
Iterative Crowd Counting

Viresh Ranjan, Hieu Le, and Minh Hoai

Department of Computer Science,
Stony Brook University

{vranjan,hle,minhhoai}@cs.stonybrook.edu

Abstract. In this work, we tackle the problem of crowd counting in im-
ages. We present a Convolutional Neural Network (CNN) based density
estimation approach to solve this problem. Predicting a high resolution
density map in one go is a challenging task. Hence, we present a two
branch CNN architecture for generating high resolution density maps,
where the first branch generates a low resolution density map, and the
second branch incorporates the low resolution prediction and feature
maps from the first branch to generate a high resolution density map.
We also propose a multi-stage extension of our approach where each
stage in the pipeline utilizes the predictions from all the previous stages.
Empirical comparison with the previous state-of-the-art crowd counting
methods shows that our method achieves the lowest mean absolute error
on three challenging crowd counting benchmarks: Shanghaitech, World-
Expo’10, and UCF datasets.

Keywords: crowd counting, density estimation, multi-stage CNN

1 Introduction

Gathering of large crowds is commonplace nowadays, and estimating the size of
a crowd is an important problem for different purposes ranging from journalism
to public safety. Without turnstiles to provide a precise count, the media and
crowd safety specialists must estimate the size of the crowd based on images
and videos of the crowd. Manual visual estimation, however, is difficult and
laborious for humans. Humans are good at subitizing, i.e., predicting fast and
accurate counts for small number of items, but the accuracy with which humans
count deteriorates as the number of items increase [7]. Furthermore, the addition
of each new item beyond a few adds an extra processing time of around 250 to
300 milliseconds [17]. As a result, any crowd monitoring system that relies on
humans for counting people in crowded scenes will be slow and unreliable. There
is a need for an automatic computer vision algorithm that can accurately count
the number of people in crowded scenes based on images and videos of the
crowds.

There exist a number of computer vision algorithms for crowd counting, and
the current state-of-the-art methods are based on density estimation rather than
detection-then-counting. Density-estimation methods use Convolutional Neural

2 Ranjan, Le, Hoai

Fig. 1. Crowd counting can be posed as a CNN-based density estimation problem,
but this problem can be challenging for a single CNN due to the huge variation of
density values across pixels of different images. This figure shows two images from the
Shanghaitech dataset that have very different crowd densities. As can be seen, crowd
count could vary from a few to a few thousand.

Networks (CNNs) [9, 8] to output a map of density values, one for each pixel of
the input image. The final count estimate can be obtained by summing over the
predicted density map. Unlike the detection-then-counting approach (e.g., [5]),
the output of the density estimation approach at each pixel is not necessarily
binary. Density estimation has been proved to be more robust than the detection-
then-counting approach because the former does not have to commit to binarized
decisions at an early stage.

Estimating the crowd density per pixel is a challenging task due to the large
variation of the crowd density values. As shown in Figure 1, some images contain
hundreds of people, while others have only a few. It is difficult for a single CNN
to handle the entire spectrum of crowd densities. Earlier works [20, 15] have
tackled this challenge by using a multi-column or a switching CNN architecture.
These CNN architectures consist of three parallel CNN branches with different
receptive field sizes. In such architectures, a branch with smaller receptive fields
could handle the high density images well, while a branch with larger receptive
fields could handle the low density images. More recently, a five-branch CNN
architecture was proposed [16] where three of the branches resembled the previ-
ous multi-column CNN [20], while the remaining two branches acted as global
and local context estimators. These context estimator branches were trained
beforehand on the related task of classifying the image into different density
categories. Some of the key takeaways from these previous approaches are: (1)
using a multi-column CNN model with varying kernel sizes improves the per-
formance of crowd density estimation; and (2) augmenting the feature set with
the ones learned from a task related to density estimation, such as count range
classification, improves the performance of the density estimation task.

In this work, we propose iterative counting Convolutional Neural Networks (ic-
CNN), a CNN-based iterative approach for crowd counting. Unlike previous ap-
proaches, where three [20, 15] or more [16] columns are needed to achieve good
performance, our ic-CNN approach has a simpler architecture comprising of two

ic-CNN for Iterative Crowd Counting 3

Fig. 2. Figure shows the ic-CNN architecture which consists of two columns/branches.
On the top is the Low Resolution CNN branch (LR-CNN) and at the bottom is the
High Resolution CNN branch (HR-CNN). LR-CNN predicts a density map at a lower
resolution (LR). It passes the predicted density map and the convolutional feature
maps to HR-CNN. HR-CNN fuses its feature maps with the feature maps and predicted
density map from LR-CNN, and predicts a high resolution density map (HR) at the
size of the original image. LR and HR are low and high resolution prediction maps
respectively.

columns/branches. The first branch predicts a density map at a lower resolution
of 1

4 the size of the original image, and passes the predicted map and a set of
convolutional features to the second branch. The second branch predicts a high
resolution density map at the size of the original image. Density maps contain
information about the spatial distribution of crowd in an image. Hence, the first
stage map serves as an important feature for the high resolution density map
prediction task. We also propose a multi-stage extension of ic-CNN where we
combine multiple ic-CNNs sequentially to further improve the quality of the pre-
dicted density map. Each ic-CNN in the multi-stage pipeline provides both the
low and high resolution density predictions to all subsequent stages. Figure 2 il-
lustrates the schematic architecture for ic-CNN. ic-CNN has two branches: Low
Resolution CNN (LR-CNN) and High Resolution CNN (HR-CNN). LR-CNN
predicts the density map at a low resolution while HR-CNN predicts the density
map at the original image resolution. The key highlights of our work are:

1. We propose ic-CNN, a two-stage CNN framework for crowd density estima-
tion and counting.

2. ic-CNN achieves state of the art results on multiple crowd counting datasets.
On Shanghaitech Part B dataset, ic-CNN yields 48.3% improvement in terms
of mean absolute error over the previously published results [16].

3. We also propose a multi-stage extension of ic-CNN, which can combine pre-
dictions from multiple ic-CNN models.

2 Related Work

Crowd counting is an important research problem and a number of approaches
have been proposed by the computer vision community. Earlier work tackled

4 Ranjan, Le, Hoai

crowd counting as an object detection problem [11, 12]. Lin et al. [12] extracted
Haar features for head like contours and used an SVM classifier to classify these
features as the contour of a head or not. Li et al. [11] proposed a detection based
approach where the input image was first segmented into foreground-background
regions and a HOG feature based head-shoulder detector was used to detect each
person in the crowd. These detection based methods often fail to accurately count
people in extremely dense scenes. To handle images of dense crowds, some meth-
ods [2, 3] proposed to use a regression approach to avoid the harder detection
problem. They instead extracted local patch level features and learned a regres-
sion function to directly estimate the total count for an input image patch. These
regression approaches, however, do not fully utilize the available annotation as-
sociated with training data; they ignore the spatial density and distribution of
people in training images. Several researchers [10, 14] proposed to use a density
estimation approach to take advantage of the provided crowd density annotation
maps of training images. Lempitsky & Zisserman [10] learned a linear mapping
between the crowd images and the corresponding ground truth density maps.
Pham et al. [14] learned a more robust mapping by using a random decision for-
est to estimate the crowd density map. These density-based methods solve some
of the challenges faced by the earlier detection and regression based approaches,
by avoiding the harder detection problem and also utilizing the spatial anno-
tation and correlation. All aforementioned methods predated the deep-learning
era, and they used hand crafted features for crowd counting.

More recent methods [18, 4, 20, 15, 13, 16] used CNNs to tackle crowd count-
ing. Wang et al. [18] posed crowd counting as a regression problem, and used a
CNN model to map the input crowd image to its corresponding count. Instead
of predicting the overall count, Fu et al. [4] classified an image into five broad
crowd density categories and used a cascade of two CNNs in a boosting like
strategy where the second CNN was trained on the images misclassified by the
first CNN. These methods also overlooked the benefits provided by the crowd
density annotation maps.

The methods that are most related to our work are [20, 15, 16]. Zhang et
al. [20] proposed a CNN-based method to predict crowd density maps. To handle
the large variation in crowd densities and sizes across different images, Zhang et
al. [20] proposed a multi-column CNN architecture (MCNN) with filters and re-
ceptive fields of various sizes. The CNN column with smaller receptive field and
filter sizes were responsible for the denser crowd images, while the CNN columns
with larger receptive fields and filter sizes were meant for the less dense crowd
images. The features from the three columns were concatenated and processed
by a 1×1 convolution layer to predict the final density map. To handle the vari-
ations in density and size within an image, the authors divided each image into
non-overlapping patches, and trained the MCNN architecture on these patches.
Given that the number of training samples in annotated crowd counting datasets
is much smaller in comparison to the datasets pertaining to image classification
and segmentation tasks, training a CNN from scratch on full images might lead
to overfitting. Hence, patch-based training of MCNN was essential in preventing

ic-CNN for Iterative Crowd Counting 5

overfitting and also improving the overall performance by serving as a data aug-
mentation strategy. One issue with MCNN was that it fused the features form
three CNN columns for predicting the density map. For a given patch, it is ex-
pected that the counting performance can be made more accurate by choosing
the right CNN column that specializes in analyzing images of similar density
values. Sam et al. [15] built on this idea and decoupled the three columns into
separate CNNs, each focused on a subset of the training patches. To decide which
CNN to assign a patch to, the authors trained a CNN-based switch classifier.
However, since the ground truth label needed to train the switch classifier was
unavailable, the authors resorted to a multi-stage training strategy: 1) training
the three density predicting CNNs on the entire set of training patches, 2) train-
ing the switch classifier using the count from the previous stage to decide the
switch labels, and 3) retraining the three CNNs using the patches assigned by
the switch classifier. In a more recent work, Sindagi et al. [16] further modified
the MCNN architecture by adding two more branches for estimating global and
local context maps. The global/local context prediction branches were trained
beforehand for the related task of classifying an image/patch into five different
count categories. The classification scores were used to create a feature map of
the same size as the image/patch, which served as the global/local context map.
These context maps were fused with the convolutional feature maps obtained
using a three branch multi-column CNN, and the resulting features were further
processed by convolutional layers and a 1×1 convolution layer to obtain the final
density map.

3 Proposed Approach

In this section, we describe the architecture of ic-CNN, its multi-stage extension
and the training strategy. ic-CNN is discussed in Section 3.1. The multi stage
extension of ic-CNN is discussed in Section 3.2, and the training details are
discussed in Sec 3.3.

3.1 Iterative Counting CNN

Let D = {(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} be the training set of n (image, high
resolution density map, low resolution density map) triplets, where Xi is the
ith image, Yi is the corresponding crowd density map at the same resolution as
the image Xi, and Zi is a low resolution version of the crowd density map. Yi

and Zi have the same overall count. Let fl and fh be the mapping functions
which transform the image into the low resolution and high resolution density
maps, respectively. Let the parameters of the low resolution branch (LR-CNN)
and high resolution branch (HR-CNN) be θl and θh respectively. Note that fl
depends on only θl, while fh depends on both θl and θh. Given an input image
Xi, the low resolution density map Ẑi can be obtained by a doing a forward pass
through the LR-CNN branch:

Ẑi = fl(Xi; θl). (1)

6 Ranjan, Le, Hoai

The inputs to the high resolution branch HR-CNN are: the image Xi, the fea-
tures computed by the low resolution branch LR-CNN, and the low resolution
prediction Ẑi. HR-CNN predicts a high resolution density map of the same size
as the original image:

Ŷi = fh(Xi, Ẑi; θl, θh). (2)

The low resolution prediction Ẑi contains information about the spatial dis-
tribution of the crowd in the image Xi. It serves as an important feature map
for the high resolution prediction task. We can learn the parameters θl and θh
by minimizing the loss function L(θl, θh):

L(θl, θh) =
1

n

n󰁛

i=1

(λlL(fl(Xi; θl), Zi) + λhL(fh(Xi, Ẑi; θl, θh), Yi)), (3)

where L(·, ·) denotes the loss function, and a reasonable choice is to use the
squared error between the estimated and ground truth values. λl and λh are
scalar hyperparameters which can be used to give more importance to one of
the loss terms. Using Equations (1) and (2), the right hand side can be further
simplified as:

L(θl, θh) =
1

n

n󰁛

i=1

(λlL(Ẑi, Zi) + λhL(Ŷi, Yi)). (4)

At test time, given an image Xi, we first obtain the low resolution output
Ẑi by doing a forward pass through LR-CNN and then pass the convolutional
features and the low resolution map Ẑi to HR-CNN, which will predict the high
resolution map Ŷi. We use the high resolution output predicted by HR-CNN as
the final output of ic-CNN. The overall crowd count is obtained by summing
over all the pixels in the density map Ŷi.
Below we provide the architecture details for the LR-CNN and HR-CNN branches.
LR-CNN. The LR-CNN branch takes as input an image, and predicts a density

map at 1
4 the size of the original image. LR-CNN has the following architecture:

Conv3-64, Conv3-64, MaxPool, Conv3-128, Conv3-128, MaxPool, Conv3-256,
Conv3-256, Conv3-256, Conv7-196, Conv5-96, Conv3-32, Conv1-1. Here, ConvX-
Y implies a convolution layer having Y filters with X×X kernel size. MaxPool
is the max pooling layer. We use a ReLU nonlinearity after each convolutional
layer.

HR-CNN. The HR-CNN branch predicts the high resolution density map at the
same size as the input image. HR-CNN has the following architecture: Conv7-
16, MaxPool, Conv5-24, MaxPool, Conv3-48, Conv3-48, Conv3-24, Conv7-196,
Conv5-96, Upsampling-2, Conv3-32, Upsampling-2, Conv1-1. Here, Upsampling-
2 is a bilinear interpolation layer which upsamples the input to twice its size.

3.2 Multi-stage Crowd Counting

A multi-stage ic-CNN is a network that combines multiple building blocks of
ic-CNN described in the previous section. Each ic-CNN block inputs the low

ic-CNN for Iterative Crowd Counting 7

and high resolution prediction maps from all the previous blocks. Given an input
image Xi, the low resolution branch of the kth block, represented by the function
fk
l , outputs the low resolution prediction:

Ẑk
i = fk

l (Xi, Ẑ
1:k−1
i , Ŷ 1:k−1

i , θkl), (5)

where θkl represents the parameters of LR-CNN, Ẑ1:k−1
i and Ŷ 1:k−1

i represent
the set of low and high level predictions from the first k− 1 blocks for the input
Xi. The high resolution branch of the kth block, represented by the function fk

h ,
takes as input the image Xi, the feature maps computed by the low resolution
branch fk

l , the low resolution prediction Ẑk
i , and the entire set of low and high

resolution prediction maps from the first k − 1 blocks. Hence, the output of the
kth HR-CNN can be computed using:

Ŷ k
i = fk

h (Xi, Ẑ
1:k
i , Ŷ 1:k−1

i , θkl , θ
k
h). (6)

Note that fk
l and fk

h do not depend on the parameters for the first k− 1 blocks,

and Ẑ1:k−1
i and Ŷ 1:k−1

i are treated as fixed inputs (i.e., the parameters of the
corresponding network blocks are frozen). We can learn the parameters θkl and
θkh by minimizing the loss function L(θkl , θkh):

L(θkl , θkh) =
λl

n

n󰁛

i=1

L(fk
l (Xi, Ẑ

1:k−1
i , Ŷ 1:k−1

i , θkl), Zi)

+
λh

n

n󰁛

i=1

L(fk
h (Xi, Ẑ

1:k
i , Ŷ 1:k−1

i , θkl , θ
k
h), Yi). (7)

3.3 Training Details

An ic-CNN is trained by minimizing the loss function L(θl, θh) from Equation (3).
We use the Stochastic Gradient Descent algorithm with the following hyper pa-
rameters (unless specified otherwise): learning rate 10−4, momentum 0.9, batch
size 1. We give more importance to the high resolution loss term in Equation (3)
and set λl and λh to 10−2 and 102, respectively.

We train a multi-stage ic-CNN in multiple stages. In the kth stage, we train
the kth ic-CNN block by minimizing the loss function given in Equation (7),
using the Stochastic Gradient Descent algorithm with the same hyper parame-
ters as above. Once the training for the kth stage has converged, we freeze the
parameters for the kth stage and proceed to the next stage.

The training data consists of crowd images and corresponding ground truth
annotation files. A ground truth annotation for an image specifies the location
of each person in the image with a single dot on the person. We convert this
annotation into a binary map consisting of 0’s at all locations, except for the
annotated points which are assigned the value of 1. We convolve this binary map
with a Gaussian filter of standard deviation 5. We use the resulting density map
for training the networks.

8 Ranjan, Le, Hoai

Table 1. Count errors of different methods on the Shanghaitech dataset. This
dataset has two parts: A and B. We compare ic-CNN with the previous state-of-the-art
approaches, using two metrics: Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE). ic-CNN (one stage) is the single stage ic-CNN with two branches HR-
CNN and LR-CNN. ic-CNN (two stages) is the two-stage variant of ic-CNN. Both
ic-CNN networks outperform the previous approaches in 3 out of 4 cases. On the
Shanghaitech Part B dataset, using the one-stage ic-CNN, which has a simpler archi-
tecture than CP-CNN [16], we improve on the previously reported state of the art
results by 48.3% using the MAE metric and 46.8% using the RMSE metric

Part A Part B

MAE RMSE MAE RMSE

Crowd CNN [19] 181.8 277.7 32.0 49.8
MCNN [20] 110.2 173.2 26.4 41.3
Switching CNN [15] 90.4 135.0 21.6 33.4
CP-CNN [16] 73.6 106.4 20.1 30.1
ic-CNN (one stage) 69.8 117.3 10.4 16.7
ic-CNN (two stages) 68.5 116.2 10.7 16.0

4 Experiments

We conduct experiments on three challenging datasets: Shanghaitech [20], World-
Expo’10 [19], and UCF Crowd Counting Dataset [6].

4.1 Evaluation Metrics

Following previous works for crowd counting, we use the Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) to evaluate the performance of
our proposed method. If the predicted count for image i is Ĉi and the ground
truth count is Ci, the MAE and RMSE can be computed as:

MAE =
1

n

n󰁛

i=1

|Ci − Ĉi|, RMSE =

󰁹󰁸󰁸󰁷 1

n

n󰁛

i=1

(Ci − Ĉi)2 (8)

where n is the number of test images.

4.2 Experiments on the Shanghaitech Dataset

The Shanghaitech dataset [20] consists of 1198 annotated crowd images. The
dataset is divided into two parts, Part-A containing 482 images and Part-B con-
taining 716 images. Part-A is split into train and test subsets consisting of 300
and 182 images, respectively. Part-B is split into train and test subsets consisting
of 400 and 316 images. Each person in a crowd image is annotated with one point
close to the center of the head. In total, the dataset consists of 330,165 annotated

ic-CNN for Iterative Crowd Counting 9

Table 2. MAE and RMSE on Shanghaitech Part-A dataset as we vary the resolution
being used for the low resolution branch LR-CNN of ic-CNN. The resolution of HR-
CNN is fixed at 1, the size of the input image.

LR-Resolution HR-Resolution MAE RMSE

1/8 1 74.9 131.6
1/4 1 69.8 117.3
1/2 1 73.3 124.4
1 1 74.4 128.3

Table 3. Effect of varying hyper parameter λh: Mean absolute error on Shang-
haitech Part A dataset. λl is kept fixed at 10−2.

λh LR-CNN HR-CNN

10−4 73.7 78.8
10−2 73.0 73.6
1 75.1 73.3
102 79.9 69.8
104 432.6 74.4

people. Images from Part-A were collected from the Internet, while images from
Part-B were collected on the busy streets of Shanghai. To avoid the risk of over-
fitting to the small number of training images, we trained ic-CNNs on random
crops of size H

3 × W
3 , where H and W are the height and width of a training

image. In Table 1, we compare ic-CNNs with the previous state-of-the-art ap-
proaches. ic-CNNs outperform the previous approaches in three out of four cases
by a large margin. On Part-B of the Shanghaitech dataset, using the one-stage
ic-CNN which has a simpler architecture than the five-branch CP-CNN [16], we
improve on the previously reported state of the art results by 48.3% for MAE
metric and 46.8% for the RMSE metric. On Part A of the Shanghaitech dataset,
we achieve a 5.1 absolute improvement in MAE over CP-CNN. Furthermore, for
Part A data, the two-stage ic-CNN results in an improvement of 1.3 MAE over
the one-stage ic-CNN. We also trained a three-stage ic-CNN on Part A data,
which resulted in MAE = 69.4 and RMSE = 116.0. Since adding the 3rd stage
did not yield a significant performance gain, we did not experiment with more
than three stages.

In Table 2, we analyze the effects of varying the resolution of the intermediate
prediction on the overall performance. Using any resolution other than 1

4 leads
to a drop in the performance.

In Table 3, we analyze the effects of varying the hyperparameter λh on per-
formance of ic-CNN. We use Shanghaitech Part-A dataset for this experiment.
We show the MAE of the high and low resolution branches as the scalar weight
λh is varied. λl is kept fixed at 10−2. We can see that the LR-CNN branch per-
forms better when λl is comparable with λh, and its performance degrades when
λh is too large. The performance of HR-CNN improves as λh is varied from 10−4

10 Ranjan, Le, Hoai

Table 4. Training time, number of parameters, and MAE on Part A of the Shang-
haitech dataset. ic-CNN was trained on a single GPU machine (Nvidia GTX 1080 TI).

Model Training Time Number of Parameters MAE

MCNN [20] unknown 1.27× 105 110.2
Switching CNN [15] 22 hrs 1.2× 107 90.4
CP-CNN [16] unknown 6.3× 107 73.6
ic-CNN (proposed) 10 hrs 7.9× 106 69.8

Table 5. Ablation study on Shanghaitech Part A data. HR-CNN is the high
resolution branch, LR-CNN is the low resolution branch. LR-CNN alone and HR-CNN
alone refer to a counting network that contains either LR-CNN or HR-CNN only.
ic-CNN is our proposed approach, where both the features and the low resolution
prediction map from LR-CNN are shared with HR-CNN. We also compared with two
variants where either the low resolution map or the convolutional feature maps from
LR-CNN is not shared with the HR-CNN.

Method MAE RMSE

LR-CNN alone 78.5 133.2
HR-CNN alone 136.2 204.0
HR-CNN + LR-CNN features (no low-res prediction) 75.1 129.0
HR-CNN + LR-CNN low-res prediction (no features) 77.4 130.4
ic-CNN (proposed) 69.8 117.3

to 102. In the extreme case when λh is set to 104, there is a large degradation in
the performance of the LR-CNN branch, which affects the performance of the
HR-CNN branch. When λh is 104, the low resolution prediction task is possibly
ignored, and the network solely focuses on solving the high resolution task. In
such a scenario, the low resolution prediction does not contain any useful infor-
mation, which affects the performance of the high resolution branch HR-CNN.
We obtain the best results for the HR-CNN branch when λh is set to 102. In this
case, the high resolution loss does not force the network to completely ignore
the low resolution task.

In Table 4, we show the training time and the number of parameters of ic-
CNN, MCNN, Switching CNN, and CP-CNN. An ic-CNN takes 10 hours to train,
while a Switching CNN takes around 22 hours. An ic-CNN has significantly fewer
parameters than a CP-CNN and a Switching CNN. We contacted the authors
of MCNN and CP-CNN, but we did not get a response for the training time of
these networks.

In Table 5, we analyze the importance of each of the components of our
proposed ic-CNN model. We see that both the feature sharing and the feedback
of the low resolution prediction are important for ic-CNN. Removing any of these
two components leads to significant drop in performance.

ic-CNN for Iterative Crowd Counting 11

1 2 3 4 5 6 7 8 9 100

200

400

600

800

1000

1200

1400

Group ID

A
ve

ra
ge

 C
ou

nt

Avg. Count on Shanghaitech Part A

GT
ic−CNN

Fig. 3. Performance across different crowd density: We divide the 182 test im-
ages from Shanghaitech Part A into 10 groups on the basis of the crowd count. Each
group except the last has 18 test images. We average the crowd count across a group
to obtain the average count. GT is the ground truth, ic-CNN is prediction from the
high resolution branch. For majority of the count groups, the difference between the
average counts for ic-CNN and GT is small.

In Figure 3, we analyze the performance of ic-CNN across different groups
of images with varying crowd counts.

4.3 Experiments on the WorldExpo’10 Dataset

The WorldExpo’10 dataset consists of 1132 annotated video sequences captured
by 108 surveillance cameras. Annotated frames from 103 cameras are used for
training and the annotated frames from the remaining 5 cameras are used for
testing. We trained ic-CNN networks using random crops of sizes H

2 × W
2 . We

used the networks trained on Shanghaitech Part A for initializing the models for
the experiments on the WorldExpo dataset. In Table 6, we compare ic-CNN with
other state of art approaches. ic-CNN outperforms these previous approaches on
three out of five cases.

4.4 Experiments on the UCF Dataset

The UCF Crowd Counting dataset [6] consists of 50 crowd images collected from
the web. Each person in the dataset is annotated with a single dot annotation.
The numbers of people in the images vary from 94 to 4545 with an average of
1280 people per image. The average count for the UCF dataset is much larger
than the previous two datasets. Following previous works using this dataset, we
performe five-fold cross validation and report the MAE and RMSE values. We
trained ic-CNN networks using random crops of sizes H

3 × W
3 . We compare ic-

CNN with previous approaches and show the results in Table 7. Since the dataset
is small, adding multiple stages to ic-CNN could lead to overfitting. Hence we
only use one-stage ic-CNN on the UCF dataset. ic-CNN achieves the best MAE
on this dataset, outperforming CP-CNN by a large margin.

12 Ranjan, Le, Hoai

Table 6. Performance of different methods on the WorldExpo’10 dataset.
Switch CNN(with perspective) refers to the case when perspective maps are used to
obtain the crowd density map, while Switch CNN(sans perspective) refers to the case
when the perspective map isn’t used.ic-CNN is our proposed two branch approach. We
outperform other approaches on 3 of 6 cases.

Method S1 S2 S3 S4 S5 Avg

Crowd CNN [19] 9.8 14.1 14.3 22.2 3.7 12.9
MCNN [20] 3.4 20.6 12.9 13.0 8.1 11.6
Switching CNN (sans perspective) [15] 4.4 15.7 10.0 11.0 5.9 9.4
Switching CNN (with perspective) [15] 4.2 14.9 14.2 18.7 4.3 11.2
CP-CNN[16] 2.9 14.7 10.5 10.4 5.8 8.8
ic-CNN (proposed) 17.0 12.3 9.2 8.1 4.7 10.3

Table 7. Performance of various methods on the UCF Crowd Counting
dataset. The proposed method ic-CNN achieves the best MAE.

Method MAE RMSE

Lempitsky & Zisserman [10] 493.4 487.1
Idrees et. al [6] 419.5 487.1
Crowd CNN [19] 467.0 498.5
Crowdnet [1] 452.5 -
MCNN [20] 377.6 509.1
Hydra2s [13] 333.7 425.6
Switch CNN [15] 318.1 439.2
CP-CNN [16] 295.8 320.9
ic-CNN (proposed) 260.9 365.5

4.5 Qualitative Results

In Figure 4, we show some qualitative results on images from the Shanghaitech
Part-A dataset obtained using ic-CNN. The first three are success cases for ic-
CNN, while the last two are failure cases. In the failure cases, we see that ic-CNN
sometimes misclassify tree leaves as tiny people in a crowd. In Figure 5, we show
some qualitative results on images from Shanghaitech Part-B dataset.

5 Conclusions

In this paper, we have proposed ic-CNN, a two-branch architecture for crowd
counting via crowd density estimation based. We have also proposed a multi-
stage pipeline comprising of multiple ic-CNNs, where each stage takes into ac-
count the predictions of all the previous stages. We performed experiments on
three challenging crowd counting benchmark datasets and observed the effec-
tiveness of our iterative approach.

ic-CNN for Iterative Crowd Counting 13

Image Ground truth LR output HR output

502 793 512

270 346 280

86 114 89

172 493 317

566 961 744

Fig. 4. Qualitative results, some success and failure cases. The four columns
show the input image, ground truth annotation map, the low resolution prediction
(LR output), and the high resolution prediction map (HR output). The total counts
are shown below each density map. The first three rows are success cases for ic-CNN,
while the last two are failure cases. ic-CNN sometimes misclassifies tree leaves as people.

14 Ranjan, Le, Hoai

Image Ground truth LR output HR output

23 26 24

252 257 252

183 191 186

181 167 164

84 109 103

Fig. 5. Qualitative results on the Shanghaitech Part B dataset. The four
columns show the input image, the ground truth annotation map, the low resolu-
tion prediction (LR output), and the high resolution prediction map (HR output).
Underneath each density map is the total count, rounded to the nearest integer.

Acknowledgements. This work was supported by SUNY2020 Infrastructure
Transportation Security Center. The authors would like to thank Boyu Wang
for participating on the discussions and experiments related to an earlier version
of the proposed technique. The authors would like to thank NVIDIA for their
GPU donation.

ic-CNN for Iterative Crowd Counting 15

References

1. Boominathan, L., Kruthiventi, S.S., Babu, R.V.: Crowdnet: A deep convolutional
network for dense crowd counting. In: Proceedings of the ACM Multimedia Con-
ference (2016)

2. Chan, A.B., Vasconcelos, N.: Bayesian poisson regression for crowd counting. In:
Proceedings of the International Conference on Computer Vision (2009)

3. Chen, K., Loy, C.C., Gong, S., Xiang, T.: Feature mining for localised crowd count-
ing. In: Proceedings of the British Machine Vision Conference (2012)

4. Fu, M., Xu, P., Li, X., Liu, Q., Ye, M., Zhu, C.: Fast crowd density estimation with
convolutional neural networks. Engineering Applications of Artificial Intelligence
43, 81–88 (2015)

5. Hoai, M., Zisserman, A.: Talking heads: Detecting humans and recognizing their
interactions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2014)

6. Idrees, H., Saleemi, I., Seibert, C., Shah, M.: Multi-source multi-scale counting in
extremely dense crowd images. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2013)

7. Kaufman, E.L., Lord, M.W., Reese, T.W., Volkmann, J.: The discrimination of
visual number. The American journal of psychology 62(4), 498–525 (1949)

8. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Advances in Neural Information Processing Systems
(2012)

9. LeCun, Y., Boser, B., Denker, J.S., Henderson, D.: Backpropagation applied to
handwritten zip code recognition. Neural Computation 1(4), 541–551 (1989)

10. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances
in Neural Information Processing Systems (2010)

11. Li, M., Zhang, Z., Huang, K., Tan, T.: Estimating the number of people in crowded
scenes by mid based foreground segmentation and head-shoulder detection. In:
Proceedings of the International Conference on Pattern Recognition (2008)

12. Lin, S.F., Chen, J.Y., Chao, H.X.: Estimation of number of people in crowded
scenes using perspective transformation. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 31(6), 645–654 (2001)

13. Onoro-Rubio, D., López-Sastre, R.J.: Towards perspective-free object counting
with deep learning. In: Proceedings of the European Conference on Computer
Vision (2016)

14. Pham, V.Q., Kozakaya, T., Yamaguchi, O., Okada, R.: Count forest: Co-voting
uncertain number of targets using random forest for crowd density estimation. In:
Proceedings of the International Conference on Computer Vision (2015)

15. Sam, D.B., Surya, S., Babu, R.V.: Switching convolutional neural network for
crowd counting. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017)

16. Sindagi, V.A., Patel, V.M.: Generating high-quality crowd density maps using con-
textual pyramid cnns. In: Proceedings of the International Conference on Computer
Vision (2017)

17. Trick, L.M., Pylyshyn, Z.W.: Why are small and large numbers enumerated differ-
ently? a limited-capacity preattentive stage in vision. Psychological review 101(1),
80 (1994)

18. Wang, C., Zhang, H., Yang, L., Liu, S., Cao, X.: Deep people counting in extremely
dense crowds. In: Proceedings of the ACM Multimedia Conference (2015)

16 Ranjan, Le, Hoai

19. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep con-
volutional neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2015)

20. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via
multi-column convolutional neural network. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (2016)

