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Abstract

In the context of multi-class single-label classification, the loss function of deep
learning methods compares the predicted class distribution versus the ground truth
class distribution. The commonly used cross-entropy loss ignores the intricate
inter-class relationships that often exist in real-life tasks such as age classifica-
tion. We propose to leverage these relationships between classes by training deep
nets with the exact squared Earth Mover’s Distance (also known as Wasserstein
distance), assuming that the classes are ordered: one can put all classes in a one-
dimensional space such that the dissimilarities between classes are represented by
the euclidean distances between them. The EMD? loss uses the predicted probabili-
ties of all classes and penalizes the miss-predictions according to the dissimilarities
between classes. Our exact EMD? loss yields state-of-the-art results with limited
computational overhead on age estimation and image aesthetics datasets.

1 Introduction

Deep neural networks (DNNs) have become the preferred method for most machine learning applica-
tions [14}133,134,124/[13L15]). In general, most DNNs are trained under one of two tasks: regression and
classification. In a regression task, the network learns to generate a real-valued output that matches
the ground-truth [2|16]. In a classification task, the network learns to categorize an input to one of the
training classes [8} 37, (14} 33} 23]].

To train a multi-class single-label classification network, softmax cross-entropy loss is by far the most
popular loss function for the training regime, where the ground-truth is a binary vector consisting of
a value 1 at the correct class index, and Os everywhere else [20} [19]]. During training, the objective is
to minimize the negative log-likelihood of the loss by multiplying the network’s predictions to the
binary ground-truth vectors. This loss function does not take into account inter-class relationships
which can be very informative. For example, we want to estimate age-groups from face images. In
Fig. [T] two predicted class distributions have identical softmax cross-entropy loss. However, one is
clearly more preferable than the other.

In this work, we show how the exact squared Earth Mover’s Distance (EMD) [31] can be applied as a
stand-alone loss function for multi-class single-label classification problems using CNNs. The EMD
is also known as the Wasserstein distance [1} 3], which is the minimal cost required to transform
one distribution to another [31]. Recent work formulated an approximate Wasserstein loss for
supervised multi-class multi-label learning [[10, 28]]. In contrast, we show that an exact (without
approximation) squared EMD (EMD?) loss exists for training single-label deep learning models
directly, assuming that the classes are ordered: one can put all classes in a one-dimensional space
such that the dissimilarities between classes are represented by the euclidean distances between them.
We choose to use EMD? instead of EMD as the loss function for faster convergence with gradient
descent [32, 25]]. Our experiments show that CNNs trained with our EMD? loss perform better than
CNNs with the standard softmax cross-entropy loss. We verify our approach on datasets with known
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Figure 1: In many classification tasks, there are relationships or even orderings between classes.
However the cross-entropy loss ignores these relationships and only focuses on the predicted proba-
bility of the ground truth class. In this example, the two given predicted distributions have the same
cross-entropy loss. But clearly predicted distribution B is preferable to A.

ordered-classes [8], 9, [T}, [30] [7} [18], 35| [26]]. For the first time, we show how an exact EMD? loss
function can be used to train CNNs on ordered-classes classification problems. Our method achieves
state-of-the-art results on the Adience dataset [|8], the Image of Groups dataset [[11], and the image
aesthetics with attributes database (AADB) [18] without using additional image attributes such as
color harmony.

2 EMD? loss on ordered-classes

We first introduce the softmax cross-entropy loss and some other notation. For a single-label
classification problem with C' classes, a network’s softmax layer outputs a probability distribution
p of length C, with its i-th entry p; being the predicted probability of the i-th class. The soft-max
guarantees that ) . p; = 1. We denote the ground truth as a binary vector t of length C. Also
>-;t; = 1. Given a training example, the cross-entropy loss between the prediction p and the

ground truth vector t is defined as Ex(p,t) = — chzl (t;log(p;)). We assume that the k-th class
is the ground truth label: t;, = 1 and t; = 0 for ¢ # k. Thus the differentiation of Ex(p,t) is:
E’x (p,t) = —p},/pk. The backpropagation of a DNN with cross-entropy loss only depends on py.
This is less robust compared to a loss function that depends on all entries of p as argued in Fig. [T}

We assume that a CNN should ideally predict class distributions such that classes closer to the ground
truth class should have higher predicted probabilities than classes that are further away. We formulate
this using the Earth Mover’s Distance (EMD). The EMD is defined as the minimum cost to transport
the mass of one distribution (histogram) to the other.

Mass transportation defines the problem of transporting mass from a set of supplier clusters to a set
of consumer clusters. Its formal definition [31] is: Let p = {(a1, p1), (a2, p2), ..., (ac,pc)} be
the supplier signature (distribution or histogram) with C clusters (bins), where a; represents each
cluster and p; is the mass (value) in each cluster. Let t = {(by,t1), (b2,t2),..., (b, ter)} be
the consumer signature. Let D be the ground distance matrix where its 7, j-th entry D, ; is the
distance between a; and b;. Matrix D is usually defined as the /-norm distance between clusters:
D, ; = ||a; — b,||;. Let F be the transportation matrix where its ¢, j-th entry F; ; indicates the mass
transported from a; to b;. A valid transportation satisfies four constraints. First, the amount of mass
transported must be positive. Second, the amount of mass transported from a supplier cluster p; must
not exceed its total mass. Third, the amount of mass transported to a consumer cluster t; must not
exceed its total mass. Finally, the total flow must not exceed the total mass that can be transported.
These four conditions can be summarized respectively below:

c’ c c < c c’
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Under the constraints defined above, the overall cost of flow F is defined as: W(b,t,F) =
>-i2_;Di;F; ;. The EMD between two vectors, denoted as EMD(p, t) is the minimum cost
W(b,t,F)
Zi Zj Fi; ‘

of work that satisfies the constraints, normalized by the total flow: EMD(p,t) = i%f



2.1 Ground distance matrix of ordered-classes

Computing the EMD between two distributions requires a predefined matrix, the ground distance
matrix D which is unknown in most cases. However, in classification tasks with ordered classes
we can define D. The difference between ordered-class classification and regression is that in the
problem of ordered-class classification, the ground truth labels and predictions are discrete. Often, a
multi-class classification model [12] performs better than a regression model.

Without loss of generality, we assume that in all ordered-class classification problems, the classes are
ranked as t1,t2, t3,. .., tc and the distance between t; and t; is [¢ — j|.

2.2 EMD? loss for ordered-class classification

EMD has been shown to be equivalent to Mallows distance which has a closed-form solution [22], if
the ground distance matrix D and distributions p and t satisfy certain conditions, as shown in [22].
We will show that these required conditions are satisfied in ordered-class classification problems.

The first condition is that the two distributions p and t must have equal mass: ), p; = ) it
This condition is always satisfied and C' = C’ if p is produced by a softmax layer. The second
condition is that the ground distance matrix D must have an one-dimensional embedding. This
assumption is always satisfied in ordered-class classification problems. The third and final condition
is that the distributions to be compared must be sorted vectors. This condition is also always satisfied
since we assumed p1, P2, ..., Pc and t1,ts, ..., to are sorted without loss of generality. Then,
based on the conclusion by Levina et al. [22], the normalized EMD can be computed exactly and in

1
closed-form: EMD(p, t) = (%) l ||CDF(p) — CDF(t)
the cumulative density function of its input.

1, where CDF () is a function that returns

We use [ = 2 for Euclidean distance and also for D. Dropping the normalization term, we obtain
c 2
the final EMD? loss Ep; as: Eg(p,t) = 3 (CDFq;(p) - CDFi(t)) , where CDF (p) is the i-th
i=1
element of the CDF of p. This equation is directly applicable to ordered-class classification problems
on neural networks trained with backpropagation.

3 Experiments and Results

We test the EMD? loss on different network architectures including AlexNet [19], the VGG
16-layer network [33]], and the wide residual network [37]]. For optimization, we use stochas-
tic gradient descent with momentum 0.98 in all experiments. The learning rates were selected
from {107%°,1072,1072:5,1073,10725,10~%,10~*°} individually for each method on each
dataset. For experiments on all datasets, during training we randomly crop, flip, rotate, adjust
the RGB colors and aspect ratio of input images for data augmentation. During testing, we
use the average prediction from the center crop and its mirrored image. Our implementation
of EMD? loss functions increase the CNN training time less than 10% for each iteration and
has the same test time. We use Theano [36] for network implementation. Code is available at
http://www3.cs.stonybrook.edu/~cvl/emd2.html. More experimental results can
be found at [16]]

Methods tested: For network architectures, we train AlexNet (ALX) [19] from scratch, to compare
with published baselines [21, [18]]. For the Adience dataset, we test a smaller version of AlexNet
following [21], which we call it ALXs. We also fine-tune the VGG 16-layer network (VGGy) [33]
pre-trained on ImageNet, to compare with the published baseline [30]. Additionally, we train a
40-layer residual network (RES) with identity mapping and bottleneck design [37] from scratch. We
also fine-tune a RES pre-trained on ImageNet and name it RESg.

For the loss functions, we test the softmax cross-entropy loss (XE), the L2 regression loss (REG),
the approximated EMD loss (AEMD) and the proposed EMD? loss (EMD). For the REG loss, the
output neuron of a regression network uses a linear activation function, following the conventional
regression CNN approach [2]. For the AEMD loss, we use the euclidean distances between class
centers (represented as CNN features) as the required ground distance matrix D. The number of
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ALXs VGGg RES RESEk Others
AEM/AEO AEM/AEO AEM/AEO AEM/AEO AEM/AEO
XE 53.0/85.7 60.9/92.8 58.1/90.3 60.1/92.1  ALXs by[21] 50.7/84.7
REG  49.8/85.1 56.5/94.0 57.3/91.8 60.8/94.3 CascadeNN[4] 52.9/88.5
EMD  57.0/90.4 59.2/92.6 61.9/93.1 62.2/94.3 VGGgDEX][30] 55.6/89.7
AEMD 53.9/88.7 60.1/93.4 58.7/91.7 59.6/92.5  SAAF[15] 61.3/95.1

Table 1: Accuracy of exact match (AEM%) and with-in-one-category-off match (AEO%) results on
the Adience dataset [8]]. Note that better results are reported [30,15] using an external age estimation
dataset IMDB-WIKI for training, which is 10 times larger than Adience.

VGGg RES RESg Others
AEM/AEO AEM/AEO AEM/AEO AEM/AEO

XE 64.3/95.6 60.0/91.5 61.8/94.2  Multi-CNN [7] 56/92
REG 60.2/96.6 52.8/92.2 61.4/95.7 SAAF [15] 54.2/93.0

EMD  65.0/96.1 59.3/92.5 63.1/95.3  Deep Attention [29]  60.0/94.5

Table 2: Accuracy of exact match (AEM%) and with-in-one-category-off match (AEO%) results on
the Images of Groups dataset [11]]. Our EMD? loss outperforms the cross-entropy loss and the L2
loss (regression) based methods in most cases, and improves the state-of-the-art.

VGGr  RES RESr  VGGgx8 Others
XE 0.6283  0.5003 0.6693 - ALX by [18] 0.5923
REG 0.6096 0.5235 0.6609 - *Best of [18] 0.6782

EMD 0.6682 0.5448 0.6768  0.6889 *Aesthetic Network [27]  0.6890

Table 3: Spearmans’ p results on the image aesthetics with attributes database (AADB) [18]]. *: used
additional 11 labels of image attributes such as color harmony, and image content information. Our
EMD? loss outperforms cross-entropy loss and L2 loss based methods significantly. Averaging the
results of eight VGG networks, we achieve a state-of-the-art result without image attributes.

matrix scaling iterations in [10] is set to 100. The entropic regularizer in [L0] is selected from
{0.1,1, 10} based on validation error. We use a Caffe implementation of this loss function [17].

Age estimation We test our method on the Adience age estimation dataset [8]] which contains
26,000 images in 8 age-groups, and a five-fold cross-validation evaluation scheme. We compare
with existing methods [21} 30, [15]] that used ALXs and VGGg. We evaluate using the conventional
accuracy of exact match (AEM%) and with-in-one-category-off match (AEO%). The results are
shown in Tab. [l Our method improves the state-of-the-art when training without external face
datasets. Because the L2 regression loss is sensitive to outliers, it achieves low AEM scores.

We also test our method on the Images of Groups dataset [[11] which contains 3,500 training face
images and 1,000 testing face images in 7 age-groups. In Tab. |2} our EMD? loss outperforms the
cross-entropy loss and the L2 loss (regression) in most of the cases, improving the state-of-the-art.

Image aesthetics We test our method on the Image Aesthetics with Attributes Database (AADB)
[18] which contains 8,458 training and 1,000 testing images, labeled as real numbers in [0.0, 1.0].
To transform this dataset into a classification dataset, we discretize the real number labels to 10
bins, balancing the number of training images in each bin. During testing, we compute the expected
aesthetic scores according to the predicted distributions. This give us real-numbered predictions. We
use Spearmans’ rank correlation p as the evaluation metric, following [[18].

The results are shown in Tab. [3l Our EMD? loss again outperforms cross-entropy loss and L2 loss
(regression) significantly. We conduct additional experiments by discretizing the real-numbered
aesthetic labels to 8 different number of bins (3,4,5,6,7,8,9,10 bins), which give us 8 sets of ground
truth labels. Then, we fine-tune one VGG network with EMD loss for each ground truth set and
average the prediction results into an ensemble model. It achieves state-of-the-art results training only
on image data. The existing state-of-the-art method is trained using 11 labels such as color harmony
and vivid color information, in addition to the image data.
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