
A Two-Step Computation of the Exact GAN Wasserstein Distance
Supplementary Material

Huidong Liu, Xianfeng David Gu, Dimitris Samaras

1. Proofs of Lemma 3.1 and 3.2
Lemma 3.1. If the cost function c(·, ·) satisfies the triangle inequality, i.e., c(x, y) + c(y, z) ≥ c(x, z),∀x, y, z, then
∀xj ∈ X̂, ∀yi ∈ Ŷ , if xj = yi, and ψ∗ is the optimizer to Problem 3, then (ψc)∗(yi) = ψ∗(xj), where (ψc)∗(yi) =
infx∈X̂

(
ψ∗(x) + c(x, yi)

)
.

Proof. We prove this by contradiction. Without loss of generality, suppose xs overlaps with yt, i.e., xs =
yt, and (ψc)∗(y1) 6= ψ∗(xs). According to the definition of the c-transform in Eq. (5), (ψc)∗(yt) =
inf{ψ∗(xs), infx∈X̂\xs

ψ∗(x) + c(x, yt)}. Since (ψc)∗(yt) 6= ψ∗(xs), for any yi, we have

ψ∗(xs) + c(xs, yi)

> inf
x∈X̂\xs

(ψ∗(x) + c(x, yt)) + c(xs, yi)

= inf
x∈X̂\x1

(ψ∗(x) + c(x, yt) + c(xs, yi))

≥ inf
x∈X̂\xs

(ψ∗(x) + c(x, yi))

In the last step, we use that fact that xs = yt and the triangle inequality of c(·, ·)

Ĉ∗(µ, ν)

=
1

m

∑
i∈I

(ψc)∗(yi)−
1

n

∑
j∈J

ψ∗(xj)

=
1

m

∑
i∈I

inf
x∈X̂\xs

(ψ∗(x) + c(x, yi))−
1

n

∑
j∈J

ψ∗(xj)

We can always find another function ψ′, such that ψ′(x) = ψ∗(x),∀x ∈ X̂ \ xs, and ψ∗(xs) > ψ′(xs) >

infx∈X̂\xs
(ψ∗(x) + c(x, yt)). In this case (ψc)′(yi) = (ψc)∗(yi),∀i ∈ I, but ψ∗(xs) > ψ′(xs). So, d̂(ψ′) > d̂(ψ∗), a

contradiction.

Lemma 3.2 Suppose f∗ is an optimizer to Problem 4, then i) f∗(y) = infx∈X̂{f∗(x) + c(x, y)}, ∀y ∈ Ŷ , and ii)
f∗(x) = supy∈Ŷ {f∗(y)− c(x, y)}, ∀x ∈ X̂

Proof. i) Since f∗ is the optimal solution to Problem 4, we have f∗(y) ≤ infx∈X̂{f∗(x) + c(x, y)}, ∀y ∈ Ŷ . We prove i)
by contradiction. Suppose there exists a yi, without loss of generality, say yt, such that f∗(yt) < infx∈X̂{f∗(x)+c(x, yt)}
(Note that in this case yt can not equal any xj in X̂ . If, without loss of generality, yt equals, say xs, then we have f∗(yt) =
{f∗(xs)+c(xs, yt)} ≥ infx∈X̂{f∗(x)+c(x, yt)}). There exists another function f ′ such that f ′(xj) = f∗(xj), ∀xj ∈ X̂ ,
f ′(yi) = f∗(yi),∀yi ∈ Ŷ \ yt and f ′(yt) = infx∈X̂{f∗(x) + c(x, yt)}. It is easy to verify that f ′ satisfies the constraints
in Problem 4 and ĥ(f ′) > ĥ(f∗), which leads to a contradiction. Therefore, f∗(y) = infx∈X̂{f∗(x) + c(x, y)}, ∀y ∈ Ŷ .

ii) The proof is similar to i).

1

2. Proof of Theorem 3.5.
Theorem 3.5. Suppose f is the optimal solution to formula (8) with 0 optimization error, i.e., 0-suboptimal. Let θij be
a Bernoulli random variable such that if f(yi) − f(xj) > c(yi, xj) then θij = 1, otherwise θij = 0. Let e = E[θij] be
the expectation of the probability that constraints in Problem 4 violate the inequality constraints. The error bound of the
Wasserstein distance from the discrete to the continuous case is:

P (|ĥ(f)− h(f)| > ε) ≤ 2 exp(−mε2/2) + 2 exp(−nε2/2)

The error bound of the constraint violation in Problem 4 is:

P (|e| > ε) ≤ 2 exp(−2mnε2)

Proof. According to Hoeffding’s inequality:

P

∣∣∣∣∣∣ 1m 1

n

∑
ij

θij − e

∣∣∣∣∣∣ > ε

 ≤ 2 exp(−2mnε2)

Suppose we have a deep neural network with sufficient capacity that can solve the deep regression problem. Then, f(yi)−
f(xj) ≤ c(yi, xj), ∀x ∈ X̂ and ∀y ∈ Ŷ and θij = 0. Therefore,

P (|e| > ε) ≤ 2 exp(−2mnε2)

Next we prove that |ĥ(f)− h(f)| is bounded:

|ĥ(f)− h(f)|

=

∣∣∣∣∣∣
 1

m

m∑
i=1

f(yi)−
1

n

n∑
j=1

f(xj)

− (E[f(y)]− E[f(x)])

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

1

m

m∑
i=1

f(yi)− E[f(y)]

)
−

 1

n

n∑
j=1

f(xj)− E[f(x)]

∣∣∣∣∣∣
≤

∣∣∣∣∣
(

1

m

m∑
i=1

f(yi)− E[f(y)]

)∣∣∣∣∣+
∣∣∣∣∣∣
 1

n

n∑
j=1

f(xj)− E[f(x)]

∣∣∣∣∣∣
(1)

According to Hoeffding’s inequality:

P

(∣∣∣∣∣
(

1

m

m∑
i=1

f(yi)− E[f(y)]

)∣∣∣∣∣ > ε

)
≤ 2 exp(−2mε2)

P

∣∣∣∣∣∣
 1

n

n∑
j=1

f(xj)− E[f(x)]

∣∣∣∣∣∣ > ε

 ≤ 2 exp(−2nε2)

P

∣∣∣∣∣
(

1

m

m∑
i=1

f(yi)− E[f(y)]

)∣∣∣∣∣ > ε
⋃∣∣∣∣∣∣

 1

n

n∑
j=1

f(xj)− E[f(x)]

∣∣∣∣∣∣ > ε


≤ P

(∣∣∣∣∣
(

1

m

m∑
i=1

f(yi)− E[f(y)]

)∣∣∣∣∣ > ε

)
+ P

∣∣∣∣∣∣
 1

n

n∑
j=1

f(xj)− E[f(x)]

∣∣∣∣∣∣ > ε


≤ 2 exp(−2mε2) + 2 exp(−2nε2)

Therefore,

P

∣∣∣∣∣
(

1

m

m∑
i=1

f(yi)− E[f(y)]

)∣∣∣∣∣ ≤ ε⋂
∣∣∣∣∣∣
 1

n

n∑
j=1

f(xj)− E[f(x)]

∣∣∣∣∣∣ ≤ ε


> 1− 2 exp(−2mε2)− 2 exp(−2nε2)

Let ε← ε/2. We have

P

∣∣∣∣∣
(

1

m

m∑
i=1

f(yi)− E[f(y)]

)∣∣∣∣∣+
∣∣∣∣∣∣
 1

n

n∑
j=1

f(xj)− E[f(x)]

∣∣∣∣∣∣ ≤ ε


> 1− 2 exp(−mε2/2)− 2 exp(−nε2/2)

Therefore,
P (|ĥ(f)− h(f)| > ε) ≤ 2 exp(−mε2/2) + 2 exp(−nε2/2)

3. Workflow of the Proposed Method

Dataset

Real data

Generated dataNoise

L2	
Loss

Generator

Linear
Programming

Deep
Network

Target

Trainable	Component Fixed	Component

Output

Discriminator

Figure 1. The workflow of the proposed WGAN-TS.

Figure 1 shows the workflow of WGAN-TS. The critic contains the Linear Programming part and the Deep Network part.
The output of the linear programming part is compared with the output of the deep network part using an L2 loss. In the
discriminator, only the deep network part performs back propagation.

The linear programming part computes the exact Wasserstein distance between the real data distribution and the generated
data distribution. The Deep Network takes the same inputs and regresses the values produced by the linear programming
part, thus providing a differentiable approximation of the Wasserstein distance.

4. The Eight Gaussian Toy Dataset
Dataset: We generate 8 Gaussians as the real data distribution. The centers of the 8 Gaussians are (10, 0), (−10, 0),
(0, 10), (0,−10), (10/

√
2, 10/

√
2), (10/

√
2,−10/

√
2), (−10/

√
2, 10/

√
2) and (−10/

√
2,−10/

√
2). For each Gaussian,

we generate 32 data points. Thus in total, we have 256 real data points. The synthetic data distribution is generated from

a Gaussian centered at (0, 0) with σ2 = 1. We sample 256 data points from the synthetic data distribution. Therefore, in
total, we have 512 data points.

Parameter settings: We let the critics of all the methods iterate 2500 times. We use Adam as the optimizer and the
learning rate of all methods is set to 0.01, β1 = 0.5 and β2 = 0.999. The hyper-parameter c in WGAN is set to 0.01 and λ
in WGAN-GP is set to 0.1 as suggested.

5. Large Version of Figures Shown in Paper

Figure 2. Large version of Figure 3(a) (WGAN)

Figure 3. Large version of Figure 3(b) (WGAN-GP)

Figure 4. Large version of Figure 3(c) (SN-WD)

Figure 5. Large version of Figure 3(d) (WGAN-TS)

Figure 6. 1st row, images of digit 8 selected in Figure 2. 2nd row (left), images of 8 selected in Figure 3. 2nd row (right), images of 8
selected in Figure 4. 3rd row, images of digit 8 selected in Figure 5. WGAN-GP, SN-WD and WGAN-TS generate more realistic images
of digit 8.

Figure 7. Large version of Figure 4 (a) (WGAN)

Figure 8. Large version of Figure 4 (b) (WGAN-GP)

Figure 9. Large version of Figure 4 (c) (SN-WD)

Figure 10. Large version of Figure 4 (d) (WGAN-TS)

Figure 11. Large version of Figure 6 (a) (WGAN)

Figure 12. Large version of Figure 6 (b) (WGAN-GP)

Figure 13. Large version of Figure 6 (c) (SN-WD)

Figure 14. Large version of Figure 6 (d) (WGAN-TS)

Figure 15. First row: images selected in Figure 11 (WGAN). Second row: images selected in Figure 12 (WGAN-GP). Third row: images
selected in Figure 13 (SN-WD). Fourth row: images selected in Figure 14 (WGAN-TS). We put the possible category under each image.
WGAN generates the least number of recognizable images. WGAN-TS, WGNA-GP and SN-WD generate comparable numbers of
recognizable images.

