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a b s t r a c t 

We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature ex- 

traction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue 

images into sparse feature maps that encode both the location and appearance of nuclei. A primary con- 

tribution of our work is the development of an unsupervised detection network by using the character- 

istics of histopathology image patches. The pretrained nucleus detection and feature extraction modules 

in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method 

on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable per- 

formance with only 5% of the fully-supervised annotation cost. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

It is widely accepted that understanding and curing complex

diseases require systematic examination of disease mechanisms at

multiple biological scales and integration of information from mul-

tiple data modalities [1–4] . Tissue specimens have long been used

to examine how disease manifests itself at the sub-cellular level

and modifies tissue morphology [5,6] . Advances in digital pathol-

ogy imaging have made it feasible to capture high-resolution tissue

images rapidly and facilitated quantitative analyses of tissue im-

age data. Nuclear characteristics, such as size, shape and chromatin

pattern, are important factors in distinguishing different types of

cells and diagnosing disease. Automatic analysis of nuclei can pro-

vide quantitative measures and new insights to disease mecha-

nisms that cannot be gleaned from manual, qualitative evaluations

of tissue specimens. Nucleus/cell detection and segmentation is a
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ommon methodology in histopathology image analysis [7–9] – a

ecent survey of nucleus segmentation algorithms can be found

n [8] . Xie et al. and Xing et al. [10,11] show that it is difficult to

evelop highly accurate, robust and efficient tissue image segmen-

ation algorithms. The algorithmic issues arise from heterogene-

ty in structure and texture characteristics across tissue specimens

rom different disease regions and from different disease subtypes.

ven within a tissue specimen, structure and texture characteris-

ics can vary from region to region. Moreover, images may contain

issue preparation, staining and image acquisition artifacts, such as

ariation in staining intensity and folded tissue regions, which cre-

te problems for computer algorithms. ( Fig. 1 ). 

In this work, we research and evaluate deep learning methods,

ore specifically Convolutional Neural Networks [12,13] – a recent

urvey of research on CNNs can be found in [13] , for detection and

egmentation of nuclei in 20X histopathology image patches with

 typical resolution of 50 by 50 square microns (100 by 100 pix-

ls). We design a novel Convolutional Autoencoder (CAE) that uni-

es nuclei detection and feature/representation learning in a sin-

https://doi.org/10.1016/j.patcog.2018.09.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.09.007&domain=pdf
mailto:le.hou@stonybrook.edu
https://doi.org/10.1016/j.patcog.2018.09.007
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Fig. 1. Our autoencoder decomposes histopathology image patches and detect nuclei in a fully unsupervised fashion. It first decomposes an input image patch into foreground 

(eg. nuclei) and background (eg. cytoplasm). It then detects nuclei in the foreground by representing the locations of nuclei as a sparse feature map. Finally, it encodes each 

nucleus to a feature vector. Our autoencoder is trained end-to-end, minimizing the reconstruction error. 
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le network and can be trained end-to-end without supervision.

e also show that with existing labeled data, our network can be

asily fine-tuned with supervision to improve the state-of-the-art

erformance of nuclei classification and segmentation. Our contri-

utions can be summarized as follows. 

First , we propose a CAE architecture with crosswise sparsity

hat can detect and represent nuclei in histopathology images with

he following advantages: A primary contribution of our work is

he development of an unsupervised detection network by using

he characteristics of histopathology image patches. To the best of

ur knowledge, this is the first unsupervised detection network

n this type of computer vision application. Our method can be

ne-tuned for end-to-end supervised learning. Second , our exper-

mental evaluation using multiple datasets shows the proposed

pproach performs significantly better than other methods. The

rosswise constraint in our method boosts the performance sub-

tantially. Our unsupervised CAE achieves comparable nucleus de-

ection results compared to recent supervised nucleus detection

ethods. (b) Our method achieves comparable results with 5% of

raining data needed by other methods, resulting in considerable

avings in the cost of label generation. Our method reduces the

rror of the U-net method [14] by 20% in nucleus segmentation.

hird , we eliminate pooling layers and strided convolutional lay-

rs in the CAE and CNN architecture for the nucleus segmentation

ask. Since each nucleus has only around 400 pixels, such spatial

eduction layers discard important spatial information for pixel-

ise segmentation. Our approach outputs more accurate segmen-

ation predictions. The CAE architecture presented here has been

mployed as one component of a complex CNN based architec-

ure employed in a National Cancer Institute sponsored cancer re-

earch project - the Pan Cancer Research Atlas. This cancer research

roject involved characterization of tumor infiltrating lymphocyte

atterns in whole slide images along with elucidation of relation-

hips between lymphocyte patterns and molecular tumor charac-

erization [15] . The characterization analysis involved roughly 50 0 0

hole slide images obtained from 13 cancer types. 

. Related work 

Image segmentation is a fundamental image analysis method in

omputer vision [8,16–18] . Machine learning has been extensively

mployed in image analysis tasks in biomedical research [7,19–

2] . Rasti et al. [23] proposed an approach that employs a mix-

ure ensemble of CNNs (ME-CNNs) to tumor classification in DCE-
RI breast cancer images. Their approach shows good perfor-

ance even when trained with limited number of image sam-

les. A multi-crop CNN method is proposed by Shen et al. [24] for

lassification of lung module malignancy in CT images. Their

ethod models salient information in images through a multi-

rop pooling strategy, which extracts regions from convolutional

eature maps and executes max-pooling different times. Manivan-

an et al. [25] developed a method to detect and classify subcel-

ular patterns in images of HEp-2 cells. The method trains ensem-

les of SVMs to classify cells into multiple classes. Tajbakhsh and

uzuki [26] compared massive-training artificial neural networks

MTANNs) and convolutional neural networks (CNNs) for lung nod-

le detection and classification. Khatami et al. [27] investigated the

se of manifold learning for classification, regression and hypothe-

is testing with diffusion MR images. Their results show improved

ccuracy for supervised classification and regression and increased

ower for hypothesis testing. 

Development of methods for tissue image analysis remains an

ctive area of research. Numerous studies have devised methods

or the detection, extraction, recognition of pathological patterns

t various scales [7,8,28,29] . Zheng et al. [28] developed a method

ased on convolutional neural networks (CNNs) to extract features

rom histopathology images, including patterns and distributions

f nuclei. Al-Milaji et al. [29] proposed a CNN method for iden-

ification of stromal and epithelial tissue regions in images ob-

ained from H&E stained tissue specimens. Deep learning based

utomatic nuclei analysis methods [30–35] requires a large-scale

nnotated dataset. Collecting annotated data is a labor intensive

nd challenging process since it requires the involvement of ex-

ert pathologists whose time is a very limited and expensive re-

ource [36] . Thus many state-of-the-art nucleus analysis methods

re semi-supervised [37–41] . They pretrain an autoencoder for un-

upervised representation learning and construct a CNN from the

retrained autoencoder. To better capture the visual variance of

uclei, one usually trains the unsupervised autoencoder on image

atches with nuclei in the center [42–44] . This requires a separate

ucleus detection step [34] which in most cases needs tuning to

ptimize the final classification performance. Instead of tuning the

etection and classification modules separately, recent works [45–

8] successfully trained end-to-end CNNs to perform these tasks

n an unified pipeline. Prior work has developed and employed su-

ervised networks. Unsupervised detection networks do not exist

n any visual application domains, despite the success of unsuper-

ised learning in other tasks [49,50] . 
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Fig. 2. The architecture of our sparse Convolutional Autoencoder (CAE). The CAE minimizes image reconstruction error. The reconstructed image patch is a pixel-wise sum- 

mation of two intermediate reconstructed image patches: the background and the foreground. The background is reconstructed from a set of small feature maps (background 

feature map) that can only encode large scale color and texture. The foreground is reconstructed from a set of crosswise sparse feature maps (foreground feature map). The 

foreground maps capture local high frequency signal: nuclei. We define crosswise sparsity as follows: when there is no detected nucleus at a location, neurons in all fore- 

ground feature maps at the same location should not be activated. The details of network parts 1–8 are in Tables 1 and 2 . 

Table 1 

The encoding layers in our CAE. Please refer to Fig. 2 for the overall network 

architecture. We apply batch normalization [57] before the leaky ReLU activation 

function [59] in all layers. 

Part Layer Kernel size Stride Output size 

1 Input – – 100 2 × 3 

Convolution 5 × 5 1 100 2 × 100 

Convolution 5 × 5 1 100 2 × 120 

Average Pooling 2 × 2 2 50 2 × 120 

Convolution 3 × 3 1 50 2 × 240 

Convolution 3 × 3 1 50 2 × 320 

Average Pooling 2 × 2 2 25 2 × 320 

Convolution 3 × 3 1 25 2 × 640 

Convolution 3 × 3 1 25 2 × 1024 

2 Convolution 1 × 1 1 25 2 × 100 

Convolution 1 × 1 1 25 2 × 1 

3 Convolution 1 × 1 1 25 2 × 640 

Convolution 1 × 1 1 25 2 × 100 

4 Convolution 1 × 1 1 25 2 × 128 

Average Pooling 5 × 5 5 5 2 × 128 

Convolution 3 × 3 1 5 2 × 64 

Convolution 1 × 1 1 5 2 × 5 

5 Thresholding Defined by Eq. (6) 25 2 × 1 

6 Element-wise multiplication Defined by Eq. (5) 25 2 × 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The decoding layers in our CAE. Please refer to Fig. 2 for the over- 

all network architecture. We apply batch normalization [57] before 

the leaky ReLU activation function [59] in all layers. 

Part Layer Kernel size Stride Output size 

7 Deconvolution 3 × 3 1 25 2 × 1024 

Deconvolution 3 × 3 1 25 2 × 640 

Deconvolution 4 × 4 0.5 50 2 × 640 

Deconvolution 3 × 3 1 50 2 × 320 

Deconvolution 3 × 3 1 50 2 × 320 

Deconvolution 4 × 4 0.5 100 2 × 320 

Deconvolution 5 × 5 1 100 2 × 120 

Deconvolution 5 × 5 1 100 2 × 100 

Deconvolution 1 × 1 1 100 2 × 3 

8 Deconvolution 3 × 3 1 5 2 × 256 

Deconvolution 3 × 3 1 5 2 × 128 

Deconvolution 9 × 9 0.2 25 2 × 128 

Deconvolution 3 × 3 1 25 2 × 128 

Deconvolution 3 × 3 1 25 2 × 128 

Deconvolution 4 × 4 0.5 50 2 × 128 

Deconvolution 3 × 3 1 50 2 × 64 

Deconvolution 3 × 3 1 50 2 × 64 

Deconvolution 4 × 4 0.5 100 2 × 64 

Deconvolution 5 × 5 1 100 2 × 32 

Deconvolution 5 × 5 1 100 2 × 32 

Deconvolution 1 × 1 1 100 2 × 3 
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3. Overview of our method 

We design a novel Convolutional Autoencoder (CAE) that uni-

fies nuclei detection and feature/representation learning in a sin-

gle network and can be trained end-to-end without supervision.

Our approach modifies the conventional CAE to encode not only

appearance, but also spatial information in feature maps. To this

end, our CAE first learns to separate background (eg. cytoplasm)

and foreground (eg. nuclei) in an image patch, as shown in Fig. 2 .

We should note that an image patch is a rectangular region in a

whole slide tissue image. We use image patches, because a tissue

image can be very large and may not fit in memory. It is common

in tissue image analysis to partition tissue images into patches and

process the patches. We will refer to the partitioned image patches

simply as the images. The CAE encodes the input image in a set

of low resolution feature maps (background feature maps) with

a small number of encoding neurons. The feature maps can only

encode large scale color and texture variations because of their

limited capacity. Thus these feature maps encode the image back-

ground. The high frequency residual between the input image and
he reconstructed background is the foreground that contains nu-

lei. 

We design our network to learn the foreground feature maps

n a “crosswise sparse” manner: neurons across all feature maps

re not activated (output zero) in most feature map locations. Only

eurons in a few feature map locations can be activated. Since the

on-activated neurons have no influence in the later decoding lay-

rs, the image foreground is reconstructed using only the non-zero

esponses in the foreground encoding feature maps. This means

hat the image reconstruction error will be minimized only if the

ctivated encoding neurons at different locations capture the de-

ected nuclei. 

Learning a set of crosswise sparse foreground encoding feature

aps is not straightforward. Neurons at the same location across

ll foreground feature maps should be synchronized: they should

e activated or not activated at the same time depending on the

resence of nuclei. In order to achieve this synchronization, the

AE needs to learn the locations of nuclei by optimizing the recon-

truction error. Hence, the nucleus detection and feature extraction
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odels are learned simultaneously during optimization. To repre-

ent the inferred nuclear locations, we introduce a special binary

eature map: the nucleus detection map. We make this map sparse

y thresholding neural activations. After optimization, a neuron in

he nucleus detection map should output 1, if and only if there is

 detected nucleus at the neuron’s location. The foreground feature

aps are computed by element-wise multiplications between the

ucleus detection map and a set of dense feature maps ( Fig. 2 ).

n the next section we first introduce the CAE then describe our

rosswise sparse CAE in detail. 

. Crosswise sparse CAE 

.1. CAE for semi-supervised CNN 

An autoencoder is an unsupervised neural network that learns

o reconstruct its input. The main purpose of this model is to

earn a compact representation of the input as a set of neural re-

ponses [51] . A typical feedforward autoencoder is composed of an

ncoder and a decoder, which are separate layers. The encoding

ayer models the appearance information of the input. The decoder

econstructs the input from neural responses in the encoding layer.

he CAE [38] and sparse CAE [37,40,52] are autoencoder variants.

ne can construct a CNN with a trained CAE. Such semi-supervised

NNs outperform fully supervised CNNs significantly in many ap-

lications [42,53] . 

The architecture of our CAE is shown in Fig. 2 . We train

he CAE to minimize the input image reconstruction error. The

arly stages of the CAE network consists of six convolutional and

wo average-pooling layers. The network then splits into three

ranches: the nucleus detection branch, the foreground feature

ranch, and the background branch. The detection branch merges

nto the foreground feature branch to generate the foreground fea-

ure maps that represent nuclei. The foreground and background

eature maps are decoded to generate the foreground and back-

round reconstructed images. Finally the two intermediate images

re summed to form the final reconstructed image. 

.2. Background encoding feature maps 

We first model the background (tissue, cytoplasm etc.) then ex-

ract the foreground that contains nuclei. Usually a majority of a

issue image will be background. The texture and color of the back-

round vary usually in a larger scale compared to the foreground.

hus, a few small dense feature maps capture background infor-

ation, because parts of the image encoded by these feature maps

ave the two properties that match the background: these parts

re distributed throughout the whole image (because these feature

aps are dense ) and a larger scale texture and color (because there

re limited number of neurons in these feature maps). In practice

e represent the background of a 100 × 100 image by five 5 × 5

aps. 

Large but crosswise sparse feature maps (foreground encod-

ng maps) can only reconstruct color and texture at sparse loca-

ions. However, the background has large-scale color and texture

hrough the whole patch. By minimizing the reconstruction error, a

ew small dense feature maps must encode the background infor-

ation which cannot be encoded by the crosswise sparse feature

aps. 

.3. Foreground encoding feature maps 

Once the background is encoded and then reconstructed, the

esidual between the reconstructed background and the input im-

ge will be the foreground. The foreground consists of nuclei which

re roughly of the same scale and often disperse throughout the
mage. The foreground encoding feature maps encode everything

bout the nuclei, including their locations and appearance. A fore-

round feature map can be viewed as a matrix, in which each en-

ry is a vector (a set of neuron responses) that encodes an image

atch (the neurons’ receptive field). The vectors will encode nuclei,

f there are nuclei at the center of the image patches. Otherwise

he vectors contain zeros only. Since a small number of non-zero

ectors encode nuclei, the foreground feature map will be sparse. 

.3.1. Crosswise sparsity 

We formally define crosswise sparsity as follows: We denote a

et of f feature maps as X 1 , X 2 , ... X f . Each feature map is a matrix.

e denote the i, j th entry of the l th feature map as X 
i, j 

l 
, and the

ize of a feature map is s × s . A conventional sparsity constraint

equires: 
∑ 

i, j,l 1 (X 

i, j 

l 
� = 0) 

f s 2 
� 1 , (1) 

here 1 (·) is the indicator function that returns 1 if its input is

rue and 0 otherwise. The crosswise sparsity requires: 

∑ 

i, j 1 

(∑ 

l 1 (X 

i, j 

l 
� = 0) > 0 

)

s 2 
� 1 . (2) 

n other words, in most locations in the foreground feature maps,

eurons across all the feature maps should not be activated. This

parsity definition, illustrated in Fig. 3 , can be viewed as a special

orm of group sparsity [54,55] . 

If a foreground image is reconstructed by feature maps that are

rosswise sparse, as defined by Eq. (2) , the foreground image is es-

entially reconstructed by a few vectors in the feature maps. As

 result, those vectors must represent salient objects in the fore-

round image- nuclei, since the CAE aims to minimize the recon-

truction error. 

.3.2. Ensuring crosswise sparsity 

Crosswise sparsity defined by Eq. (2) is not achievable us-

ng conventional sparsification methods [52] that can only satisfy

q. (1) . We introduce a binary matrix D with its i, j th entry D 

i, j 

ndicating if X 
i, j 

l 
are activated for any l or not: 

 

i, j = 1 

(∑ 

l 

1 (X 

i, j 

l 
� = 0) > 0 

)
. (3)

herefore Eq. (2) becomes: 
∑ 

i, j D 

i, j 

s 2 
� 1 . (4) 

he foreground feature maps X 1 , X 2 , ... X f are crosswise sparse, iff

here exists a matrix D that satisfies Eqs. (3) and 4 . To satisfy

q. (3) , we design the CAE to generate a binary sparse feature map

hat represents D . The CAE computes X l based on a dense feature

ap X ′ 
l 

and D by element-wise multiplication: 

 l = X 

′ 
l � D . (5) 

e call the feature map D the detection map, shown in Fig. 2 . The

ense feature map X ′ 
l 

is automatically learned by the CAE by min-

mizing the reconstruction error. 

The proposed CAE also computes the D that satisfies Eq. (4) . No-

ice that Eq. (4) is equivalent to the conventional sparsity defined

y Eq. (1) , when the total number of feature maps f = 1 and X f is

 binary feature map. Therefore, Eq. (4) can be satisfied by existing

parsification methods. A standard sparsification methods is to add

 sparsity penalty term in the loss function [52] . This method re-

uires parameter tuning to achieve the desired expected sparsity.

he k -sparse method [56] guarantees that exactly k neurons will

e activated in D , where k is a predefined constant. However, in
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Fig. 3. An illustration of how each nucleus is encoded and reconstructed. First , the foreground feature map must be crosswise sparse ( Eq. (2) ). Second , the size of the 

receptive field of each encoding neuron should be small enough that it contains only one nucleus in most cases. 
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tissue images, the number of nuclei per image varies; the sparsity

rate also should vary. 

In this paper, we propose to use a threshold based method

that guarantees an overall expected predefined sparsity rate, even

though the sparsity rate for each CAE’s input can vary. We compute

the binary sparse feature map D as output from an automatically

learned input dense feature map D 

′ : 
D 

i, j = sig 
(
r(D 

′ i, j − t) 
)
, (6)

where sig( · ) is the sigmoid function, r is a predefined slope, and

t is an automatically computed threshold. We choose r = 20 in all

experiments, making D a binary matrix in practice. Different r val-

ues do not affect the performance significantly based on our ex-

perience. Our CAE computes a large t in the training phase, which

results in a sparse D . We define the expected sparsity rate as p %,

which can be set according to the average number of nuclei per

image. We determine the sparsity rate, p %, by randomly sampling

20 unlabeled lung adenocarcinoma patches and counting the av-

erage number of nuclei per patch. We then compute the desired

p ( p = 1 . 6 in all experiments) such that the number of activated

neurons in the detection map equals to the count of average num-

ber of nuclei in a patch. This process takes less than 20 min. We

compute t as 

 = E[ percentile p (D 

′ i, j )] , (7)

where percentile p ( D 

′ i, j ) is the p th percentile of D 

′ i, j for all i,

j , given a particular CAE’s input image. In the training phase,

we compute t using the running average method: t ← (1 − α) t +
α percentile p (D 

′ i, j ) . We set the constant α = 0 . 1 in all experiments.

This running average approach is also used by batch normaliza-

tion [57] . To make sure the running average of t converges, we also

use batch normalization on D 

′ i, j to normalize the distribution of

D 

′ i, j in each stochastic gradient descent batch. In total, three pa-

rameters are introduced in our CAE: r, p , and α. The sparsity rate p

can be decided based on the dataset easily. The other two parame-

ters do not affect the performance significantly in our experiments.

After the training phase, the threshold t is fixed as a constant. 

With crosswise sparsity, each vector in the foreground feature

maps can possibly encode multiple nuclei. To achieve one-on-one

correspondence between nuclei and encoded vectors, we simply

reduce the size of the encoding neurons’ receptive fields, such that

a vector encodes a small region that is in the same size of a nu-

cleus. 

5. Experiments 

We initialize the parameters of CNNs with the parameters of

our trained crosswise sparse CAEs. We empirically evaluate this ap-

proach on four datasets: a self-collected lymphocyte classification

dataset, the nuclear shape and attribute classification dataset [43] ,
he CRCHistoPhenotypes nucleus detection dataset [34] , and the

ICCAI 2015 nucleus segmentation challenge dataset [58] . 

.1. Datasets 

Dataset for Unsupervised Learning. We collected 0.5 million un-

abeled small images randomly cropped from 400 lung adenocarci-

oma histopathology images obtained from the public TCGA repos-

tory [60] . The cropped images are 100 × 100 pixels in 20X (0.5

icrons per pixel). We will refer to cropped images simply as im-

ges in the rest of this section. 

Datasets for Nucleus Classification ( Section 5.6.1 ). We evaluate

he classification performance of our method on two datasets: a

elf-collected lymphocyte classification dataset, and the nuclear

hape and attribute classification dataset [43] . 

Lymphocyte is a type of white blood cell in the immune sys-

em. Automatic recognition of lymphocytes is very important in

any situations including the study of cancer immunotherapy [61–

3] . We collected a dataset of 1785 images of nuclei that were la-

eled lymphocyte or non-lymphocyte by a pathologist. These 1785

mages were cropped from 12 representative lung adenocarcinoma

hole slide tissue images from the TCGA repository [60] . We use

abeled images cropped from 10 whole slide tissue images as the

raining set and the rest as the test set. We show randomly se-

ected image examples in Fig. 5 . In addition, we apply our method

n an existing dataset [43] for nuclear shape and attribute classifi-

ation. The dataset consists of 20 0 0 images of nuclei labeled with

fteen morphological attributes and shapes. 

Dataset for Nucleus Detection Experiments ( Section 5.6.2 ). We test

ur method for nucleus detection using the CRCHistoPhenotypes

ucleus detection dataset [34] which contains 100 colorectal ade-

ocarcinoma images of 500 × 500 pixels. In total there are 29,756

arked locations of nuclei. 

Dataset for Nucleus Segmentation Experiments ( Section 5.6.4 ). For

raining, we use the MICCAI 2015 nucleus segmentation challenge

ataset [58] which contains 15 training images. The ground truth

asks of nuclei are provided in the training dataset. In addition,

e collect a large-scale weakly supervised nucleus segmentation

raining set with DAPI staining techniques. It contains 763 images

f 500 × 500 pixels. For testing, we use the MICCAI 2015 nucleus

egmentation challenge test set which contains 18 images. A typi-

al resolution of the MICCAI 2015 images is 500 × 500. 

.2. CAE architectures 

Our CAEs in all experiments are trained on the same unlabeled

ataset, the 0.5 million lung adenocarcinoma image patches. The

AE architectures are different depending on applications. 

CAEs for Classification and Detection. We use the same archi-

ecture illustrated in Fig. 2 , Tables 1 and 2 . Note that we apply
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atch normalization [57] before the leaky ReLU activation func-

ion [59] in all layers. 

CAEs for Nucleus Segmentation. The average size of nuclei in

he dataset for nucleus segmentation experiments ( Section 5.6.4 )

s around 20 × 20 pixels. Therefore pooling and strided convolu-

ional layers can discard important spatial information which is

mportant for pixel-wise segmentation. The U-net [14] addresses

his issue by adding skip connections. However, we find in prac-

ice that eliminating pooling and strided convolutional layers com-

letely yields better performance. The computational complexity

s very high for a network without any spatial reduction layers.

hus, compared to Tables 1 and 2 , we use smaller input dimen-

ions (40 × 40) and fewer (80–200) feature maps in the CAE for

ucleus segmentation. Other settings of the CAE for segmentation

emain unchanged. 

.3. CNN Architectures 

We construct all of our supervised CNNs based on trained CAEs.

e use CAE trained on lung adenocarcinoma patches to initialize

he CNNs. Note that the proposed CAE is fully convolutional and

an initialize CNNs with different size inputs. 

For the classification tasks ( Section 5.6.1 ) , the supervised CNN

s constructed from Parts 1–6 of the CAE. We initialize the pa-

ameters in these layers to be the same as the parameters in the

AE. We attach four 1 × 1 convolutional layers after the foreground

ncoding layer and two 3 × 3 convolutional layers after the back-

round encoding layer. Each added layer has 320 convolutional fil-

ers. We then apply global average pooling on the two branches.

he pooled features are then concatenated together, followed by a

nal classification layer with sigmoid activation function. 

For the nucleus detection task ( Section 5.6.2 ) , the supervised CNN

s constructed from Parts 1, 2, 5 of the CAE. After Part 5, we at-

ach five 1 × 1 convolutional layers. The activation function of the

ast layer is sigmoid. Thus, our detection CNN outputs a probabil-

ty map (matrix). The ground truth for training the detection CNN

s a binary matrix with the same size of the output probability

ap. We do not model the problem of touching cells explicitly.

he CAE that initializes the detection CNN is forced to represent

 large clump of nuclei by multiple separate detected objects. The

eceptive field of one encoding neuron in the CAE is designed to

e large enough to contain only one regular size nucleus in most

ases. Note that the size of the output probability map is one quar-

er of the size of the input image. In order to obtain pixel-level

ucleus detection results, after obtaining the predicted probability

ap, we resize it with bilinear interpolation to the same size of

he input image. 

For the nucleus segmentation task ( Section 5.6.4 ) , the supervised

NN is constructed from Parts 1 and 3 of the CAE which forces the

egmentation CNN to learn separate representations for each nu-

leus. The final segmentation of each nucleus is computed from the

eparate intermediate representations. The training label is class-

evel (not instance-level) for all segmentation CNNs. Currently we

o not model the touching cell/nuclei problem explicitly. Each seg-

ented region is considered one nucleus. After Part 3, we add six

 × 3 convolutional layers followed by a segmentation layer. The

egmentation layer is the same to the patch-CNN’s [64] segmen-

ation layer which is a fully-connected layer with sigmoid activa-

ion function followed by reshaping. In addition, inspired by the

-net [14] , we add two skip connections in the network. Note that

he skip connections are added when constructing the CNN only,

ot on the CAE. For all tasks, we randomly initialize the param-

ters of the added layers. We train the parameters of the added

ayers until convergence before fine-tuning the whole network. 
.4. Training and testing details 

We train our CAE on the unlabeled dataset, minimizing the

ixel-wise root mean squared error between the input images and

he reconstructed images. We use stochastic gradient descent with

atch size 32, learning rate 0.03 and momentum 0.9. The loss con-

erges after 6 epochs. We show randomly selected examples of the

ucleus detection feature map as well as the reconstructed fore-

round and background images in Fig. 4 . The crosswise sparsity

oes not guarantee that the foreground pixels get activated if there

s a nucleus. As is shown in Fig. 4 , however, during optimization of

he reconstruction loss, the foreground encoding feature maps de-

ect and encode the position and appearance of nuclei. This is be-

ause the background encoding feature maps can only encode large

cale color information (thus foreground pixels) and are responsi-

le for reconstructing the details of the input patch such as nuclei.

he performance of unsupervised detection of nuclei is reported in

able 4 . 

For the CNN (constructed from the CAE) training, we use

tochastic gradient descent with batch size, learning rate, and mo-

entum selected for each task independently. For all tasks, we

ivide the learning rate by 10 when the error has plateaued. We

se sigmoid as the nonlinearity function in the last layer and log-

ikelihood as the loss function. We apply three types of data aug-

entation. First , the input images are randomly cropped from a

arger image. Second , the colors of the input images are randomly

erturbed. Third , we randomly rotate and mirror the input images.

uring testing, we average the predictions of 25 image crops. We

mplemented our CAE and CNN using Theano [65] . We trained the

AE and CNN on a single Tesla K40 GPU (1/4 of the speed of GTX

080TI). 

The proposed CAE takes less than 0.01 s on a Tesla K40 GPU

o compute the encoding feature maps for one input patch in the

est phase using the network in Table 1 . For a typical size slide

hich contains 125k non-overlapping tissue patches, the proposed

etworks take 21, 19 and 18 min, respectively, for all the patches.

o speed up the testing phase, we plan to reimplement the net-

ork (currently running under Theano 0.9) using an updated deep

earning toolbox, which supports more recent versions of CUDA

nd cuDNN. With recent deep learning hardware such as Nvidia

100, we expect the testing time to drop significantly per WSI. We

ill also consider incorporating recent techniques for reducing the

etwork size such as the SqueezeNet [66] . 

.5. Methods tested 

CSP-CAE Our crosswise sparse CAE shown in Fig. 2 . We use the

detection map directly as an unsupervised nucleus de-

tection output. This method is only evaluated on the

nucleus detection dataset. 

CSP-CNN Our CNN initialized by the proposed crosswise sparse

CAE shown in Fig. 2 . The CNN construction is de-

scribed in Section 5.3 . We set the sparsity rate to 1.6%,

such that the number of activated foreground feature

map locations roughly equals to the average number

of nuclei per image in the unsupervised training set. 

SUP-CNN A fully supervised CNN. Its architecture is similar to

our CSP-CNN except that: 1). There is no background

representation branch (no Part 4, 8 in Fig. 2 ). 2). There

is no nucleus detection branch (no Part 2, 5 in Fig. 2 ).

The SUP-CNN has a very standard architecture, at the

same time similar to our CSP-CNN. 

P-CSP-CNN A fully supervised CNN with the exact same archi-

tecture as the proposed CSP-CNN. It is trained from

random initialization instead of an unsupervised CSP-

CAE. 
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Fig. 4. Randomly selected examples of unsupervised nucleus detection representation results. Detection: the detection map. Foreground/Background: reconstructed fore- 

ground/background image. Reconstruction: the final reconstructed image. 

Fig. 5. Randomly selected examples of our self-collected lymphocyte classification dataset. Top row: image patches with a lymphocyte in the center (positive class). Bottom 

row: image patches with a non-lymphocyte object in the center (negative class). 

 

 

 

 

 

 

 

 

 

 

 

U-NET We use the authors’ U-net architecture and imple-

mentation [14] for nucleus segmentation and detec-

tion. The U-net is fully supervised and not initialized

by an autoencoder. We test five U-nets with the same

architecture but different number of feature maps per

layer and select the best performing network. All five

U-nets perform similarly. 
DEN-CNN CNN initialized by a conventional Convolutional Au-

toencoder (CAE) without the sparsity constraint. Its

architecture is similar to our CSP-CNN except that it

has no nucleus detection branch. In particular, there

is no Part 2 and Part 5 in Fig. 2 and Part 6 is an iden-

tity mapping layer. 
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Table 3 

Classification results measured by AUROC on two nucleus classifi- 

cation tasks described in Section 5.6.1 . The proposed CSP-CNN out- 

performs the other methods significantly. Comparing the results of 

SP-CNN and our CSP-CNN, we see that the proposed crosswise con- 

straint boosts performance significantly. Even with only 5% labeled 

training data, our CSP-CNN (5% data) outperforms other methods on 

the first dataset. The CSP-CNN (5% data) fails on the second dataset 

because when only using 5% training data, 5 out of 15 classes have 

less than 2 positive training instances which are too few for CNN 

training. 

Methods Nucleus Classification Datasets 

Lymphocyte Nuclear Attribute 

Classification & Shape [43] 

SUP-CNN 0.4936 0.8487 

SUP-CSP-CNN 0.5024 0.8480 

DEN-CNN 0.5576 0.8656 

SP-CNN 0.6262 0.8737 

CSP-CNN 0.7856 0.8788 

CSP-CNN (5% data) 0.7135 0.7128 

Unsupervised features [70] 0.7132 –

Semi-supervised CNN [43] – 0.8570 

VGG16 [67] 0.6925 0.8480 
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Table 4 

Nucleus detection results on the CRCHistoPhenotypes nucleus detection 

dataset [34] . We achieved state-of-the-art results on this dataset. Even with 

no supervision, our crosswise sparse CAE (CSP-CAE) trained on lung adeno- 

carcinoma image patches outperforms supervised methods trained on the 

CRCHistoPhenotypes colorectal adenocarcinoma dataset. 

Methods Precision Recall F-measure 

SUP-CNN 0.7779 0.8921 0.8311 

SUP-CSP-CNN 0.7625 0.8910 0.8218 

DEN-CNN 0.7806 0.8625 0.8195 

SP-CNN 0.8182 0.8268 0.8225 

CSP-CNN 0.7883 0.8864 0.8345 

CSP-CNN (5% data) 0.7349 0.8764 0.7994 

CSP-CAE (fully unsupervised) 0.5796 0.6572 0.6159 

U-net [14] 0.7681 0.8814 0.8209 

Spatially Constraint CNN [34] 0.781 0.823 0.802 

Structural Regression CNN [31] 0.783 0.804 0.793 

Stacked Sparse Autoencoder + Softmax [40] 0.617 0.644 0.630 

Local isotropic phase symmetry measure [40] 0.725 0.517 0.604 

CRImage (morphological features) [71] 0.657 0.461 0.542 
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SP-CNN CNN initialized by a sparse CAE without the crosswise

constraint. Its architecture is similar to our CSP-CNN

except that it has no nucleus detection branch and

uses the conventional sparsity constraint defined by

Eq. (1) . In particular, there is no Part 2 and Part 5 in

Fig. 2 and Part 6 is a thresholding layer: define its in-

put as D 

′ , its output D = ReLU 

(
D 

′ − t 
)
, where t is ob-

tained in the same way defined by Eq. 7 . We set the

sparsity rate to 1.6% which equals to the rate we use

in CSP-CNN. 

VGG16 We fine-tune the VGG 16-layer network [67] which is

pretrained on ImageNet [68] . Fine-tuning the VGG16

network has been shown to be robust for pathology

image classification [42,69] . 

.6. Results 

.6.1. Classification of nuclei 

We evaluated our method on two nucleus classification

atasets. The first dataset is used to classify lymphocytes vs. non-

ymphocytes. We compared our method with an unsupervised nu-

leus detection and feature extraction method [70] , which is based

n level sets. We split training and testing images 4 times and

verage the results. As the baseline method we carefully tuned

he unsupervised method [70] and applied a multi-layer neural

etwork on top of the extracted features. We should note that

he feature extraction step and the classification step have to be

uned separately in the baseline method, whereas our CSP-CNN

ethod can be trained end-to-end. As is shown in Table 3 , CSP-

NN achieves the best results and reduces the error of SP-CNN by

5% . 

The second dataset is the nuclear shape and attribute classifi-

ation dataset [43] . For this task, we adopt the same 5-fold train-

ng and testing data separation protocol and report the results in

able 3 . Our methods improves less over the state-of-the-art with

his dataset than with the other datasets, because the images of

uclei are results of a fixed nucleus detection method which we

annot fine-tune with our proposed method. 

.6.2. Detection of nuclei 

We use a sliding window approach to train and test our meth-

ds. A CNN outputs a feature map of one quarter the size of its

nput. The output map is resized with bilinear interpolation to the
ame size of the input image. Finally we apply Gaussian filtering

ollowed by non-maximum suppression and thresholding to obtain

etected nucleus locations. For evaluation, we follow the standard

-fold cross-validation method used in the baseline method [34] .

 detected nucleus location is correct if there is a ground truth

ucleus location within 6 pixels. If there are multiple detected lo-

ations within 6 pixels of a ground truth location, only the near-

st detected location is considered correct and all other detec-

ions are considered false positives. We achieve state-of-the-art re-

ults with this dataset (see Table 4 ). Even with no supervision, our

rosswise sparse CAE (CSP-CAE) trained on lung adenocarcinoma

mage patches outperforms supervised methods trained on the

RCHistoPhenotypes colorectal adenocarcinoma dataset. We show 

andomly selected detection results in Fig. 6 . 

.6.3. Evaluation of unsupervised nucleus detection and 

epresentation 

We show the performance of the proposed CAE on unsu-

ervised detection and feature extraction of nuclei with the

RCHistoPhenotypes nucleus detection dataset [34] and our lym-

hocyte classification dataset. Additionally, we show the effect of

he sparsity rate p for both tasks. Recall that we determine the

parsity rate, p % by the process described in Section 4.3.2 by ran-

omly sampling 20 unlabeled lung adenocarcinoma (LUAD). To as-

ess the variability of p , we repeat the process three times and

ave p = 1 . 664 , p = 1 . 696 , p = 1 . 720 . In our experiments, we use

p = 1 . 6 . In this section, we also test p = 1 . 2 and p = 2 . 0 with the

roposed CAE. 

We show experimental results for our unsupervised detection

ethod CSP-CAE in Table 5 . To evaluate the unsupervised nucleus

epresentation features, we use the features with a Multi-Layer

erceptron for lymphocyte classification. We name the method

SP-CAE-MLP and show performance results in Table 6 . To imple-

ent the CSP-CAE-MLP, we simply use the CSP-CNN but fix all its

arameters initialized by the CSP-CAE (we only train the multi-

ayer perceptron on top of the representation features). In both ex-

eriments, our method achieves comparable results to many of the

xisting supervised methods. We should also note that p = 1 . 2 and

p = 1 . 6 yield similar results as p = 1 . 6 which is used in all of the

ther experiments. 

.6.4. Segmentation of nuclei 

We use a sliding window approach to train and test our CNNs.

 CNN outputs a feature map of the same size as its input. For

valuation, we follow the standard metric used in the MICCAI

hallenge: the DICE-average (average of two different versions of



196 L. Hou et al. / Pattern Recognition 86 (2019) 188–200 

Fig. 6. Randomly selected examples of nucleus detection using our CSP-CNN, on the CRCHistoPhenotypes nucleus detection dataset [34] (best viewed in color). 

Table 5 

We evaluate the performance of the unsupervised nucleus detection with the 

CRCHistoPhenotypes nucleus detection dataset [34] with different sparsity rates p . 

The fully unsupervised detection results are comparable to many supervised meth- 

ods. We can see that p = 1 . 2 and p = 2 . 0 yield similar results as p = 1 . 6 which is 

used in all other experiments. 

Methods Precision Recall F-measure 

CSP-CAE (fully unsupervised) with p = 1 . 2 0.6141 0.6010 0.6075 

CSP-CAE (fully unsupervised) with p = 1 . 6 0.5796 0.6572 0.6159 

CSP-CAE (fully unsupervised) with p = 2 . 0 0.5298 0.6698 0.5916 

CSP-CNN 0.7883 0.8864 0.8345 

Spatially Constraint CNN [34] 0.781 0.823 0.802 

Structural Regression CNN [31] 0.783 0.804 0.793 

Stacked Sparse Autoencoder + Softmax [40] 0.617 0.644 0.630 

Local isotropic phase symmetry measure [40] 0.725 0.517 0.604 

CRImage (morphological features) [71] 0.657 0.461 0.542 

Table 6 

To evaluate the unsupervised nucleus 

representation features, we use the fea- 

tures with a Multi-Layer Perceptron for 

lymphocyte classification. We name the 

method CSP-CAE-MLP. Our unsupervised 

features yield significantly better perfor- 

mance than baseline methods. Addition- 

ally, we test the CSP-CAE-MLP and the 

CSP-CNN with different sparsity rates p . 

Notice that p = 1 . 2 and p = 2 . 0 yield sim- 

ilar results as p = 1 . 6 which is used in all 

other experiments. 

Methods AUROC 

CSP-CAE-MLP with p = 1 . 2 0.7536 

CSP-CAE-MLP with p = 1 . 6 0.7591 

CSP-CAE-MLP with p = 2 . 0 0.7410 

CSP-CNN with p = 1 . 2 0.7714 

CSP-CNN with p = 1 . 6 0.7856 

CSP-CNN with p = 2 . 0 0.7841 

Unsupervised features [70] 0.7132 

VGG16 [67] 0.6925 

Table 7 

Nucleus segmentation results on the MICCAI 2015 nucleus seg- 

mentation challenge dataset. Our CSP-CNN outperforms the 

highest challenge score which is a DICE-average of 0.80, even 

with only 5% of the sliding windows during training. We do not 

use pooling layers nor strided convolutional layers. Those lay- 

ers discard important spatial information, because the size of 

nuclei are only around 20 × 20 pixels. 

Methods DICE-average 

SUP-CNN 0.8216 

SUP-CSP-CNN 0.8010 

DEN-CNN 0.8235 

SP-CNN 0.8338 

CSP-CNN 0.8362 

CSP-CNN (5% data) 0.8205 

Contour-aware net (challenge winner) [33] 0.812 

U-net [14] 0.7942 
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he DICE coefficient). We show results in Table 7 . The proposed

ethod achieves a significantly higher score than that of the chal-

enge winner [33] and U-net [14] . Because the size of nuclei are

nly around 20 × 20 pixels, we eliminate our network’s pooling

ayers completely and use no strided convolutional layers to pre-

erve spatial information. We believe this is an important reason

ur method outperforms U-net. We show randomly selected seg-

entation examples in Fig. 7 . 

.6.5. Training CNN with weakly labeled data 

Manual generation of training datasets for segmentation is a la-

or intensive and time consuming process. Even a relatively small

atch in a tissue image can contain hundreds or thousands of nu-

lei. Manual segmentation of nuclei in such patches can take sev-

ral hours. For example, the preparation of the MICCAI challenge

ataset took several weeks. Multiple students were hired to man-

ally segment each and every nucleus in a set of patches. Work

one by each student was reviewed by pathologists to refine the

egmentations and produce accurate results. This process generates

ighly accurate training data, which we call strongly labeled data . 

In some studies, multiple types of staining are applied on tis-

ue specimens. For example, a tissue slice may be stained with the

ematoxylin and Eosin (H&E) stain and imaged. The same tissue

lice may then be rinsed to remove the H&E stain and re-stained

ith the immunohistochemistry (IHC) or DAPI stain and imaged.

e have examined the utility of images from DAPI stained tissue

pecimens to produce training segmentation datasets for CNN. Tis-

ue images from DAPI stained tissue specimens exhibit higher con-

rast between background and nuclei. We used this characteristic

f the DAPI images to generate segmentation masks using a pa-

ameterized segmentation algorithm. We call this type of training

ata weakly labeled data . Fig. 8 shows two randomly selected ex-

mples of DAPI stained images with corresponding H&E images. 

In our experiment, H&E slides were first digitized under 20X

bjective with Olympus VS120 whole slide scanner, then de-

overslipped in Acetone and rinsed in 100% Alcohol, as well as

escending percentages. De-staining was carried out by sequen-

ially rinsing slides in deionized water, 1% potassium perman-

anate (1 min), water, and 2% Oxalic Acid (30 s or as long as it

akes to bleach out potassium permanganate). Finally the slides

ere rinsed in water before coverslipped with DAPI (hardset) us-

ng #1 coverslips. The DAPI re-stained slides were ringed with nail

olish to seal and once again imaged with VS120. The DAPI images

nd the corresponding H&E images were obtained from a tissue

icroarray (TMA). This microarray contained 100 disc images. Each

isc was originated from a separate tissue specimen. The respec-

ive DAPI and H&E disc images were registered using an FFT-based

egistration method [72] . We employed a level-set based segmen-

ation algorithm [73] to segment the DAPI images. The algorithm

rst converts H&E images to gray scale for segmentation. The DAPI

mages were already converted to gray scale during the image ac-
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Fig. 7. Randomly selected examples of nucleus segmentation using our CSP-CNN, on the MICCAI 2015 nucleus segmentation challenge dataset (best viewed in color). The 

segmentation boundaries are in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Randomly selected examples of DAPI stained image patches (left) with corresponding H&E stained image patches (center) after image registration. The weak segmen- 

tation labels are displayed on the right using green contours. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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uisition and post-imaging steps. After the DAPI images had been

egmented, the output masks were overlayed on the matching H&E

mages. The overlaid images were then reviewed by a pathologist

ho selected a subset of the images for inclusion in the training

ataset. 

The CNN was trained with using the selected masks generated

rom the DAPI images along with the respective H&E images. The

rained CNN was applied on the MICCAI 2015 segmentation chal-

enge test set in the test phase. We computed average DICE co-

fficient values for the CNN models trained using the DAPI train-

ng dataset, the MICCAI 2015 training dataset, and a dataset con-

aining both the DAPI and MICCAI training datasets. Training using

API images shows good results. The CNN trained with the DAPI

mages achieved a DICE coefficient of 0.77. The DICE coefficient

alue of the CNN trained with the MICCAI 2015 training dataset

as higher at 0.87. We attribute this to the fact that the MICCAI

raining dataset is generated through a meticulous, yet very time-

onsuming, manual process and have much more accurate nucleus

oundaries. Inaccuracies in the DAPI based training dataset stems

rom: (1) DAPI stained cells, though remained firmly in place, bear

ubtle morphological changes from H&E due to additional chem-

cal treatment applied, this resulted in the fact that registration

etween a DAPI image and an H&E image is not perfect. Hence,

egmentation boundaries from the DAPI image will not match the
 i  
ctual boundaries of nuclei in the H&E image. (2) Boundaries gen-

rated from computer segmentation algorithms generally are not

s accurate and tight as manual segmentations. Nevertheless, a pri-

ary advantage of using DAPI images is that we are able to gen-

rate the training dataset in a few days compared with multiple

eeks for the MICCAI challenge dataset. 

. Conclusions 

We propose a crosswise sparse CAE that uses the visual char-

cteristics of nuclei for unsupervised nucleus detection and feature

xtraction simultaneously. Using the CAE to initialize a supervised

NN makes it possible to carry out the nucleus detection, fea-

ure extraction, and classification/segmentation training steps in an

nd-to-end fashion. Our experimental evaluation shows that this

pproach performs much better than other approaches and that

he crosswise constraint plays an important role in boosting per-

ormance. In addition, our approach achieves comparable results

ith 5% of training data needed by other methods. We also in-

estigated the use of weakly labeled data generated from DAPI

tained images for training. An experimental evaluation showed

his approach achieves good results. Generating ground truth data

n digital pathology is a labor-intensive process. This can be a lim-

ting factor in the application of deep learning methods. The use of
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crosswise sparse CAE and weakly labeled data addresses this prob-

lem and can lead to more effective application of deep learning in

digital pathology. In future work, we plan to use domain knowl-

edge to regularize the encoding layers, using techniques such as

the N-cut loss [74] and better detect nuclei of various shapes and

texture. For the supervised instance-level segmentation of nuclei,

we will test the deep watershed method. To speed up the testing

phase, we will investigate techniques for reducing the network size

such as the SqueezeNet [66] . 
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