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Latent Bi-constraint SVM for Video-based
Object Recognition

Yang Liu, Minh Hoai, Mang Shao, and Tae-Kyun Kim

Abstract—We address the task of recognizing objects from
video input. This important problem is relatively unexplored,
compared with image-based object recognition. To this end, we
make the following contributions. First, we introduce two com-
prehensive datasets for video-based object recognition. Second,
we propose Latent Bi-constraint SVM (LBSVM), a maximum-
margin framework for video-based object recognition. LBSVM
is based on Structured-Output SVM, but extends it to handle
noisy video data and ensure consistency of the output decision
throughout time. We apply LBSVM to recognize office objects
and museum sculptures, and we demonstrate its benefits over
image-based, set-based, and other video-based object recognition.

Index Terms—object recognition, video analysis, structured-
output SVM.

I. INTRODUCTION

OBJECT recognition is an important research problem in
computer vision with applications in a wide range of

areas, including human-computer interaction [17], intelligent
surveillance [18], industrial inspection [11], robotics [8], medi-
cal imaging [13]. Because of its importance, object recognition
has been extensively studied and many algorithms have been
proposed. Most existing algorithms (e.g., [2], [3], [20], [23],
[25], [28], [36], [40], [44]), however, are developed to recog-
nize objects from images. They do not address the dynamics,
clutter, and noisiness of video input. Only a few methods have
considered videos, e.g., video-based descriptors [14], [22],
[30], [34], [35], [37], [46], image-set matching [1], [21], [26],
[39], [41], [42], face recognition in video [6], [7], [9], [29],
and video classification [12], [19]. However, these methods
are conceptually different from ours, which will be clarified
in Sec. II.

The ability to recognize objects from video has many
potential applications. Consider a concrete example of building
a system that allows a museum’s visitors to use their cell
phones to recognize objects on display. In this situation, it
is more beneficial and convenient to recognize objects from
video input instead of images. First, many museum objects
have 3D shape, and any image can only depict a single facet of
an object. Thus, an image contains much less information than
a video that provides multiple views of the object. Second, in
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Fig. 1: Some challenges of video-based recognition. The
noise and variation of video data cause the recognition de-
cision of frame-based approaches to fluctuate. The object is
frequently recognized as the wrong class.

a crowded museum environment, it is more convenient for a
museum visitor to record a continuous video of an object,
rather than to capture occlusion-free representative images of
the object.

Video-based object recognition, however, is challenging.
Several highly important challenges are to: 1) handle the nois-
iness and variation of video data (e.g., not every video frame
is occlusion free, and videos can vary in length, object scale,
and background clutter); 2) train classifiers when relatively
few video examples of each object are present; 3) effectively
use the entire video for recognition and avoid the fluctuation
of the recognition decision over time. Some challenges are
depicted in Fig. 1.

In this paper, we propose Latent Bi-constraint SVM (LB-
SVM), a novel algorithm for video-based object recognition.
LBSVM is built on Structured-Output SVM (SOSVM) [38],
but extends it to address the challenges of recognizing objects
from video input. LBSVM introduces two novel constraints
and a latent variable. Its technical novelty is threefold: 1) The
first constraint (Eq. 2) expands the training video, associates
the object label to all subsequences of each training video.
This enforces all subsequences of training video to be correctly
classified, enabling the recognition of an object from various
view points. It also maximizes the usage of training data,
reducing the need for a large number of training videos. 2)
The second constraint (Eq. 3) requires the monotonicity of
the score function with respect to the inclusion relationship
between subsequences of a video. This is to ensure the
consistency of the recognition decisions. 3) The incorporation
of the latent variable allows the monotonicity requirement to
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be satisfied, discarding bad views of an object due to such
factors as occlusion and motion blur. The two constraints and
the latent variable allow LBSVM to ground the recognition
decision on the entire video, avoiding the inconsistency of the
output decisions.

We will demonstrate the benefits of LBSVM for recognizing
office objects and museum sculptures from videos recorded
using a handheld camera. Videos of office objects were
recorded in a cluttered office environment, while museum
sculptures were recorded inside a crowded museum. These in-
the-wild videos are challenging for object recognition due to
various factors, including occlusion, background clutter, scale
variation, illumination change, and motion blur.

II. RELATED WORK

A majority of algorithms for object recognition [2], [3],
[20], [23], [25], [28], [36], [40] assume the input is a single
image. They can be adapted to work with video input by
running image-based recognition on individual frames and
subsequently accumulating the recognition scores [24], [27],
[31], [32]. This approach, however, has several drawbacks.
First, extracting frame-level descriptors and running image-
based recognition for all individual frames are inefficient; this
fails to consider the temporal similarity of nearby frames.
Second, a simple approach for pooling evidence from all
frames can lead to poor recognition performance due to domi-
nance of irrelevant information from frames with occlusion or
motion blur. Third, this approach fails to take into account the
sequential nature of video data and may produce inconsistent
decisions over time.

Algorithms for object recognition in video exist. Most of
them [14], [22], [34], [35], [37], [46] propose to utilize
the temporal information in video and improve local video
descriptors by feature tracking. [35] tracks image patches using
optical flow and learns an invariant feature for recognition.
[37] proposes an efficient search space for interest points to
track features, which are then exploited to recognize objects.
[46] proposes the RVO-SIFT method based on feature tracking
for rigid video object recognition, which unifies the object
recognition and feature updating process, hence improves the
completeness of the video object’s features automatically.
[22] develops Best Template Descriptors (BTD) from video,
quantizes them to generate a Bag-of-Words model, followed
by a NN classifier to recognize object in video. These methods
improve feature descriptors for video, but they perform object
recognition frame by frame. They neither address the insuf-
ficiency of training data nor ensure the consistency of frame
recognition decisions.

A video is an ordered set of images. As such, video-to-
video matching can be cast as set-to-set matching [1], [21],
[26], [39], [41], [42]. [26] proposes two set-of-sets representa-
tions for a video and respective matching methods for object
recognition in video. The combined set-of-sets method based
on bag of words and manifold techniques improves the video
object recognition. [42] proposes Kernel Principal Angles
(KPA), which measures the intersection of two manifolds
representing two sets. Since images in a video are collected

continuously, they exhibit smooth data changes and can be
well constrained on a low-dimensional manifold. KPA can be
used to match video manifolds. However, image-set methods
are often developed especially for face recognition [1], [21],
[41], including face recognition in videos [6], [29], or character
identification in television shows [7], [9], which differ from
the problem we tackle. A prerequisite of those works is
face detection and tracking, but no detectors are available
for generic objects in our case. Also, they assume temporal
coherence cues, which might not hold for our videos.

In this paper, we develop LBSVM to exploit the structured
information contained in video for object recognition. LBSVM
is based on SOSVM [38], which can learn a correlation func-
tion between a complex input space and a structured output
space. SOSVM has been shown to be widely useful in many
computer vision tasks, and it has also been extended in several
ways. [15] uses SOSVM for adaptive tracking and detection.
[48] proposes two-layer SOSVM to recognize unsuccessful
activities. [16] extends SOSVM for early event detection
by anticipating the sequential nature of temporal events.
SOSVM is also extended to handle latent variable [45]. [33]
introduces similarity constraints for weakly supervised action
classification, which performs classification and discriminative
localization. [43] utilizes kernelized SOSVM for recognizing
human actions from arbitrary views, which implicitly infers
the view label by latent variable during both training and
testing. Another way to handle latent variable is by Multiple
Instance Learning [47], but it can neither exploit the structured
information in video to ensure consistent decision, nor be
successfully trained when relatively few video examples per
class are present.

LBSVM learns and recognizes class labels of videos. It
is different from [14], [22], [34], [35], [37], which perform
frame-by-frame recognition in video. It is also different from
previous works requiring finer-level annotation, such as [4],
which propagates the pixel label of initial frame through video.

III. LATENT BI-CONSTRAINT SVM

A. Learning Formulation

Let {x1, · · · ,xm} be a set of training videos. Each video xi
depicts an object, and let yi be the label of that object. Let {xti}
be the set of all subsequences of video xi, at all locations and
scales, as illustrated in Fig. 2. We learn a LBSVM for video-
based object recognition by solving the following optimization
problem:

minimize
w

1

2
||w||2 (1)

s.t. fw(xti, yi)− fw(xti, y) ≥ 1 ∀i,∀t,∀y 6= yi, (2)

fw(xti, yi)− fw(xji , yi) ≥ ∆(xti,x
j
i ) (3)

∀i,∀t,∀j : xji ⊂ xti.

Here fw(x, y) is the score function for a video segment x
and a label y. We consider a linear recognition score function
fw(x, y) = wTψ(x, y). ψ(x, y) is the joint feature mapping
of the video segment x and the label y, and w is the parameter
of the score function, which needs to be learned. Constraint (2)
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Fig. 2: Subsequences of a training video at different locations
and scales. See Sec. IV-B2 Subsequences for details.

Fig. 3: Using a latent variable, LBSVM removes bad views
to avoid the fluctuation of the recognition score, keeping it
increasing.

requires all subsequences of a training video to be correctly
classified. This is based on the observation that if a video
depicts an object then all subsequences of the video also depict
the same object, possibly from different angles. This constraint
essentially trains the system to recognize various views of the
object. Constraint (3) requires monotonicity of the recognition
function with respect to the inclusion relationship between
video subsequences—the recognition score (confidence) of a
video segment should not be lower than the recognition score
of its subsequences. This constraint reflects a fact that a long
video segment has more views of the object than a shorter one,
and therefore, it should be recognized with higher confidence,
as illustrated in Fig. 3. In Constraint (3), ∆(·, ·) is the adaptive
margin, and we use ∆(xti,x

j
i ) = 1 − |x

j
i |
|xt

i|
. By optimizing

Eq. (1), we obtain the function fw, that can be used for video-
based object recognition. Given a new testing video x, we
predict the label of the object it depicts by finding the label
that maximizes the score:

y∗ = argmax
y

fw(x, y). (4)

Here, x is the entire video, which contains more views of
the object than any of its subsequences. As in the traditional
formulation of SVM, the constraints are allowed to be violated
by introducing slack variables:

minimize
w,αt

i,β
t
i

1

2
||w||2 + C1

m∑
i=1

∑
t

αti + C2

m∑
i=1

∑
t

βti (5)

s.t. fw(xti, yi)− fw(xti, y) ≥ 1− αti ∀i,∀t,∀y 6= yi,

fw(xti, yi)− fw(xji , yi) ≥ ∆(xti,x
j
i )− β

t
i

∀i,∀t,∀j : xji ⊂ xti,

αti ≥ 0, βti ≥ 0 ∀i,∀t.

Although a video primarily depicts an object, the video
might also contain not-so-informative frames due to several
factors such as background clutter, occlusion, and motion blur.
To filter out these irrelevant frames, we introduce latent vari-
ables into the feature mapping and the recognition function:

fw(x, y) = max
h

wTψ(x, y, h). (6)

For a video sequence x that is represented by l frames, h is
an indicator vector for selecting representative views of the
object, and ψ(x, y, h) computes the feature representation on
selected frames. As illustrated in Fig. 3, where the use of the
indicator h is necessary to filter out bad views of the object
to avoid the fluctuation of the recognition score. Details about
the selector vector h and the feature representation will be
described in Sec. IV-B.

Once the model parameter w has been learned, inferring
the label for a test video is done jointly with selecting good
views of the object in the video:

(y∗, h∗) = argmax
y,h

wTψ(x, y, h). (7)

By exploiting the temporal similarity of nearby frames in a
video, we can limit the domain of h and only consider frames
at a regular interval. This allows the above joint inference
problem to be solved efficiently using exhaustive search. This
will be described in more details in Sec. IV-B.

B. Optimization

The constrained optimization in Eq. (5) is equivalent to the
following unconstrained problem:

min.
w

1

2
‖w‖2 +R(w), (8)

where

R(w) =
m∑
i=1

∑
t

(
C1 max{0, R1

it}+ C2 max{0, R2
it}
)
,

and Rit1 and Rit2 are:

R1
it = max

y 6=yi
fw(xti, y) + 1− fw(xti, yi),

R2
it = max

j:xj
i⊂xt

i

[fw(xji , yi) + ∆(xti,x
j
i )]− fw(xti, yi)

We use Non-convex Regularized Bundle Method
(NRBM) [10] to optimize for Eq. (8). NRBM iteratively
constructs an increasingly accurate piecewise quadratic lower
bound of the objective function. In each iteration, a new
cutting plane is found by the sub-gradient of the objective
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function and added to the piecewise quadratic lower bound
approximation. The algorithm starts from a random w1 and
generates a sequence of wi’s. The algorithm terminates when
the gap between the minimum of the approximation function
and the value of the objective function is smaller than a
predefined tolerant value.

The sub-gradient of R(w) w.r.t. w can be computed from
the gradients of R1 and R2. From the linear form in Eq. (6),
the subgradient ∂R(w)

∂w is:
m∑
i=1

∑
t

{
C1[ψ(xti, y

1
it, h

1
it)− ψ(xti, yi, hit)]H(R1

it)

+ C2[ψ(xt
′

i , yi, h
2
it)− ψ(xti, yi, hit)]H(R2

it)
}

(9)

where H(·) is the Heaviside step function:

H(Rit) =

{
1 if Rit ≥ 0
0 if Rit < 0,

and (y1it, h
1
it), (xt

′

i , h
2
it), hit are inferred by:

(y1it, h
1
it) = argmax

y 6=yi,h
wTψ(xti, y, h), (10)

(xt
′

i , h
2
it) = argmax

j:xj
i⊂xt

i,h

[wTψ(xji , yi, h) + ∆(xti,x
j
i )], (11)

hit = argmax
h

wTψ(xti, yi, h). (12)

In each iteration of NRBM, we infer (y1it, h
1
it), (xt

′

i , h
2
it),

hit and optimize model parameter w respectively:
1) Fix the model parameter w, infer (y1it, h

1
it), (xt

′

i , h
2
it),

hit by Eqs. (10–12).
2) Fix (y1it, h

1
it), (xt

′

i , h
2
it), hit, finding a new cutting plane

by Eq. (9) and add it to the quadratic piecewise approx-
imation of NRBM, updating the model parameter w by
minimizing the quadratic approximation.

The learning process is shown in Algorithm 1.

IV. EXPERIMENTS

This section introduces two datasets for video-based object
recognition and demonstrates the benefits of LBSVM over
frame-based, set-based, and video-based approaches.

A. Datasets

1) Office Dataset: The Office dataset contains 210 videos
of 10 object categories in a cluttered office environment:
mouse, keyboard, fan, monitor, computer case, chair, pen
holder, headset, stapler, scissor. Some example frames are
shown in Fig. 4(a). Each object category contains videos of
5 object instances (see Fig. 4(c)). Training data is a video
spanning 360◦ of one instance (Fig. 2). Testing data is the
remaining 20 videos of the other 4 instances, recorded with
different variations (e.g., Fig. 4(d)). In total, there are 10
training videos and 200 testing videos. The durations of
training videos are approximately 15 seconds, and the lengths
of testing videos range from 6 to 10 seconds. 100 frames were
extracted from each training video, and 20 frames per second
were extracted from each testing video. The spatial resolution

Algorithm 1: LBSVM Learning
Input: {xi, yi}mi=1: training videos and labels, C1 and

C2: slack variable coefficients, ε: gap threshold
Output: Model parameter w

1 Initialize the model parameters w1 randomly
2 for i← 1 to m do
3 Generate all subsequences xti of xi
4 end
5 while true do
6 for i← 1 to m, each t do
7 - Fix w, infer latent variables (y1it, h

1
it), (xt

′

i , h
2
it),

hit by Eqs. (10–12)
8 - Given updated (y1it, h

1
it), (xt

′

i , h
2
it), hit,

recompute the feature representation for each
video subsequence

9 end
10 Compute subgradient cw = ∂R(w)

∂w from Eq. (9)
11 Update w by Eq. (13) of NRBM [10]
12 Compute w∗ and gap by Algorithm 1 of NRBM
13 if gap < ε then
14 break;
15 end
16 end
17 return w∗

of all videos is 640 × 480 pixels. The Office dataset is
challenging, with heavy clutters, extreme scales, illumination
changes, and view shifting. In some frames, the object is even
out of sight. Some challenging images are shown in Fig. 4(b).
The variation of an object in a video is shown in Fig. 4(d).

2) Museum Dataset: The Museum dataset contains 820
videos of 20 sculptures. The sculptures are 3D objects with
low texture, and many of them have similar appearance. The
sculptures includes portrait miniatures, statues, busts, as shown
in Fig. 5(a). Each sculpture has 41 videos: one is used for
training and 40 for testing. The testing data is further divided
into two equal and disjoint subsets, called Museum1 (easy)
and Museum2 (hard). In total, there are 20 videos for training,
400 testing videos in Museum1 and the other 400 testing
videos in Museum2. The videos in the training set, Museum1,
Museum2 last for around 20 seconds, 6-10 seconds, and 5
seconds respectively. The videos of the Museum dataset have
the same format as the Office dataset, including frame rate
and spatial resolution. All videos were captured by a handheld
camera.

All videos were collected during rush hours, when the
museum was crowded and the sculptures were surrounded
by many people, the occlusion of the target sculpture and
the background clutter were heavy. The training videos were
taken by moving the camera around each sculpture. The
testing videos were collected by imitating the habits of average
users. There are significant scale changes in the dataset. Some
videos only partially cover the sculptures in the close distance,
some other videos capture the sculptures as one tenth of the
view. Most users are inexperienced photographer, the target
sculpture is often not in the middle of the view, it sometimes
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Fig. 4: Example frames of Office dataset: (a) representative frames of the 10 object categories; (b) challenging frames of the
10 categories; (c) the 5 instances in the category of chair and computer case; (d) the variations of a fan in a video.

slips out of the camera’s point of view. Some challenging
frames are shown in Fig. 5(b).

B. Feature Representation

1) Feature extraction: For feature extraction, we use Dense
SIFT (DSIFT) [3], [28]. Subsequently, Spatial Pyramid Match-
ing with Sparse Coding (ScSPM) [44] and Bag-of-Words
(BoW) [34] were used for aggregating descriptors for the
Office dataset and the Museum dataset respectively. These rep-
resentations are common for all methods in the experiments.

For ScSPM in Office dataset, all settings followed the
standard way in [44]. DSIFT was extracted from patches of
16 × 16 pixels from each sampled image with step size of
6 pixels. The codebook size was 1024, and we used spatial
pyramid with 3 levels. The descriptors were aggregated using
maximum pooling. The feature dimension was reduced to 150
by PCA.

For BoW in the Museum dataset, DSIFT was extracted at
every 4 pixels with 4 patch sizes, 16× 16, 24× 24, 32× 32
and 40 × 40 pixels. The codebook size was set as 300. The
coded descriptors were aggregated by average pooling.

2) Subsequences: We generated subsequences for each
training video as follows. First, for each training video, we
extracted 100 frames. The subsequences are sampled at 10
scales (from 10 to 100 frames) and at a regular interval (every
second frame). In total, we generated 235 subsequences for
each training video. These sequences correspond to multiple
views of an object (Fig. 2).

3) Subsequence representation: From each subsequence, l
frames were uniformly sampled. A subsequence is represented
as a ScSPM or BoW feature vector, by pooling all quantized
descriptors from the sampled frames. This could include the
noise descriptors from the bad frames. To deal with this
problem, we introduced a latent variable h, which selected
half (empirically set, fixed in all experiments) of the l frames,

and encoded all possible selections as values of h. For each
value of h, we computed a joint feature ψ(x, y, h) (ScSPM or
BoW) by pooling the quantized descriptors from the selected
frames, rather than from all the frames.

The temporal similarity of nearby frames in a video allows
the subsequences to be subsampled. This limits the domain of
the latent variable h to be less than hundreds. Since a linear
model is used in our algorithm, it is feasible to cope with all
possible values of the latent variable.

C. Compared Methods

We compared the proposed method with several frame-
based, set-based, and video-based recognition methods. De-
tailed parameter settings of these methods are given in
Secs. IV-D and IV-E.

1) Frame-based recognition (Frame): This method takes
a frame, i.e., ScSPM [44] or BoW [34] feature vector, as the
input of the classifier in both training and testing. A multi-
class linear SVM is trained from the extracted frames of
training videos. Each frame of testing videos is independently
evaluated by the classifier. Here, we use LIBSVM [5] with
one-vs-one setting.

2) Accumulating frame recognition (Accum-Frame): This
method accumulates the frame-based recognition results (same
as above) of all frames in a video to vote the video class [32].
Three voting schemes are considered: Hard, Soft, and KNN
voting. Hard voting uses the label results of the SVM. Soft
voting adopts the probability estimation of the SVM. KNN
voting selects K (empirically set as 20) frames with the best
SVM scores to vote for the video class.

3) Best Template Descriptor (BTD): BTD [22] learns
video-based descriptors by feature tracking in training videos
and uses a BoW model and a nearest neighbor classifier to
recognize object in video frame by frame. Following [22],
we learn BTD descriptors from all subsequences of training
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Fig. 5: Example frames of Museum dataset: (a) representative frames of the 20 sculptures; (b) challenging frames of the 20
sculptures.

videos, generating ScSPM (Office) or BoW (Museum) rep-
resentations for them. A multi-class linear SVM classifier is
trained from the subsequences, and frame-based recognition
is performed for testing videos. Finally, soft voting is used to
report the video-based recognition result.

4) Set-to-set matching (KPA): Video-based object recog-
nition can be solved by image-sets matching. We use Kernel
Principal Angles (KPA) [42] to perform set-to-set matching
between two videos (image sets). KPA takes two image sets as
input, learns a manifold for each set, and compute the principal
angles as the similarity between the two sets. Finally, a nearest
neighbor classifier is used to classify a test video based on the
similarity measurement.

D. Results on the Office Dataset
The second column of Tab. I shows the results of the various

methods on the Office dataset. Frame with ScSPM, which
is one of the state-of-the-art representations for image cate-
gorization, only achieves 65.1% accuracy with 100 training
images per category. For a comparison, ScSPM achieves 73.2
% accuracy on the Caltech-101 dataset with only 30 training
images per category [44]. This demonstrates the challenges of
the Office dataset. The result of Accum-Frame in Tab. I is by
soft voting; Accum-Frame with hard voting and KNN voting
achieve lower accuracies of 73.5% and 72%, respectively. All
of these results are significantly better than the result of Frame.
This indicates the importance of accumulating information in a
video for object recognition. BTD is the video-based descriptor
method using feature tracking. It slightly improves Accum-
Frame. This is perhaps because the dataset was collected by
a handheld camera producing short-range egocentric view,
in which objects continuously shift and move out of sight,
making feature tracking unstable. KPA considers a video as
a manifold and video recognition as manifold-to-manifold
matching. This method yields better result than BTD and
Accum-Frame. While BTD and Accum-Frame only rely on
the available data, manifold estimates the unseen data by

TABLE I: Results on the Office and Museum datasets.
The same feature representation is used on each dataset:
ScSPM [44] for the Office dataset and BoW [34] for the
Museum dataset. The proposed method LBSVM achieves the
best accuracy on all datasets.

Algorithm Office Museum1 Museum2

Frame 65.1 67.3 56.7
Accum-Frame 74.5 91.5 73.5
BTD [22] 76.0 91.8 75.3
KPA [42] 79.5 95.0 85.8
LBSVM (proposed) 84.5 98.8 91.5

Fig. 6: The selected good views of fan by LBSVM.

interpolation and therefore has better generalization property.
Both frame-based and aforementioned video-based recognition
approaches, however, are inferior to LBSVM. The better
accuracy of LBSVM can be credited to its ability to make
use of all subsequence information from a video and at the
same time it filters out bad views of the object in the video by
latent variable. Fig. 6 displays the example of selected views
by LBSVM.

The confusion matrices of BTD and LBSVM for recog-
nizing objects from the Office dataset are shown in Fig. 7.
LBSVM outperforms BTD on most objects, yielding an accu-
racy of more than 80% for all objects, except for mouse and
stapler. This might be due to the low texture appearance of
mouse and stapler objects.

To analyze the consistency of the recognition decision, we
evaluate the recognition accuracy over time, by running the



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2713409, IEEE
Transactions on Circuits and Systems for Video Technology

7

mouse .30 0 0 0 0 .15 0 .35 0 .20
keyboard .10 .85 0 0 0 .05 0 0 0 0

fan 0 .15 .80 .05 0 0 0 0 0 0
monitor 0 0 0 1.0 0 0 0 0 0 0
pc case 0 0 0 .10 .90 0 0 0 0 0

chair 0 0 0 0 .10 .90 0 0 0 0
pen holder 0 .25 0 0 0 .15 .60 0 0 0

headset 0 .10 0 0 0 0 0 .80 0 .10
stapler .25 0 0 0 0 0 0 0 .55 .20
scissor 0 .05 .05 0 0 0 0 0 0 .90

mouse
keyboard

fan monitor
computer case

chair
pen holder

headset
stapler

scissor
(a)

mouse .55 0 0 0 0 .05 0 .30 0 .10
keyboard .15 .80 0 0 0 .05 0 0 0 0

fan 0 .05 .85 .10 0 0 0 0 0 0
monitor 0 0 0 1.0 0 0 0 0 0 0
pc case 0 0 0 .15 .85 0 0 0 0 0

chair 0 0 0 0 .05 .95 0 0 0 0
pen holder 0 0 0 .05 .05 0 .90 0 0 0

headset .05 0 0 0 .05 0 0 .85 0 .05
stapler .10 0 0 0 0 .10 .10 0 .70 0
scissor 0 0 0 0 0 0 0 0 0 1.0

mouse
keyboard

fan monitor
computer case

chair
pen holder

headset
stapler

scissor
(b)

Fig. 7: Confusion matrices for recognition on the Office
dataset: (a) BTD; (b) LBSVM.

recognition algorithm on subsequences of testing videos. Fig. 8
plots the recognition accuracy against the length of video
subsequence (from 10% to 100% of testing videos). As the
sequences become longer and more views appear, the results
of Accum-Frame, BTD and KPA methods fluctuate, while the
proposed method can accumulate information effectively and
keep the recognition accuracy increasing. Especially in some
intervals, where the compared methods decrease dramatically,
the recognition performance of the proposed method still
increases or remain the same. Hence, LBSVM can ground
the recognition on the entire video.

Tab. II reports the performance of two variants of LBSVM.
BSVM is LBSVM without the ability to discard uninformative
frames. As can be seen, it does not perform as well as LB-
SVM. This emphasizes the importance of latent variable and
view selection. SCSVM is BSVM without the monotonicity
constraint (Eq. 3), and it has even lower recognition accuracy.

LBSVM is efficient. In training, using PCA for reducing
the dimension of feature vectors, it took about 2 hours for
Office dataset with the maximum iteration of 300. In testing,
it took 11ms to classify a video. This excludes the time for
feature extraction, which is common for all methods. Since
LBSVM needs to compute features in fewer sampled frames,
the time for feature extraction is also largely reduced. These
timing figures were measured on an Intel Core i7 3.4GHZ×8
processor with 8GB RAM, for a Matlab implementation of
LBSVM.

The parameters of the compared methods were set to report

TABLE II: Comparison with variant methods. BSVM is
LBSVM without latent variables. SCSVM is BSVM without
enforcing monotonicity constraint (Constraint (3)).

Algorithm Office Museum1 Museum2

SCSVM 80.0 94.5 86.0
BSVM 82.0 96.8 89.3
LBSVM (proposed) 84.5 98.8 91.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.72

0.74
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Accum−Frame
BTD
KPA
LBSVM

Fig. 8: The proposed LBSVM can accumulate information
effectively and keep the recognition accuracy increasing mono-
tonically, while the results of Accum-Frame, BTD, and KPA
fluctuate.

the best accuracies. Specifically, in KPA method, the Gaussian
kernel was used with the bandwidth parameter γ = 1, and
using the first principal angle as similarity got the best result.
In SCSVM, the slack variable coefficient was set as C =
10−4. In BSVM, the slack variable coefficients were C1 =
C2 = 0.5× 10−4. For LBSVM, the slack variable coefficients
were set the same as those in BSVM. The number of sampled
frames for view selection was l = 10. The stopping criterion
for SCSVM, BSVM and LBSVM was ε = 0.01.

E. Results on the Museum Dataset

The results of LBSVM and several other methods on the
Museum dataset are shown in the last two columns of Tab. I.
The low results of Frame show the challenges of the two Mu-
seum datasets. Accum-Frame (using soft-voting) significantly
outperforms Frame. The other voting schemes, hard-voting
and KNN-voting, do not perform as well, achieving 90.0%
and 86.5% on Museum1, and 71.5% and 71.5% on Museum
2. BTD, based on video descriptors, is slightly better than
Accum-Frame. KPA (manifold matching) and SCSVM (learn-
ing on all subsequences) achieved comparable performance,
but were outperformed by BSVM (ensuring the consistency
of recognition decision). LBSVM, by view selection and
information accumulation, yielded the best results on both
datasets.

The Gaussian kernel of KPA method had the bandwidth
parameter γ = 0.9. The slack variable coefficients for SCSVM
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and LBSVM (and also BSVM) were set as C = 10−5 and
C1 = C2 = 0.5 × 10−5. Other parameters were the same as
Office dataset in Section IV-D.

V. CONCLUSIONS

We proposed two new datasets and a novel algorithm,
LBSVM, for video-based object recognition. LBSVM is based
on Structured-Output SVM, but extends it to handle noisy
video data and ensure consistency of the output decisions.
LBSVM introduces two novel constraints. The first constraint
expands training videos and requires all subsequences to
be correctly classified, training the classifier to recognize
testing videos of various views. The second constraint im-
poses monotonicity of the score function with respect to
the inclusion relationship between subsequences of a video.
Furthermore, LBSVM incorporates latent variables for view
selection, filtering out bad views of an object in a video.
The latent variable, together with the two novel constraints,
allow LBSVM to ground the recognition decision on the entire
video, avoiding the inconsistency of the output decisions. In
training, we optimized the parameters of an LBSVM and
the latent variables iteratively. In testing, we jointly inferred
the latent variable and the class label to maximize the score
function. We showed that our algorithm outperformed frame-
based, set-based, and other video-based object recognition
approaches on the two new datasets for video-based object
recognition.
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