the co-occurring context). To address this

problem, we propose to collect video sequences that are contex-

tually similar to the action samples, which will be referred to as

conjugate samples. We propose to use conjugate samples to train

a classifier that deliberately separate action from context. Best

viewed on a digital device.

action will prevent it from being misclassified as an out-

door activity such as surfing or golfing. Thus context is

informative and can be used to aid recognition. But con-

text can also confound recognition algorithms. The exis-

tence of context dilutes the actual content of an action and

makes recognition difficult, especially for fine-grain cate-

gorization between action categories that share similar or

the same context. For example, a hair-combing action in a

bathroom might be mistakenly recognized as toothbrushing

due to background similarity.

So, how can we recognize a subtle human action in the

presence of noise and context? A typical approach is to

ignore the distinction of these factors and use supervised

machine learning to train a classifier to separate positive

training examples (i.e., video clips containing the action in
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consideration) from negative ones (video clips that do not

contain the action). There is an optimistic hope that the

classifier can learn a model of the human action based on

the commonalities in positive training examples that never

or seldom exist in negative training examples. While this

approach can suppress noises which are rare incidents in

positive training examples, it cannot effectively separate the

actual human action from the frequently co-occurring con-

textual elements. For example, if many training examples of

the toothbrushing action have a bathroom background, the

trained classifier might look for bathroom cues instead of

the actual toothbrushing motion. Similarly, a kissing classi-

fier that is trained using video clips from Hollywood movies

may attend to elements that have nothing to do with the kiss

itself, such as the camera angle and scene illumination. Un-

fortunately, failure to factorize human actions from context

has severe consequences. First, due to the dominance of

context in a video, it would be difficult for fine-grain clas-

sification between action categories that share similar con-

text. Second, the learned classifier will fail to generalize to

real-world applications where the context is different. Fur-

thermore, for the purpose of understanding human actions

and interpreting the classifier’s decision, the inability to sep-

arate the action from context is deeply unsatisfactory.

Then how do we separate human actions from context?

One possible thought is to train two separate classifiers, one

to recognize the action content and the other for the con-

textual elements. This approach, however, requires train-

ing data with detailed annotation, one in which the actual

content of human actions, the contextual elements, and the

irrelevant noisy incidents are all annotated. Collecting man-

ual annotation at this level of details is notoriously difficult,

if not impossible. Furthermore, this approach is not scalable

to a large system where we need to recognize thousands of

human actions.

In this paper, we propose a novel approach to human ac-

tion recognition, one that can explicitly factorize human ac-

tions from context. Our key idea is to exploit the benefits of

the information from conjugate samples of human actions.

Here we define a conjugate sample as a video clip that is

contextually similar to an action sample, but does not con-

tain the action. For instance, a conjugate sample of an “an-

swer phone” can be the video sequence showing the person

approaching the phone or doing another action prior to an-

swering the phone (e.g., playing guitar as in Figure 1). The

answer phone clip and the video sequence preceding it have

many similar or even the same contextual elements, includ-

ing the people, the background scene, the camera angle, and

the lighting condition. The only thing that sets the two clips

apart is the actual human action itself. A conjugate sample

provides contrasting information to the action sample; it can

be used to suppress contextual irrelevance and magnify the

action signal, as illustrated in Fig. 1.

The context that we refer to in this paper is more than the

background or the scene category. It is defined as any visual

element that is often observed with the action but does not

correspond to the actual motion of the action. Such context

could refer to the camera movement, the camera angle, the

illumination condition, the pose of the actor, the configura-

tion of people, the social norm in a group interaction (e.g.,

a handshake often occurs in a meet-and-greet situation), or

the sequential order of actions (e.g., a handshake normally

follows an arm extension).

2. Related Work

The benefits of context for human action recognition are

well recognized and have been confirmed by many stud-

ies. Various contextual elements have been considered, in-

cluding scene categories (e.g., [18, 20, 21, 30, 44]), objects

(e.g., [3, 4, 7–10, 10, 15, 15, 16, 20, 22, 39, 42]), pose and

people configuration (e.g., [4, 13, 17, 31, 34, 40, 41, 43]),

group context and social roles (e.g., [2, 19, 24]), tempo-

ral context (e.g., [1, 28, 33]), and context from other action

categories (e.g., [12, 14]). However, the usage of context in

these works is fundamentally different from what is being

proposed here. Many existing methods, e.g., [10, 30], rely

on local features that are customized to capture the contex-

tual elements of interest, such as scene and object descrip-

tors. These local descriptors are computed densely for the

entire video clip, making no attempt to distinguish between

action and context. There are methods that learn separate

models for action and context, e.g., [1, 20, 21], but the ac-

tion model is not explicit to the action content and the con-

text model requires additional annotated training data. The

proposed approach will be the first to explicitly factorize

action from context, deliberately model each of them, and

effectively combine them for recognition. All of these steps

are jointly optimized in an integrated framework.

3. Action-Context Separation & Combination

Our goal is to explicitly separate subtle human actions

from the dominance of co-occurring context. The key idea

is to collect conjugate samples of human actions and de-

velop a framework for this novel type of training data.

3.1. Collecting conjugate samples of human actions

We propose to collect conjugate samples for each human

action sample based on temporal proximity, that is to use

video clips before and after the action sample. The video

sequences right before and after an action sample are excel-

lent conjugate samples. Many contextual elements of these

video sequences and the action sample are very similar or

even the same, from the background scenes and the actors

to the camera angles and the lighting conditions. The only

thing that sets them apart is the actual human action.
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Figure 2. Using conjugate samples for training a human action

classifier. This is a deep multi-stage architecture where feature

extraction and classifier learning are two stages of a joint learning

framework. Functions f and g are for extracting the action and

context feature vectors respectively. The extracted feature vectors

are subsequently fed into the classifier h. The objective is to min-

imize the classification loss and the similarity between two action

feature vectors f(a) and f(c), while maximizing the similarity

between two context feature vectors g(a) and g(c). Note that the

dotted lines are only effective in the learning phase and removed

at test time.

3.2. Proposed framework – general approach

Conjugate samples provide contrasting information to

the action samples, but how should we maximize their ben-

efits? A naive approach is to treat them as negative train-

ing examples. This approach, however, is unlikely to yield

good performance. A positive action sample and its cor-

responding conjugate samples are contextually similar, so

treating conjugate samples as negative training data would

force contextual cues as negative evidence. However, con-

textual cues are crucial for categorization, especially for

separating dissimilar classes such as distinguishing between

hugging and surfing. The second naive approach is the ex-

act opposite of the first one, treating all conjugate samples

as positive training data. However, conjugate samples do

not contain the action of interest, so this approach will learn

contextual cues instead of the actual human action. For ex-

ample, toothbrushing often occurs in a bathroom, and the

system being trained might look for bathroom cues instead

of the actual toothbrushing motion. Another approach is to

associate each conjugate sample with a latent variable and

then infer the label in the training process. This approach

will lead to a mixture of positive and negative class labels,

failing to separate actions from context.

We propose here a framework for integrating conjugate

samples in the training process without the need to assign

or infer the class label to each conjugate sample. It is a

multi-task learning framework where the conjugate sam-

ples are only used for separating the action content from

the dominating context. Figure 2 illustrates the architecture

of the learning framework. This architecture has two major

stages for feature extraction and classifier learning, which

are jointly optimized. The input to the network is a pair of

an action sample a and a conjugate sample c. Functions f

and g are for extracting the action and context feature vec-

tors respectively. The extracted feature vectors are subse-

quently fed into a classifier h. Generally, f, g, and h can

be any function (e.g., a multi-layer neural network), but the

forms must be fixed during training while the parameters

of the functions are to be learned. These parameters can

be learned by minimizing a combined objective function,

which consists of: i) the classification loss; ii) the similar-

ity measure between two action feature vectors; and iii) the

dissimilarity measure between two context feature vectors.

Our assumption is that the conjugate sample is contextually

similar to the action sample, therefore the context extrac-

tor function g should yield very similar feature vectors. On

the other hand, what distinguish between the action sam-

ple and the conjugate sample is the actual content of the

action. Thus the action extractor function f should yield

very different feature vectors. Notably, the classification

loss only depends on the action sample. Because both ac-

tion and context are important for action recognition, the

classifier depends on both the action feature vector and the

context feature vector. The key novelty here is the explicit

separation between action and context, which enables the

classifier to selectively use the context only when neces-

sary. Another benefit of the separation between action and

context is visual interpretability. By tracing the classifier

decision, we can understand the important factors that leads

to the decision of the classifier, whether they are attributed

to the action or the context.

It should be noted that the conjugate samples are only

needed in the training phase. Once trained, the action clas-

sifier can be used to predict the label of any test video

clip without any conjugate sample. Furthermore, conjugate

samples are not required for all action samples. If an action

sample does not have a corresponding conjugate sample,

the loss term for the action sample can be simplified to the

classification loss. It is also possible for an action sample to

have multiple conjugate samples. In this case, the similarity

and difference metrics Ls and Ld can be chosen to measure

the similarity and difference between a vector and a set of

vectors instead.

3.3. Proposed framework – a specific instance

The general learning framework described above is flex-

ible. It can be used with different models of action and con-

text extractor functions. The framework can also be used

with different forms of loss measures. In this section, we

describe a simple instance of the general framework, which

will be thoroughly evaluated in the experiment section.

Architecture. The particular framework is based on C3D, a

3D convolutional neural network for human action recogni-

tion [29]. It assumes that both the action samples and con-

jugate samples are represented by a 16-frame volume. The
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Figure 3. Two-stage optimization of the proposed framework.

Step A: Learning action and context features for recognition task;

Step B: Learning to separate action and context features using con-

jugate samples. The optimization procedure is further detailed in

Table 1. Note that the dotted lines are only effective in the learning

phase and removed at test time.

C3D network uses several types of layers namely convo-

lution, max pooling, fully connected, rectified linear unit,

drop-out, and soft-max. Let C(n) denote a convolution

layer with n kernels (kernel size: 3×3×3×depth) followed

by rectified linear units, M a max pooling layer, FC(n) a

fully connected layer with n filters followed by rectified lin-

ear units, D(r) a dropout layer with dropout ratio r, and SF

a soft-max layer. Suppose action and conjugate samples are

both 3D volumes with RGB channels (112× 112× 3× 16)

and there are k action classes, the architecture of our net-

work is as follows. Both the action and context extrac-

tors f and g are: C(64) → M → C(128) → M →
C(256) → C(256) → M → C(512) → C(512) → M →
C(512) → C(512) → M → FC(2048). The classifier

h is D(0.5) → FC(4096) → D(0.5) → FC(k) → SF .

We initialize the components f , g, and h using the weights

from a published C3D model [29] pre-trained on Sports1M

dataset. For networks that take still images as input, we use

VGG16 model [26] instead of the C3D model.

Loss Function. For a training pair of action sample and

conjugate sample, the loss is L = Lc + Ls + Ld, which

is the sum of the classification loss, the similarity loss be-

tween action vectors, and the difference loss between con-

text vectors. For classification loss Lc, we choose the soft-

max log-loss, which is a commonly used criterion in multi-

class classification. To measure the similarity or difference

between two vectors, we first perform batch-normalization

to each feature channel so that all feature channels have zero

mean and unit variance, thus contribute equally to the dis-

tance measure. We will refer to the normalized action and

context feature vectors as f̄(·) and ḡ(·) respectively. For the

similarity and difference losses Ls and Ld, we use cosine

distance, which is length-invariant and robust. Specifically:

Ls = λ ·max
{

0, cos〈f̄(a), f̄(c)〉 − ξ
}

(1)

Ld = µ ·
(

1− cos
〈

ḡ(a), ḡ(c)
〉)

. (2)

The loss Ls measures the similarity between two action vec-

tors extracted from a pair of action and conjugate samples.

The parameter λ is typically set to either 0 or 1, depend-

ing on whether Ls should be included in the total loss. The

parameter ξ is the main tunable parameter for the similar-

ity loss; it is the threshold for penalization. For example,

if ξ = 0.5, the similarity loss would drop to 0 if the angle

between f̄(a) and f̄(c) is more than 60◦. When ξ = −0.5,

that would require f̄(a) and f̄(c) to be 120◦ apart. Thus

a smaller ξ would impose more pressure to push the two

action components apart. The loss Ld is to minimize the

difference between the two context vectors, and µ is a tun-

able parameter.

Optimization. In general, our final network uses λ = 1
and a big value for µ and a small value for ξ, emphasizing

the importance for separating action and context. However,

directly optimizing a network with strong regularization pa-

rameters (big µ, small ξ) may lead to a bad local minimum.

We therefore propose a two-stage training procedure de-

picted in Figure 3 and detailed in Table 1. At Step A1, we

first train the baseline network in the absence of conjugate

samples (λ = 0). This step ensures the network learn useful

action/context cues for the classification task. However the

action and context features are mixed, because the network

has no intention or means to identify and factorize them. At

Step A2, we aim to improve the network’s performance by

leveraging the contrasting information from the conjugate

samples. We start the procedure with weak regularization

parameters (e.g., λ = 1, ξ = 0.3), and gradually decrease

the value of ξ to segregate the feature vectors for a pair of

action and conjugate samples. This process usually leads to

better performance in our experiments. Finally, at Step B,

we divide the C3D network into two channels: the action

channel f and the context channel g, and fine-tune it with a

fixed ξ0 and a gradually increased µ.

From Step A2 to B, we use a simple procedure to divide

the neurons of the FC6 layer into disjoint subsets of action

and context neurons, while freezing all the shared convolu-

tional layers preceding the FC6 layer. First, for each neuron

n at FC6 layer, we calculate the accumulated activation gap
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Step ( λ ξ ) µ Purpose

A1 ( 0 ) train baseline network

A2 ( 1 0.3 ↓ ) improve performance

B ( 1 ξ0 ) 0 ↑ separate action & context

Table 1. Optimization procedure. Two steps to factorize the ac-

tion and context components. Step A1 & A2 train a network to fo-

cus on recognition performance and initiate the feature separation.

Step B purifies both the action extractor and the context extractor.

δ(n) =
∑

i
n(ai)− n(ci), where n(ai) and n(ci) are the

activation values of neuron n, given a pair of action sample

ai and conjugate sample ci from the ith training video. The

accumulated activation gap is a good indicator to initialize

the separation between an action and context neurons. Sec-

ond, we rearrange and divide the neurons based on their

accumulated activation gaps as follows. The FC6 layer has

a total of 4096 neurons, each corresponds to a single row in

the weight parameter W ∈ R4096×N and the bias parameter

B ∈ R4096×1. The rows of W and B are rearranged into W
′

and B
′ such that a neuron with a larger δ(n) (more action-

related) would have a smaller row-index. The rows of W′

and B
′ are then split into two equal groups. The first corre-

sponds to action features, and the second to context features.

During these steps, the columns of the FC7 weight param-

eter are also reordered and divided accordingly to ensure

correct correspondence with neurons at FC6 layer.

Implementation. Our network is implemented in Torch

deep-learning library. The network is trained using back-

propagation with mini-batch stochastic gradient descent.

We use a fixed batch size of 64, a learning rate of 0.001,

a momentum of 0.9, and a weight decay of 0.0005.

Action and context activation. Once a network has been

trained, we can consider the activation of the neurons right

before the soft-max layer. This is a score vector of which

the size is the number of classes. Each element of the score

vector corresponds to a class, and it is the sum of the action

score, the context score, and a class-specific offset value.

The action score corresponds to the activation strength of

the action extractor, while the context score is the activation

strength of the context extractor. We will analyze the action

and context activation strengths in our experiments below.

4. Experiments

4.1. Separating action and context in video

The experiments in this section is performed on the Ac-

tionThread dataset [11]. This dataset contains video clips

that include human actions as well as the sequences before

and after the action. This allows us to collect conjugate

samples of human actions, which is why we use Action-

Thread instead of other more popular datasets such as Hol-

lywood2 [21] and TVHID [23]. This dataset has 3035 video

clips of 13 different actions, which are split into disjoint

train and test subsets [11]. We consider the pre- and post-

action sequences as the source of conjugate samples, and

ensure the action and conjugate samples are extracted from

the same thread and by the same cropping window.

C3D features. We use C3D features [29] as video

representations. Compared to other state-of-the-art meth-

ods such as Dense Trajectory Descriptors (DTD) [32] or

Two-stream CNN [25], C3D achieves a good balance be-

tween efficiency and simplicity. DTD produces very high-

dimensional (∼100k-dim) Fisher vectors, and Two-stream

CNN requires heavy computation for extracting optical flow

images, whereas C3D network only requires RGB input and

gives compact (4096-dim) representations. After training a

C3D model, to extract the features, a video is split into 16-

frame-long clips with a 8-frame overlap between two con-

secutive clips. We then feed these clips into the C3D net-

work to extract FC6 activations, which are temporally ag-

gregated to form a single video descriptor and subsequently

L2 normalized. We use eigen evolution pooling for tem-

poral aggregation of C3D features because it consistently

outperforms average pooling in our experiments. We refer

the reader to [29, 37, 38] for more details.

Action recognition. Table 2 compares the performance of

several methods for recognizing human actions in the Ac-

tionThread dataset. Compared with the baseline method

that does not use conjugate samples of human actions, our

method achieves significantly better performance, and the

improvement for some classes such as AnswerPhone, Fight,

ShakeHand, and Hug is very significant, as high as 15%.

Meanwhile, the two alternative approaches of using conju-

gate samples as either negative or positive training examples

lead to lower mean average precision.

Table 3 shows the benefits and also complimentary ben-

efits of the proposed method with the state-of-the-art meth-

ods on ActionThread using C3D and DTD feature descrip-

tors. The proposed method (Factor-C3D) outperforms the

baseline method C3D by a margin of 6%; this is the di-

rect comparison for the benefits of the proposed approach

because both methods use the same feature descriptors and

the only difference is whether conjugate samples are used.

The proposed method also outperforms DTD, and the com-

plementary benefit is 22% relative AP improvement.

Role of context features. The role of context features for

action recognition can be investigated with our network,

owing to its ability to explicitly factorize features into the

action component f(a) and the context component g(a).
We study the effect of the context component by removing it

from the combined feature vector and measuring the change

in action recognition performance, as depicted in Figure 4.
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How conjugate samples are used

NotUsed [29] AsNegative AsPositive Proposed

AnswerPhone 27.3 27.3 28.7 43.0

DriveCar 51.2 51.6 48.9 53.1

Eat 36.9 37.7 35.7 42.1

Fight 45.7 48.6 41.2 61.1

GetOutCar 29.7 31.4 30.1 27.2

ShakeHand 26.9 26.0 26.6 35.2

Hug 43.9 44.1 45.5 54.7

Kiss 67.4 66.4 67.0 72.6

Run 82.0 80.6 79.9 85.6

SitDown 36.3 35.7 36.0 45.2

SitUp 17.1 13.4 15.2 15.7

StandUp 31.9 31.0 31.4 28.5

HighFive 49.3 40.6 48.8 58.5

Mean 42.0 41.1 41.2 47.9

Table 2. Action recognition results on the ActionThread

dataset. The table shows average precision values; a higher num-

ber indicates a better performance. All four settings use the same

C3D architecture [29]. NotUsed is the baseline method that does

not use conjugate samples. AsNegative and AsPositive are the

methods that use conjugate samples as negative and positive train-

ing examples respectively. Our method achieves significantly bet-

ter performance than the other methods.

Method No Pruning Pruning

Pretrained C3D [29] 35.4 -

Finetuned C3D [29] 42.0 -

Factor-C3D [Proposed] 47.9 -

DTD [32] 45.3 52.1

Non-Action [36] 48.0 55.0

DTD + C3D 52.0 56.3

DTD + Factor-C3D [Proposed] 55.3 58.5

Table 3. Benefits and complementary benefits of the proposed

method with other state-of-the-art methods. ‘Pruning’ means

the non-action classifier is used. The fairest comparison is between

Factor-C3D and Finetuned C3D because they both use the same

feature descriptors. Factor-C3D provides a large complementary

benefit to DTD.

For instance, for classifying between two contextually sim-

ilar actions Kiss and Hug, removing the confounding con-

text features (i.e., using f(a) instead of f(a) + g(a)) leads

to better classification result. However, for two actions with

very different context, e.g., Kiss and Eat, the classifier per-

forms worse when the context component is removed, be-

cause the context is useful for separating contextually dis-

similar actions. These experiments show that the context

should not be blindly used or removed. Instead, we can de-

termine the importance of context with a weighting scheme
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Figure 4. Performance change for binary classification after re-

moving context features. +/- stands for positive/negative sam-

ples. Left: for distinguishing between actions with similar context,

removing the confounding context component improves the clas-

sification results. Right: for distinguishing contextually dissimi-

lar actions, removing the context component decreases the perfor-

mance. These results show the importance of context, but context

should not be blindly used or removed. It is beneficial to use con-

text selectively, which requires explicit action-context separation

as proposed here. Given the explicit separation, we can tune the

amount of context to use in a weighted combination, as success-

fully done here.

f(a)+γg(a), where γ is a tunable parameter. This is effec-

tive, as shown in Figure 4, where γ is tuned using validation

data. For this experiment, we divide the videos in the test

set into disjoint test/validation subsets using 80/20 split.

Visualizing action and context components. We also vi-

sualize the video clips that excite the action and context ex-

tractors the most. For each video in the test set, We sam-

ple 20 clips from the action sequence and another 20 from

the pre- or post-action sequences. We feed each clip into

our final network and measure the action and context acti-

vation strengths separately. For each action class, we iden-

tify the video clips that have the highest action and context

activation strengths. Figure 5 depicts some of these video

clips for actions AnswerPhone, Hug, ShakeHand and SitUp.

As can be seen, the most helpful contextual cues for rec-

ognizing Hug and ShakeHand appear to be a group of hu-

mans, whereas bed scene is contextually associated to ac-

tion SitUp. This is the visual evidence that our network has

indeed learned to factorize action and context components.

Pairwise context difference. Since we have the context ex-

tractors for every class, we can analyze the pairwise context

similarity between action classes. Consider the context ex-

tractor of Class R and all action samples of Class X , we

calculate the mean activation of the context extractor and

let c(X,R) denote this quantity. Using c(R,R) as a ref-

erence, we consider the context difference between Class

R and Class X as: d(X,R) = c(R,R) − c(X,R). The

context difference indicates the amount of context similar-

ity between two classes. Figure 6 shows the context differ-
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Figure 5. Representative patterns with highest action and con-

text activation values.

HighFive

StandUp

SitUp

SitDown

Run

Kiss

Hug

ShakeHand

GetOutCar

Fight

Eat

DriveCar

AnswerPhone

GetOutCar Classifier Kiss Classifier Run Classifier

Average Activation Gap from Reference Classes (Context Channel)

Figure 6. Pairwise context difference between GetOutCar (left),

Kiss (middle), and Run (right) with other action classes. Smaller

context difference indicates higher context similarity. In terms of

contextual similarity, DriveCar is close to GetOutCar, Hug is close

to Kiss, while Fight is close to Run.

ence for three action classes: GetOutCar, Kiss, and Run. As

can be seen, GetOutCar is contextually similar to DriveCar,

Kiss is similar to Hug, and Fight is similar to Run.

4.2. Imperfect conjugate samples

So far, we have assumed that we can retrieve perfect con-

jugate samples that do not contain the target human actions

in consideration. This assumption is true in general, un-

less we are forced to exclusively work with a dataset that

have no corresponding pre- or post-action sequences such as

UCF101 [27] and Hollywood2 [21]. We question whether it

is necessary to have a black-and-white separation between

conjugate and action samples with respect to the action con-

tent. We want to study the benefits and drawbacks of the

proposed framework when the action samples may not con-

tain the entire human action and the conjugate samples can-

not be guaranteed to exclude all of the action. In this sec-

tion, we describe the experiments to study this scenario, us-

ing UCF101 [27] and Hollywood2 [21] datasets.

Given a training video in either UCF101 or Hollywood2

dataset, we extract a sequence of 16 video frames and use it

Method UCF101 Hollywood2

C3D [29] 82.3 49.8

Factor-C3D [Proposed] 84.5 54.7

DTD [32] 85.9 67.5

DTD + C3D 90.8 69.5

DTD + Factor-C3D [Proposed] 91.3 71.3

EigenTSN [37] 95.3 75.5

EigenTSN + C3D 95.8 76.1

EigenTSN + Factor-C3D [Proposed] 95.8 76.7

Table 4. Action recognition results on UCF101 and Holly-

wood2. The comparison between Factor-C3D and C3D is the

direct measurement for the advantage of the proposed frame-

work with conjugate samples. State-of-the-art performance can be

achieved when combining the proposed method with others. We

report accuracy for UCF101 and mean AP for Hollywood2.

as the action sample. From the same video, we extract an-

other sequence of 16 frames before or after the action sam-

ple to create the corresponding conjugate sample. These

two video samples have the same context, and what dis-

tinguish them is the difference between the two dynamics

stages of a human action.

Using the generated conjugate samples, the proposed

framework achieves a mean average precision of 54.7% on

the Hollywood2 dataset, outperforming the baseline C3D

network (49.8%) where conjugate samples are not used. On

the three splits of the UCF101 dataset, the proposed frame-

work achieves an average accuracy of 84.5%, outperform-

ing the baseline C3D network (82.3%) that does not use

the conjugate samples. On both Hollywood2 and UCF101,

the performance gains for using conjugate samples are sig-

nificant, even though the approach of generating conjugate

samples is not ideal. The performance gains can be at-

tributed to the ability of the framework to force the action

extractor to focus on the dynamics of the action, rather than

the scene context. On the other hand, the performance gains

on Hollywood2 and UCF101 are not as high as the perfor-

mance gain obtained on the ActionThread dataset, where

we could extract proper conjugate samples.

The results reported in previous paragraph should not be

compared directly to the highest reported numbers in pre-

vious publications, which have been obtained by combin-

ing multiple features and methods [6, 35]. The proposed

method provides complementary benefits to other methods,

and the state-of-the-art results can be achieved by combin-

ing them, as shown in Table 4.

4.3. Separating action and context in still images

The proposed framework for separating action and con-

text is not exclusive to video data. In this section, we per-

form some controlled experiments on still images. Action
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and context components in still images can be easily anno-

tated and visualized, so the experiments here are used for

visualization and understanding of the learned network.

Dataset. The experiments in this section are performed on

the PASCAL VOC-2012 Action dataset [5]. This dataset

consists of 10 actions, Jumping, Phoning, Playing Instru-

ment, Reading, Riding Bike, Riding Horse, Running, Taking

Photo, Using Computer, Walking. There is also a distrac-

tion class Others where none of the aforementioned actions

is performed. Each image contains one or multiple people

with annotated bounding boxes and action labels. Note that

each image is not exclusive to a single action, e.g., a person

could be walking and phoning simultaneously.

Action and conjugate samples. Given an image of human

action, we consider the action sample as the entire image

(no bounding box information). To obtain the conjugate

sample, we conceal all the human bounding boxes within

that image using average pixel color. Thus the action and

conjugate samples share the same background context and

only differ in terms of the action. The human bounding

boxes are only used when generating conjugate samples;

they are not used in any other part of training and evaluation.

VGG-16 features. After training a VGG16 model [26], we

extract the FC6 features to represent each action or conju-

gate sample. Given an image, following [26], we first resize

it so that its smallest side equals 224, then densely apply the

deep model on both the original and the horizontally flipped

images to extract FC6 feature vectors. Subsequently, we

perform average pooling and L2 normalization. In the end,

each image is represented by a 4096-dimensional vector.

Quantitative Evaluation. The baseline VGG16 [26] model

achieves 74.1% mean AP on the validation set (no human

bounding-box used). As expected, adding conjugate sam-

ples as either positive or negative training examples would

degrade the performance, yielding mean AP of 73.1% and

72.6% respectively. Meanwhile, our factorization frame-

work properly utilizes the conjugate samples and improves

the classification performance to 75.2%.

Visualizing action and context. We visualize the image

patches that excite the action and context extractors the

most. For each image in the validation set, we divide it

into 4 × 4 blocks and consider all 25 patches that corre-

spond to 1 × 1 or 2 × 2 blocks. We feed each patch into

our final network, and measure the action and context acti-

vation strengths separately. This can be effectively done as

follows. To measure the excitement of the action extractor,

we zero out the outputs of the context extractor g and record

the value of the h classifier. This is taken as the excitement

due to the action component in an image. Measuring the ex-

citement of the context extractor can be done similarly. For

each action class, we identify the image patches that have

the highest action and context activation strengths. Figure 7
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Figure 7. Representative patterns with highest action and con-

text activation values.

depicts some of these image patches for three action classes.

Take Jumping as an example, the action extractor is most

activated by the jumping poses, while the context extractor

fires on lake scenes where jumping usually takes place.

5. Summary and Discussion

We have proposed a method for separating human action

from context without the need of detailed annotation. Our

method is based on conjugate samples, which are training

examples that are contextually similar to the action samples

but do not contain the action. We performed experiments on

several datasets and observed that: (1) our method for us-

ing conjugate samples to separate action from context led to

improvement in the recognition performance; (2) there was

qualitative and quantitative evidence that indicates some

successes in separating action from context.

There are many scenarios where the separation of action

and context are helpful, e.g., for transfer learning where the

action classifier is used in a new domain with different con-

text. There may also be a principled way to combine the

action and context activation values to obtain a better clas-

sifier. These directions will be explored in our future work.

In this paper, the video sequences before and after the

action sequences were used as conjugate samples, yield-

ing excellent results. However, when these video sequences

were not available due to the nature of existing data, we

were forced to use “imperfect” conjugate samples. We still

achieved significant performance gain, although less than

the gain obtained using proper conjugate samples. As a fu-

ture direction, we plan to develop a method to retrieve video

clips that share similar background with action samples and

use the retrieved clips as candidates for conjugate samples.
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