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Abstract— Human action recognition and body movement
prediction are important tasks. They are different and have
traditionally been addressed separately. These tasks, however,
provide mutual benefits to each other, and existing methods fail
to capture these benefits. In this paper, we propose a method
for jointly recognizing the action and predicting the movement
of a person. Our method is based on two Long-Short Term
Memory (LSTM) recurrent neural networks, but extend them
to provide and receive benefits of each other. In particular, we
design two LSTM architectures. One LSTM can generate a
sequence of body movement conditioned on the past movement
and the predicted class of the action, and the other LSTM can
recognize the human action based on the predicted sequence of
body movement. Experiments on Montalbano and MSR Action
3D datasets show that movement prediction provides benefits
to early recognition of human action, which in turn improves
the quality of the predicted movement.

I. INTRODUCTION

The ability to predict human body movement has appli-
cations in a wide range fields, ranging from robotics and
entertainment to surveillance and health care. For example,
consider a future scenario where a companion robot shares
the living space with humans. A key requirement for the
robot would be its ability to physically interact with humans.
The robot must be able to recognize and predict human
body movement and react in a timely manner; otherwise,
the physical interaction would be slow and unnatural.

Predicting the body movement is different from recog-
nizing the action class of the body movement. The former
forecasts the future, while the latter analyzes the current and
past observations. Recognizing the classes of human actions
is important, but insufficient for real-time human robot
interaction. There exist some methods for early recognition
of human actions, which attempt to recognize the action
class of the body movement before the action is complete,
e.g., [7, 12, 13, 18, 26, 27, 33]. However, early recognition
cannot substitute body movement prediction either. To see
this, consider a scenario where you want to shake hands with
a robot. You initiate the action by extending your arm toward
the robot. For a fluent interaction, the robot must recognize
your handshake action as soon as possible (early recognition)
and anticipate where your hand will be so the robot can start
extending its hand to the right spot to meet your hand. If
the robot cannot predict the location of your hand, it will
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Where will her hand be?
| need to extend my
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Fig. 1: Two important problems for human robot interaction:
early recognition of human actions and body movement
prediction. We propose to jointly address these two problems,
exploiting the mutual benefits.

not be able to move its hand to the right location until you
have stopped moving your hand. Thus the interaction would
be slow and unnatural, just like how the current generation
of robots interact with humans.

Nonetheless, movement prediction and early recognition
provide mutual benefits to each other. On one hand, being
able to predict the body movement of a person allows us to
visualize and subsequently recognize an action even before
it is complete. On the other hand, the body movement of a
person can be predicted with higher precision if the on-going
action of the human can be recognized.

In this paper, we propose a novel method for joint move-
ment prediction and early recognition. Our method is based
on the Recurrent Neural Network (RNN), but extend it to
integrate multiple systems. In particular, we combine two
LSTM RNNs [16], one for movement prediction and one
for early recognition. The LSTM for movement prediction
is designed to accommodate the output of the recognition
system, while the recognition LSTM uses the predicted
sequence of body movement produced by the movement
prediction LSTM.

Experiments on two publicly available datasets Montal-
bano Gesture dataset [8] and MSR Action 3D dataset [22]
demonstrate the benefits of jointly performing movement
prediction and early recognition. The integrated system
that combines the two LSTMs for early recognition and
movement prediction outperforms the individual LSTMs,



both in terms of early recognition and movement prediction
performance metrics. The integrated system also outperforms
several state-of-the-art methods which were specifically de-
signed for early recognition.

One contribution of our paper is the development of an
integrated framework for movement prediction and early
recognition, yielding synergy from their mutual benefits.
The proposed framework assumes the availability of 3D
skeleton data. The framework consists of two LSTM net-
works, and the input to each LSTM network is a sequence
of 3D skeleton vectors instead of RGB images. While
this particular framework is developed specifically for 3D
skeleton data, the mutual benefits of movement prediction
and early recognition toward each other exists independently
of the data representation. Extending beyond skeleton-based
representation, our contributions of this paper are:

1) We provide justification and empirical evidence showing
that movement prediction is beneficial for early recogni-
tion. This has never been considered and demonstrated
in the literature of early recognition.

2) We show that early recognition provides benefits for
movement prediction. This has also never been consid-
ered before.

II. RELATED WORK

In the literature of computer vision, many computational
models have been developed for human action recognition,
but most of them focus on improving the accuracy of offline
processing rather than the timeliness of the decision making
(e.g., [14, 15, 29, 31, 36, 37]). Only in recent years, has there
been some effort to address early recognition problem [1,
7, 12, 13, 18, 26, 27, 33]. However, none of these works,
including our prior attempt [12, 13], studied the benefits of
movement prediction. They instead studied the benefits of
different feature encodings and classifiers for early recogni-
tion. Ryoo [27] proposed integral and dynamic bag-of-word
models for early recognition of human interaction. Raptis
and Sigal [26] used structured-output SVM to learn the set of
most discriminative keyframes for early recognition. Kitani
et al. [18] proposed a Markov decision process to obtain
a distribution over possible human navigation trajectories.
Vondrick et al. [33] learned to anticipate the feature vectors
of future video frames by exploiting the temporal order
of video frames. Ellis et al. [7] presented a low latency
algorithm that could determine distinctive canonical human
poses. Zanfir et al. [41] proposed a non-parametric moving
pose framework for low-latency human action and activity
recognition. The moving pose descriptor considers both pose
information as well as differential quantities (speed and
acceleration) of the human body joints within a short time
window around the current frame. Aliakbarian et al. [1]
proposed a novel loss for training the classifier for early
recognition. However, none of the aforementioned methods
considered the benefits of movement prediction for early
recognition.

In the field of robotics, human action forecasting and an-
ticipation is an emerging research area. Koppula and Saxena

[19] presented an anticipatory temporal conditional random
field to model the distribution of future human activities,
which could improve detection accuracy of past activities
and enable an assistive robot to plan ahead for reactive
responses. Jain et al. [17] proposed to combine spatio-
temporal graph with recurrent neural network to generate
future human movement. Inverse reinforcement learning was
used in [5, 18, 20, 43] to obtain a distribution over possible
human navigation trajectories from visual data. [20, 43] mod-
eled the forthcoming interactions with pedestrians for mobile
robots. Dragan and Srinivasa [5] predicted the future goals
for grasping an object. Wang et al. [38] proposed a latent
variable model for inferring unknown human action. The
aforementioned methods differ from ours in the way partial
actions are modeled and recognized. These methods aim to
predict the trajectory or destination of a human subject, and
they are only suitable for predicting actions/activities that
can be determined by the trajectory or destination of the
subject. In this paper, we aim to go beyond the forecasting
and classification of the planar or 3D trajectories.
Analyzing the dynamics of human motion is an important
research topic, but most prior studies did not explore the ben-
efits from early recognition. Wang et al. [35] used Gaussian
process dynamical models for nonlinear time series analysis,
which comprised of a low-dimensional latent space with
associated dynamics, as well as a map from the latent space
to an observation space. Brand and Hertzmann [2] learned
distinc motion patterns from motion captured sequence,
which could then be used to synthesize novel motion data.
These methods required knowing the class label in advance
to generate a motion sequence, while our prediction network
can work with or without knowing the class label. Qi et al.
[25] used a spatial-temporal graph to model the relationship
between actions and objects. Future actions are predicted
using temporal grammar and the Earley parsing algorithm.
Cao and Nevatia [3] estimated poses and motions through
analyzing forces. The motion was forecasted by utilizing
joint forces to determine joint accelerations and integrating
them for the 3D pose locations in all the other frames.
This method did not consider long term dependency for
prediction. Our approach use the LSTM networks, which
have memory cells to store long and short term memory
for prediction and recognition. Fragkiadaki et al. [10] pro-
posed Encoder-Recurrent-Decoder model for motion capture
generation. Compared to our work, the prediction network
cannot predict body movement based on different class label.
Similarly, Walker et al. [34] used the variational autoencoder
to predict pose at next time and applied conditional gen-
erative adversarial network to generate RGB video frames.
Pavlovic et al. [24] learned models of human dynamics using
switching linear dynamic system models. However, these
methods were used for segmentation and offline recognition
rather than for motion prediction and early recognition. [9]
focused on forecasting sport activities of an adversarial team
of players, which is different from human motion prediction.
Zeng et al. [42] formulated the prediction problem as the
inverse reinforcement learning problem and focused on the



frame level prediction. This method, like many others, did
not consider the benefits of early recognition for prediction.

Note that motion prediction is not the only objective of our
work. In this paper, we advocate and demonstrate the mutual
benefits of motion prediction and early recognition. There
might exist a better method for motion prediction than what
is being proposed here. However, that method should not be
considered as a competitor of our overall approach. A better
prediction method can be used to improve our approach, if it
can be extended and integrated into our framework for joint
motion prediction and early recognition.

III. MOVEMENT PREDICTION AND ACTION RECOGNITION

We propose a framework that jointly performs movement
prediction and early recognition of human actions, integrat-
ing their complementary benefits. Our framework combines
two LSTM recurrent neural networks, one for movement
prediction and one for early recognition. In this section, we
describe how the two networks are trained and combined.
These LSTM networks are designed for processing skeleton
data; the input to the LSTM networks is a sequence of 3D
skeleton vectors instead of RGB images.

A. Joint Prediction and Recognition

Figure 2 depicts the proposed approach for integrating the
benefits of movement prediction and action recognition. In
this figure, RegLSTM and PredLSTM are the two recurrent
neural networks for action recognition and movement pre-
diction respectively. This method uses both past observed
human poses and the predicted poses of the futures to make
decisions. At time step ¢, the input to the recognition LSTM
is x;. x; is the actual observed pose s; if ¢ is not a future
time, and x; is the predicted pose §; if ¢ is in the future
(and therefore s; has not been observed). The output of the
RegLSTM is py, a vector of class probabilities. The length
of p; is the number of the action classes. The input to the
PredLSTM consists of both x; and the current probability
estimates of action classes p;. Again x; is either the observed
or predicted human pose, depending on whether ¢ refers to a
past or future time step. The output of the prediction network
PredLSTM is §;41, which aims to approximate the actual
pose at the next time step s;y1. The two LSTM networks
are integrated. The predicted poses of the prediction network
are used as the inputs to the recognition network, while the
class probability vector produced by the recognition network
is a part of the input to the prediction network.

The effectiveness of the proposed approach and in par-
ticular the necessity of using the predicted poses for early
recognition can be justified from a probabilistic perspective.
Consider an ongoing action a, we want to estimate the
probability of the action a given the sequence of human poses
obtained until the current time step ¢. The probability of
action a can be computed by marginalizing over all possible
future pose sequences s;11..+r With 7 being a long-enough
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Fig. 2: Integrative framework for action recognition
and movement prediction. It combines two LSTM recur-
rent neural networks, RegLSTM for action recognition and
PredLSTM for movement prediction. s;: actual observed
human pose at time ¢, §; is the predicted pose obtained
using the PredLSTM. p, is the output of the RegLSTM,
which is the probability vector for multiple action classes.
Solid arrows indicate the information flow within a time step.
Dash arrows are recurrent links that indicate the flow of
information between consecutive time steps.

time horizon:

P(a|51:t) = / P(a|slzt+7')P(St+1:t+T|Slzt)ast+1:t+7~

St+1:t+T

The above equation suggests the importance of learning
PredLSTM to approximate P(Si1.t4-|S1:¢). We can com-
pute the probability of the event a by first using PredL-
STM to generate samples of plausible future observation
sequences, and subsequently compute the marginalized prob-
ability over the sample set. This seems counter intuitive
because we cannot gain more information than what is given
at a time. In principle, a predicted sequence S;1.t+, from
s1.+ (using PredLSTM) should not provide more informa-
tion than the sequence s;.; itself. However, the benefits of
PredLSTM are thanks to the preservation of information
rather than the generation of new information. Normally, an
action detector is trained to recognize full actions only, and
it may not be able to recognize partial actions. This is due
to the incorrect focus of modeling effort: an action detector
trained to recognize full actions may not pay attention to the
characteristic information that occurs at the beginning of the
action. Therefore, even though the prediction procedure does
not provide additional information, it may preserve useful
information that might have been ignored otherwise.

B. Movement Prediction Network

For body movement prediction network, the input vector to
the network is the concatenation of skeleton joint coordinates



at time ¢ and the vector that represents the class probability
of current sequence. The output vector §;,1 represents the
prediction of the skeleton at time ¢ 4 1. This network can
be used to generate sequences of human movement that are
conditioned on a class probability vector. Given the same par-
tial sequence, the network can synthesize different sequences
conditioned on different class labels. During training, the
class probability vector is from ground truth label. It is a
binary vector where the element corresponds to ground truth
label has the value of 1 and all other entries are 0. During
testing, the probability vector will be the provided by the
recognition network RegL.STM.

More precisely, given multiple sequences of human actions
that belong to L action classes, we first sample many
subsequences of a fixed length T (normally T = 20). We
train the parameters of the network by minimizing the sum
of prediction losses of all training subsequences. Suppose
s1.7 is a training subsequence and [ is the associated class
label. Let e; be a binary vector of length L where all entries
are 0 except for the [*" entry that has the value of 1. The
input to the LSTM network at time ¢ is x; = [s¢; €],
and the loss for the training subsequence is defined as:
Lprea(s1r) = 327 8641 — st21|[3- The derivative of this
loss function with respect to the network weights can be
efficiently calculated with back-propagation through 7' time
steps. We train the parameters of the LSTM by optimizing
the above loss using stochastic gradient descent.

C. Early Recognition Network

For the early recognition network RegL.STM, the input
vector x; contains the skeleton joint coordinates at time £,
and the output p; is the predicted class probability vector
for the sequence xi.;. The length of the vector p; is the
number of classes. The training loss for the sequence is based
on the negative log likelihood calculated at all time steps.
Suppose si1.7 is a training sequence of action class [, the
training loss for this sequence is defined as: L,¢q4(s1.7) =
— S wilog(p(1)). Here py(l) is the I*" entry of the
vector p;. The parameter w; is the weight for the misclassi-
fication penalty at time ¢. We use different misclassification
penalty weights for different time steps to emphasize the
importance of recognizing the full action over partial actions.
In our experiments, we use w; = sigmoid(a(t — f3)), where
«, B are tunable parameters.

The total training loss is the sum of multiple loss terms,
one for each training sequence. This allows the parameters
of the network to be trained with stochastic gradient descent.
This is an iterative optimization procedure where each itera-
tion updates the network parameters based on the derivatives
computed on a batch of training data. The derivatives of
the loss of a training sequence with respect to the network
parameters can be calculated with backpropagation through
time. This requires unrolling the computation graph of the
RNN a number of time steps that is equal to the length of
the training sequence. However, the lengths of the training
sequences are not the same. This requires the network to
be unrolled to different lengths. This makes training ineffi-

cient because the gradient calculation for multiple training
sequences cannot be done at the same time. This problem
exists for both CPU and GPU architectures. To overcome
this problem and reduce the training time, we use the
following procedure. We first group the training sequences
with similar lengths together and truncate the sequences in
each group to have the same length. We divide training
data into batches such that each batch only contains data
from a single group, and therefore the training sequences in
each batch have the same length. We train an RNN on the
truncated sequences and subsequently fine-tune the network
using original sequences. Due to the need to compute the
gradients sequence by sequence, each epoch of the fine-
tuning step takes significantly longer than each epoch of the
pre-training step. However, fine-tuning often converges after
three or four epochs.

IV. EXPERIMENTS

We performed experiments on two publicly available
datasets. We found that the prediction network provided
benefits to early recognition, which in turn improved the
quality of prediction.

A. Datasets

We used two publicly available datasets: Montalbano
Gesture dataset [8] and MSR Action 3D dataset [22]. The
details about these datasets are as follows.

Montalbano Gesture dataset. This dataset was captured
with a Microsoft Kinect depth sensor. In all sequences, a
camera recored a human subject performing natural com-
municative gestures. The gesture vocabulary contained 20
Italian cultural/anthropological signs. The gestures were per-
formed by 27 different individuals under diverse conditions.
There are 13,858 labeled sequences which contain 1,720,800
frames. Each frame in a sequence contains 20 skeleton joints.
The dataset is divided into train, validation, and test subsets,
containing 7754, 3362, and 2742 sequences respectively.
MSR Action 3D Dataset. This dataset has 557 valid se-
quences of 10 subjects performing 20 actions in an uncon-
strained way. All sequences were captured by a Kinect-like
depth sensor. There are about 50 frames in each sequence,
and a skeleton has 20 joints. The low accuracy of the
estimated 3D poses due to occlusion makes this dataset very
challenging. We followed the protocol provided in [22] for
train/test split. The data samples of subjects 1, 3, 5, 7, 9 were
used for training while the samples of subjects 2, 4, 6, 8, 10
were used for testing.

B. Parameter setting and model training

We centralized the skeleton joints by translating them so
that the hip center is at the coordinate origin. Following [6],
we reduced the impact of noise by smoothing:

ft = (—3St,2 + 12St71 + 17St + 125t+1 — 3St+2)/35.

where f; is the smoothed output at time ¢, s; is the raw co-
ordinate values of the skeleton. Furthermore, we normalized



the skeleton data based on the average limb size so that every
skeleton roughly has the same average limb size.

For the recognition network Regl.STM, the parameters of
the mis-classification penalty weight w; are: a = 0.3, § =
%. For optimization with back propagation through time, we
use Adagrad as the optimization method with the learning
rate being 0.001.

C. Comparison methods

We compared our proposed action recognition ap-
proach with several methods: SVM, Structured-Output
SVM (SOSVM) [32], Max-Margin Early Event Detector
(MMED) [12], and Dynamic Bag-of-Words [27]. The last
two methods were specifically proposed to address early
recognition problems.

The proposed method and the ones being compared to
have different recognition philosophies. We therefore imple-
mented and optimized each method based on its preferred
representation of the human skeleton sequence, i.e., a feature
representation that is commonly used and well suited for the
method being evaluated. The evaluation of all methods is of
course carried out using identical data. The proposed method
is the combination of two integrated LSTMs; the input to
the LSTMS is the sequence of vectors of 3D coordinates
of the human body joints. The input features for SVM,
SOSVM, and MMED were based on sparse coding [21, 40]
and temporal pyramid pooling [23]. This type of features
has been shown to work well for the recognition task with
max-margin classifiers [23].

To use sparse coding features, we first learned a dictio-
nary for encoding skeleton data. Given a training set S =
[s1,82,...,Sn], where each s; represents the skeleton vector
for one pose, sparse dictionary learning learns a dictionary
by optimizing:

N
min

s; — Doy 2+)\ai R (1)
i 2 (s~ Dl )

where the matrix D = [d;,ds,- - ,dys] was the dictionary
with M atoms and o; was a sparse vector of coefficients for
encoding the training pose s; as a sparse linear combination
of atoms in the dictionary. Once the dictionary had been
learned, a feature vector for a sequence of human poses
was computed as follows: 1) used the learned dictionary to
encode individual poses; 2) divided the sequence into two
halves, and divided each half into two halves again (temporal
pyramid with two layers); 3) within each segment, used max
pooling to compute a the feature vector for the segment, and
subsequently concatenated all feature vectors to represent the
entire sequence.

D. Early recognition

We first studied the benefits of body movement prediction
for early recognition of human actions. We analyzed the
performance of recognition methods with and without body
movement prediction. We also compared with several early
recognition methods [12, 27].
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Fig. 3: Benefits of movement prediction for early recog-
nition. This figure shows the performance of two methods
(SVM and LSTM) with and without movement prediction.
The horizontal axis shows the proportion of an action that
has been observed. The vertical axis shows the recognition
accuracy, a higher value means a better performance. The
horizontal axis shows the observational ratio (i.e., the pro-
portion of the action that has been observed at the time
of decision). Movement prediction provides benefits to both
recognition methods on both datasets.

We considered the ability for early human action recog-
nition, i.e., recognizing an action when only the beginning
portion of the action has been observed. Given a partial
sequence, we jointly used the prediction network to complete
the sequence and used the early recognition network for
classification, as illustrated in Fig. 2. The prediction network
was trained on the validation set, and we use a 3-layer LSTM
with the memory size of 300 (dimension of the memory
vectors).

Figure 3 compares the early recognition performance of
two approaches, with and without using movement predic-
tion. For each approach, two types of recognition classifiers
were considered: (1) SVM with sparse coding and temporal
pyramid pooling and (2) the LSTM recognition network.
The LSTM recognition network has five hidden layers with
RNN size of 300, and the network was trained on the train
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Fig. 4: Comparison of several methods for early event
detection. These figures show the AMOC curves for binary
detection task. MMED is a method that is proposed for early
event detection. Although it works better than SOSVM, it
performs worse than LSTM and SVM methods that use the
predicted body movement.

dataset. For MSR Action 3D dataset, there were only 284
sequences available for training, so we did not use an RNN
recognition system to avoid overfitting. The results reported
in Figure 3b are based on SVM with sparse dictionary
learning and temporal pyramid pooling instead. As can be
seen, using movement prediction significantly improves early
recognition performance. This applies to both SVM and
LSTM classifiers.

Figure 4 compares SVM and LSTM with movement pre-
diction with two other methods for early recognition that do
not use movement prediction: Structured-Output SVM [32]
and Max-Margin Early Event Detector (MMED) [12]. Since
MMED is a binary event detector, we adapted our multi-
class recognition method to the binary event detection task.
Following [12], we use the Activity Monitoring Operating
Characteristic (AMOC) curve to evaluate the timeliness of
detection. AMOC curve shows the relationship between
False Positive Rate (FPR) and the observational ratio (i.e.,
the proportion of the action that has been observed at the time
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Fig. 5: Motion prediction performance using different
class probability vectors. This figure shows the average
prediction error for the joints on the arms (distance between
the actual location and the predicted location). The distance
measure is in centimeter, assuming the average person height
is 1.7m. The prediction horizon is 1000ms. The prediction
network PredLSTM can generate a sequence of body move-
ment conditioned on a class probability vector. Knowing
the true label is very useful; it yields the lowest prediction
error. Using the predicted class probability is better than the
uniform class probability.

of decision). By adjusting the detection threshold, one can
detect the action sooner at the cost of higher FPR and vice
versa. For a complete picture, we vary the detection threshold
and plot the curve of observational ratio versus FPR. Figure 4
shows the comparison between several methods: LSTM
with movement prediction, SVM with movement prediction,
Structured-Output SVM, and MMED. For each action class,
we consider the binary detection task and there is a set of
corresponding AMOC curves. Figure 4 shows the AMOC
curves for two representative classes of the two datasets.
As can be seen, the proposed recognition approach (either
LSTM or SVM) that uses the predicted movement can detect
the actions faster than SOSVM and MMED at the same FPR.

We also implemented the Dynamic Bag-of-Words
method [27]. We found that Dynamic Bag-of-Words did not
work well for skeleton data. Even for offline recognition (not
early recognition), the classification accuracy was low. We
experimented with several parameter settings of the method,
but the best accuracy was only 24.9%. This is perhaps
due to the sparsity of the Bag-of-Words feature histograms
constructed based on a pose vocabulary. The Dynamic Bag-
of-Words method has been shown to work well for the UT-
Interaction dataset [28] where dense spatio-temporal interest
points were used. Dense spatial-temporal interest points,
however, are not available to a sequence of human skeletons.

E. Prediction analysis

In this experiment, we analyzed the impact of the class
probability vector (denoted as p; in Fig. 2) to the prediction
network and its influence on early recognition performance.
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Fig. 6: The impact of using different class probability
vectors on early recognition performance. (a): comparison
in Montalbano dataset; LSTM is used as the recognition
method. (b): comparison in MSR Action 3D dataset; SVM
is used as the recognition method. The key difference is how
the unseen sequence is synthesized. The prediction network
PredLSTM can generate a sequence of body movement
conditioned on a class probability vector. We compare the
four settings for the class probability vector: 1) use a random
class label; 2) use uniform class label; 3) use the ground truth
label; and 4) use the class probability vector that is produced
by the recognition network. Knowing the true label is very
useful; it yields the highest recognition accuracy. Using the
predicted class probability vector is better than the uniform
or random class probability vector.

Recall that our prediction network can generate a sequence
of body movement conditioned on a class probability vector.
We compared the following settings for the class probability
vector: 1) use the binary indicator vector for the true class
label as the input to our prediction network—this is an ideal
case where the class label is known; 2) use the class label
vector that has uniform weights (no bias to any class); 3)
use a random class label that is different from the true label;
4) use the class probability vector that is produced by the
recognition network (proposed).
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Fig. 7: The initial 20 frames used to generate sequences in
Figure 8. We show every two frames.

Figure 5 shows the average prediction error for the joints
on the arms. Using the ground truth class label leads to
the lowest error. Using the probability vector produced by
the recognition network also performs relatively well. The
average distance for using ground truth label, labels from
classifier output, and random label are 13.43 cm, 14.50 cm,
and 15.54 cm respectively.

Figure 6a compares the early recognition performance of
the LSTM recognition network when pairing with different
predicted movement sequences. Interestingly, not using a
predicted sequence has the worst performance. This confirms
the benefits of movement prediction for early recognition.
There is a big difference between using the ground truth
label and other methods. This indicates the importance of the
class probability vector for the prediction network. Figure 6b
show the same analysis on the MSR Action 3D dataset, and
similar conclusions can be drawn.
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Fig. 8: Ground-truth (1%¢ row) and predicted sequences
(2" and 377 rows) using the sequence shown in Figure 7 as
the initial states. The second row and third row are predicted
sequences from frame 21 to 40 after seeing the sequence in
Figure 7. The second row is predicted using uniform class
probability vector. The third row is predicted by the proposed
joint prediction and recognition network. We show a pose at
every two frames.

F. Qualitative analysis of prediction

We show our prediction qualitatively. Given the partial
sequence shown in Figure 7, we used different class label
vectors to predict the rest of the sequence. As shown in
Figure 8, the first row is the true pose sequence from frame
21 to 40 (every second frame is shown). The second row and
third row are predicted sequences after seeing the sequence
in Figure 7. The second row was predicted using uniform
class probability vector. The third row was generated by the
proposed joint prediction and recognition network.

V. CONCLUSIONS AND DISCUSSIONS

We have demonstrated that movement prediction and early
recognition of human action provide mutual benefits to each
other. These two tasks have traditionally been addressed
separately, and it is difficult to combine different methods



that were designed for individual tasks because they do not
expect and accept inputs from each other. In this paper, we
have considered the case where 3D skeleton information is
available and have presented a framework for joint movement
prediction and early recognition. Our framework integrates
two Long Short-Term Memory recurrent neural networks,
which are specifically designed to incorporate the mutual
benefits of each other. Experiments on two human action
datasets showed that the integrated system outperformed the
individual subsystems. The integrated system also outper-
formed several state-of-the-art methods for early recognition.

One limitation of our current work is that we only have the
empirical demonstration for skeleton-based representation.
However, we believe the mutual benefits of prediction and
early recognition exist beyond skeleton-based representation.
One possible direction for future work is to extend the current
framework for analyzing RGB sequences, using the recent
human pose estimation methods [4, 11, 30, 39].
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