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Abstract

Rail surface defects threaten train and passenger safety.
Hence rail surfaces must be restored using different pro-
cesses depending on measurement of the severity of the de-
fects. In this paper, we propose a new method for automatic
classification of rail surface defect severity from images col-
lected by rail inspection vehicles. It contains 2 components:
a rail surface segmentation module, which utilizes struc-
tured random forests to generate an edge map and a Gener-
alized Hough Transform to locate the boundaries of the rail
surface; and a defect severity classification module, which
combines multiple classifiers through a stacked ensemble
model. The first-level learners are trained using descrip-
tors of the rail surface images extracted by texton forests
and texton dictionaries, with χ2-kernel SVM classifiers. The
probability estimation output of the first-level learners is the
input to a second level linear-kernel SVM. Our experiments
on a dataset of 939 images categorized into 8 severity levels
achieved 82% accuracy.

1. Introduction
According to the Federal Railroad Administration

(FRA), the expected duration of rail service is influenced
mainly by the following factors: chemical composition of
the rail, track maintenance programs, speed and tonnage
traveling through. These factors contribute to the devel-
opment of rail defects such as cracking, pitting, spalling,
plastic flow and rail deformation [10].

Defects in the rail surface can develop into subsurface
rail cracking eventually causing rail failures. There were
2,033 accidents caused by track problems from 2012 to Aug
31st, 2015 based on the FRA safety database1. Among
these 2,033 accidents, there were 163 accidents closely re-

1http://safetydata.fra.dot.gov
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Figure 1: Image Acquisition System. The RailScope sys-
tem consists of two rail surface image sensor heads, one for
each rail, and a central computer/control electronics. Inside
each sensor head are a laser light source that is used to illu-
minate the rail and a high resolution digital camera to cap-
ture the rail surface images. As the vehicle travels down the
track high resolution images of the rail surface are acquired.

lated to rail surface defects, making them the second major
accident cause. Therefore, the rail surface defects threaten
the safety of trains and passengers, and can have large eco-
nomic costs.

A key component in rail maintenance programs is peri-
odic rail grinding. The level of grinding is adjusted to match
the rail profile cross-section and the defect severity that the
rail surface presents. Current practices involve assessment
of the rail profile cross-section and rail surface. The rail pro-
file cross-section is assessed typically by automated laser
based machine vision systems. For the rail surface, this is
typically performed by either physical inspection of the rail
track or by reviewing rail surface image data. In both cases
the process is subjective, prone to user biases, and in the
case of track walking increased risk and costs.

In this paper, we propose a system for automatic rail
surface defect severity classification. The system takes as
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Figure 2: Rail surface images. Examples of the 8 different defect severity levels. 0 means no defects, 7 means the most
serious defects.

input high resolution rail surface images acquired by the
RailScope System [14] installed underneath a moving rail-
way vehicle and positioned over the center of the rail as
shown in Figure 1. The RailScope System is a state-of-the-
art high resolution image acquisition system used to collect
and display top of rail (rail head) images from a moving rail
or road/rail vehicle. This system captures blur free images
of the rail surface in real-time with sufficient resolution to
detail pitting and surface cracking on the top of the rail sur-
face. The system utilizes a laser light source unit to illumi-
nate the rail head and a high resolution CCD digital camera
to capture the rail head images. All the images collected
contain the meta-information including railroad name, divi-
sion name, track number, milepost number and timestamp.
With this information, we can retrieve when and where the
images were taken for rail maintenance.

The segmentation component of our system automati-
cally extracts the rail surface region of the input image.
We propose a segmentation method based on computing
the Generalized Hough transform on the edge map of the
image. To detect the relevant edges we train a structured
output random forest on hand segmented images.

The defect severity assessment component of our sys-
tem classifies rail surface images into 8 categories of defect
severity (0-7), in a classification designed by experts in the
field. Figure 2 shows examples of categories 0 (no damage),
4 (medium damage), and 7 (high damage). The classifica-
tion of the defect severity of the rail surface images is based
on the two most prevalent texture representations: We build
multiple texton dictionaries and texton forests to learn dif-
ferent texture representations from the data. For each tex-
ture representation we train a χ2-kernel Support Vector Ma-
chine (SVM) with probabilistic output [5]. We combine the

outputs of the different classifiers with a second level SVM
that predicts the final category level for the rail surface im-
age.

We report experiments on a dataset of 939 rail surface
images annotated by experts in the field. Our proposed rail
surface segmentation method achieves a Jaccard index of
98.64% between the segmented rail surface and the ground
truth annotation. For classification, our method correctly
predicts the damage severity category for the rail surface
with 82% accuracy. An additional 13.6% of rail surfaces
are classified within an adjacent category (-1 or +1 from the
ground truth annotation) which is acceptable, given annota-
tion error and the inherent smoothing between sections, in
the rail grinding process.

To the best of our knowledge this is the first fully au-
tomatic system that classifies the overall condition of rail
surfaces, and not just individual effects, based on visual
inspection, and produces information that can be directly
acted up on, for rail maintenance. The benefits of such a
system will be multiple: Such an automatic system would
enable much more frequent inspection of the entirety of
the installed rail track. Thus small defects could be ad-
dressed before, through additional wear and tear, they be-
come larger and deeper and potentially threaten train and
passenger safety. Furthermore deteriorated rail surfaces cre-
ate ride quality issues, accelerated wear of components and
cause additional friction which slows trains down and in-
creases fuel consumption. Hence maintaining rail in good
condition has significant economic and environmental ben-
efits.

The rest of the paper is organized as follows: We de-
scribe related previous work in Section 2. In Section 3 we
present our automatic rail surface segmentation method. In



Section 4, we define our rail surface classification method.
In Section 5 we present our experimental results. Section 6
concludes the paper.

2. Previous Work
Computer vision techniques have been applied before in

the railway inspection industry. Different methods and de-
vices have been designed and proposed for different com-
ponents of the rail [19, 20, 21], such as fasteners [7, 12]
and joint bars [1]. In [17] and [27], methods to detect tie-
related components including ties, tie plates and anchors,
are proposed.

One of the earliest working applications of computer vi-
sion was by Magnus et al. for analyzing the rail specifically
targeting the wear condition [19]. The system focused on
collecting rail cross-sections using a combination of video
cameras and light sources. The basis of the analysis was to
acquire video images of the rail and then apply a threshold
for edge detection to extract the rail profile. This was further
improved in work by KLD presented at the Machine Vision
in Wheel/Rail Maintenance Seminar in 1987 [21] where an
edge detection algorithm helped to more accurately define
the profile. Later in 1995, D. L. Magnus [20] showed how
peak detection for edge detection applied to the Gaussian
light distribution, further defined the rail surface condition.

There are previous studies on defects on the rail surface,
that typically target a specific defect. In [22], Mandriota et
al. propose a filter-based rail surface defect detection sys-
tem, focused on corrugation. The texture is extracted by
Gabor filters, wavelets and Gabor wavelet filters, statistical
features are computed and detection results using KNN and
SVM are compared. Deutschl et al. [8] design a novel light-
ing system to facilitate the detection of defects. They illumi-
nate the rail surface with 2 light sources of different colors
from different positions, hence defects are expected to be on
the shaded part under this lighting system. The appropriate
shading features are input to a decision tree. Li et al. [16]
target 2 kinds of defects based on area size. They localize
defects by aggregating intensities along the longitudinal and
transversal axes and detecting the defect signatures. Liu et
al. [18] describe a spalling defect detection system, in which
candidate spalling defect regions are found through relative
thresholding of the defect regions. In an example of surface
classification, Huber-Mörk et al. [13] describe a system us-
ing a specialized illuminant configuration, which uses Ga-
bor filter banks to extract 2D texture descriptions and cate-
gorize defects using a Gaussian mixture model. More com-
prehensive surveys can be found in [3, 24].

Compared to previous work which either addresses spe-
cific type of defects, or models the defects classes based on
clustering, we cooperate closely with field experts to study
the rail surface defects comprehensively and quantize the
defect severity levels to 8 classes. Meanwhile, rather than

rely on only one prediction model, our classification module
combines several classifiers, forming an ensemble model,
which boosts the result a step further. Moreover, our sys-
tem is an end-to-end system which includes a segmenta-
tion module and a classification module. It can directly take
a RailScope image as input and output the defect severity
level.

3. Automatic Rail Surface Segmentation
We propose a method to automatically segment the rail

surface from high resolution images captured with the
RailScope imaging system. Besides the rail surface, the
captured images also include some background environ-
ment elements like rocks, mud, and other rail components
such as crossties or fasteners, see figure 3.a for an exam-
ple image. We want to extract the rail surface from the raw
image and exclude the background. Direct segmentation of
railway components is non-trivial [12]. It is worth noting
that all rail surfaces are bounded by 2 straight lines. These
lines correspond to the boundaries of the surface and are
almost vertical. We pose rail surface segmentation as the
problem of finding this pair of parallel straight lines. To
solve it, first we compute an edge map of the image using a
structured output random forest trained on hand segmented
images, see figure 3.b. Then, we apply a Generalized Hough
transform to find the pair of parallel lines corresponding to
the rail surface boundaries, see Figure 3.e. Similarly, Li et
al. [17] use a Generalized Hough transform on a Sobel edge
map to detect rail ties.

3.1. Generalized Hough Transform for Rail Surface
Segmentation

A pair of parallel straight lines, corresponding to the rail
boundaries, defines the rail surface region in the image. We
parameterize this region with 3 parameters, θ, ρ and width
as shown in Figure 4.a. The parameters are defined as:

• θ indicates the parallel line direction since the rail sur-
face boundaries are not perfectly vertical in the image.

• ρ represents the distance of the left boundary of the rail
surface from the left top point of the image.

• width is the minimal distance between 2 parallel
straight lines.

Parallel lines are defined in terms of θ, ρ and width as:{
x ∗ cos(θ) + y ∗ sin(θ)− ρ = 0

x ∗ cos(θ) + y ∗ sin(θ)− ρ− width = 0
(1)

We apply a Generalized Hough transform on the edge
map of the image using this parameterization. The coordi-
nates of the most voted point in parameter space correspond



(a) Input image (b) Hand annotated
segmentation

(c) Random Forest edge
map

(d) Segmentation from RF
edge map

(e) Canny edge map (f) Segmentation from
Canny edge map

Figure 3: Rail surface segmentation results. Compari-
son of segmentation results using structured edge detection
(Random Forests) and Canny edge detection on rail images.
(a) Original input image. (b) Hand annotated rail bound-
aries in red. (c) Edge map obtained by structured edge de-
tection with Random Forests. (d) Segmentation results in
green of the Generalized Hough Transform on the Random
Forest edge map of (c). (e) Canny edge map from an im-
age smoothed by a guided filter. (f) Segmentation results
in blue of the Generalized Hough Transform on the Canny
edge map of (e). The segmentation in (d) has a Jaccard
index of 0.9887 with the ground truth (b) while the segmen-
tation in (f) has 0.7606.

to the optimal values for θ, ρ andwidth. To accelerate com-
putation, we restrict the parameter range to correspond to
the ranges found in human-segmented images.

3.2. Annotation Tool

We developed a graphical user interface (GUI) for man-
ual annotation of the rail surface region in images. The main
window of the annotator is shown in figure 4. Users can eas-
ily drag 3 slider bars, that correspond to the 3 parameters
θ, ρ and width used by the Generalized Hough transform,

ρ θ

(a) (b)

Figure 4: Rail surface region annotation. (a) Annotation
tool GUI. (b) Rail surface region defined by 3 parameters θ,
ρ and width. Note that the dashed line is perpendicular to
the 2 solid lines.

to properly align the 2 red straight lines to the rail surface
boundaries in the image.

3.3. Edge Map Generation

To segment the rail surface we apply the Generalized
Hough transform on the edge map of the image. We first
tried the Canny edge detector [4] to obtain the edge map.
As we can see in Figure 3.c, Canny finds confounding edges
in the background regions. These often lead to poor rail
segmentation as shown in Figure 3.f. To generate better
edge maps that contain only semantically relevant edges,
we learn a rail edge detector from labeled data. We train
a random forest with structured output[9]. We use the hu-
man segmented rail images as input ground-truth. We use
rail image intensity and gradient features. In Figure 3.b we
show the edge map obtained with the trained random for-
est. We can clearly see how most of the detected edges
correspond to rail edges. Moreover, very few background
edges are detected. In Figure 3.e we can see the rail surface
segmentation obtained by applying the Generalized Hough
transform on the random forest edge map.

4. Classification of Defect Severity Level

In this Section we describe our two level classification
system using texton dictionaries, texton forests and an en-
semble classifier. Classifying the severity of the segmented
rail surface images (Sec. 3) is a texture classification task.
Rail surface defects exhibit distinctive textural character-
istics, depending on the severity level. A widely-used
method for classifying images is the Bag of Words model
(BoW) [11]. It has been successful on multiple image clas-
sification datasets in computer vision [31]. This model gen-
erates image descriptors of images based on the histogram
of visual words. In our system, we apply texton dictionaries
and texton forests to form the visual words.



4.1. Texton Dictionary

Texton is a term describing the response of a linear filter
bank. A filter bank separates the input signals into multi-
ple components. We use the Full Maximum Response filter
bank (FMR8) [28, 29], which contains 38 low dimensional
and rotationally invariant filters.

The detailed process is as follows: every pixel of the
image is convolved by all 38 filters, which include 6 ori-
entations at 3 scales for 2 oriented filters (edge filters and
bar filters), plus 2 isotropic filters: a Gaussian filter and a
LoG filter. This process is repeated for all images, and the
responses for each pixel form a 38-dimensional feature vec-
tor. Then the representative features or visual words can be
obtained by clustering all feature vectors into k centers. We
use k-means to construct a dictionary of k words (each cen-
troid is a visual word). Thus, for each image, the descriptor
will be a histogram of k bins, normalized for image size.
Each bin contains the number of pixels that are closest to
the corresponding visual word. Using these image descrip-
tors, we train a χ2-kernel SVM on the training set and use
it to predict the labels of the images on the test set.

In practice, using all pixels within an image and all im-
ages in a category requires too much memory. We randomly
sample p% pixels per image and m% images per category.

4.2. Texton Forest

Texton forests were proposed by Shotton et al. [26] as
a variant of random forests. The novelty is that instead of
training a random forest to predict the label of the test data,
texton forest trains a random forest model to extract an im-
age descriptor, by making use of both the leaf nodes and
internal nodes of each decision tree.

Texton forests are trained like conventional random
forests. Each decision tree in the forest is trained with a
subset of the training set and at every split of the tree, only
a small number of the features are taken into considera-
tion. We assume h(x, θj) is the split function for data x
at node j and θ is the parameter set. For example, using
θ = {m,n, τ}, and the difference between 2 feature values
in x, d(x,m, n) = xm − xn, we can define a split function
as:

h(x, θ) =

{
0 if d(x,m, n) < τ

1 otherwise
(2)

Other split functions used in texton forest include the raw
feature value d(x,m) = xm and the absolute difference
between 2 features d(x,m, n) = |xm − xn|. The feature
vector x is an image patch and m,n are the coordinates of
the pixels.

Using this trained forest model, each image patch gener-
ates a traversal of the forest. Thus we compute an image
descriptor as a histogram which counts how many times
each (non-root) node has been traversed. As with Texton

Dictionaries, we train a χ2-kernel SVM on the texton forest
descriptors.

4.3. Ensemble Model

Accuracy can be further improved by fusing the de-
cisions from several models through an ensemble model.
There are many ways to train an ensemble model or com-
bine the results of several models together such as boosting,
bagging and mixture of experts. Zhou [32] provides a com-
prehensive survey of ensemble methods.

Here, we apply stacking [30][2], which is a general
“combining by learning” framework to learn another model
based on the outputs of the existing models. We call
the existing models the first-level learners and the model
that combines them the second-level learner or meta-
learner[32]. The meta-learner concatenates the outputs of
the first-level learners into an input feature vector with the
same ground-truth label for supervised learning.

It is meaningless to create an ensemble of identical learn-
ers. So the first-level learners are decorrelated by using clas-
sifiers trained with different descriptors using different sub-
sets of the data and different parameters. In our system, we
train 5 texton forest SVM classifiers and 4 texton dictionary
SVM classifiers. Each classifier estimates the probability pi
the input belongs to class i. Hence for our 8 classes, the
classifier outputs P = [p1, p2, ..., p8] for every input x. The
concatenation of the 9 probability estimate vectors gener-
ated by the first-level classifiers for x forms a new feature
vector of length 72 which is the input of the meta-learner.
Finally, we train a linear-kernel SVM as the meta-learner to
further improve classification results.

5. Experimental Results

For our experiments we use a dataset of 939 rail images.
The images are categorized by field experts into 8 defect
severity levels: from category 0 for no defects, up to cate-
gory 7 for serious defects. The distribution of images per
defect category is shown in Table 1. The dataset also con-
tains ground-truth rail surface masks resulting from human
segmentation of the rail images.

Category 0 1 2 3 4 5 6 7
Number 110 111 101 148 214 92 105 58

Table 1: Category distribution in the dataset. Number of
images in each defect severity level.

We evaluate our approach using 4-fold cross validation
on the dataset. We divide the dataset into 4 disjoint splits
of equal size. The images are randomly drawn from each
category uniformly so as to keep each split with a similar
label distribution.



Method mean JI std JI
SE + Hough 0.986 0.031
Canny + Hough 0.858 0.138

Table 2: Rail surface segmentation results. Segmenta-
tion results measured by the Jaccard Index(JI) between the
segmented rail region and the ground-truth region mask.

5.1. Automatic Segmentation Results

We evaluate the rail surface segmentation using the Jac-
card index, computed as follows:

J(Rs, Rg) =
|Rs ∩Rg|
|Rs ∪Rg|

(3)

where Rg is the ground truth rail surface region and Rs is
the segmented region. The Jaccard index penalizes both
background pixels wrongly segmented as rail, and rail pix-
els wrongly segmented as background.

We evaluate two versions of our segmentation method
based on the Generalized Hough transform, using the Canny
edge map (denoted as Canny+Hough), and using the edge
map obtained by the trained random forest with structure
output (SE+Hough). Table 2 shows the segmentation re-
sults measured by the mean Jaccard Index (mean JI) for
all images. Our segmentation method using Canny edge
maps yields a mean JI of 0.858. Our segmentation method
using edge maps from the structured output random forest
achieves a mean JI of 0.986.

In terms of computational time, our segmentation
method with the random forest edge map implemented as a
mex function in Matlab takes 4.8s to segment a 1600×1200
image. The segmentation method using the Canny edge
map (computed with the Matlab built-in function edge)
takes 4.2s per image. Experiments were performed on a
desktop computer with I3 CPU at 3.6GHz and 8GB RAM.

5.2. First Level Classification Results

We train a texton forest with 12 trees of maximal depth
of 10. The forest uses patches of size 32 × 32 pixels with
a stride of 16. We perform data augmentation by randomly
rotating, scaling, and adding Gaussian noise to the original
patches. We use the trained forest to generate a texture de-
scriptor for the data. Using this texture descriptor we train
a χ2-kernel SVM classifier for rail images. We denote this
method as TF.

To create a texton dictionary, we first apply the full MR8
filter bank[28] on the segmented rail surface images. Then,
we subsample the filter responses by randomly selecting
m% images per category and then randomly choosing p%
pixels of the selected images. Finally, we cluster the sub-
sampled filter responses using k-means to generate a dic-
tionary of k visual words. For our experiments we set m

to 25 images, p to 20% of the pixels, and k to 512 words.
Using this texton dictionary we compute a histogram of tex-
tons to describe the texture of the rail surface images. Using
this descriptor we train a χ2-kernel SVM classifier for rail
images. We denote this method as TD.

We evaluate our classification result by the main diago-
nal accuracy, which is the sum of the diagonal elements of
the confusion matrix divided by the sum of the elements of
the whole matrix. Additionally, we report the tridiagonal
accuracy, which is the sum of the elements of the tridiago-
nal band of the confusion matrix over the sum of elements
of the whole matrix. This looser definition of accuracy con-
siders correct predictions that are one level up or down from
the ground truth. This is often a reasonable relaxation, given
annotation error and the inherent smoothing between rail
sections, in the rail grinding process.

In table 3, when the classification module is trained and
tested using ground truth segmented rail surface images,
namely, hand segmented images, texton forests (TF-GTseg)
can achieve 79.5% main diagonal accuracy and 94.8% tridi-
agonal accuracy. Texton dictionaries (TD-GTseg) perform
slightly worse, with 78.2% main diagonal accuracy and
94.2% tridiagonal accuracy.

Furthermore, as a baseline, we include the results of His-
togram of oriented Gradients (HOG) [6] with SVM classi-
fier and Local Binary Patterns (LBP) [23] with k-nearest
neighbors classifier (KNN). We also implemented a Convo-
lutional Neural Network (CNN) classification method based
on the AlexNet deep learning architecture [15]. In particu-
lar, the CNN is trained on 400 by 400 regions randomly ex-
tracted from the rail surface images in each iteration. At test
time, we apply the CNN on five regions (top left, top right,
bottom left, bottom right, center) and average the predicted
probabilities for each class.

On our dataset, HOG+SVM achieves a main diago-
nal accuracy of 73.6% and tridiagonal accuracy of 89.8%,
which is lower than both texton forest and texton dictionar-
ies. LBP+KNN performance is close to texton dictionaries.
The CNN model (AlexNet-GTseg) does not perform as well
as texton forests or texton dictionaries with a main diagonal
accuracy of 75.2% and tridiagonal accuracy of 92.2%. This
may be because our dataset is too small to train a good CNN
model.

The results of both texton forests and texton dictionaries
drop when they are trained and tested using automatically
segmented rail surface images. The main diagonal accu-
racy of texton forests (TF-AutoSeg) drops 1.8%, to 77.7%,
and the tridiagonal accuracy drops 1.3% to 93.5%. Texton
dictionary (TD-AutoSeg) accuracy drops 1% on the main
diagonal to 77.2%, and drops 0.8% to 93.4% on tridiag-
onal accuracy. This demonstrates that imperfect segmen-
tation still influences adversely the classification module,
both because included background pixels may pollute the



Method Main Diag AC Tridiag AC
TF-GTseg 79.5 94.8
TD-GTseg 78.2 94.2
TF-AutoSeg 77.7 93.5
TD-AutoSeg 77.2 93.4
AlexNet-GTseg 75.2 92.2
HOG+SVM 73.6 89.8
LBP+KNN 78.2 94.2

Table 3: Defect severity level classification results (sin-
gle classifier). TD: Texton Dictionary. TF: Texton Forest.
Methods marked “-AutoSeg” are trained and tested with au-
tomatically segmented rail surface images. Methods trained
and tested using manually segmented rail surface images are
marked “-GTseg”. Main Diag AC: Main Diagonal Accu-
racy. Tridiag AC: Tridiagonal Accuracy. HOG+SVM and
LBP+KNN are tested with manually segmented rail surface
images.

Method Main Diag AC Tridiag AC
4TD-GTseg 78.0 94.2
5TF-GTseg 79.6 94.4
4TD5TF-GTseg 80.4 94.8
ES-GTseg 82.0 95.6
ES-AutoSeg 79.9 94.1

Table 4: Defect severity level classification results (en-
semble model). ES: EnSemble model. 4TD: first-level
learners are 4 SVMs using Texton Dictionary descriptors.
5TF: first-level learners are 5 SVMs using Texton Forest
descriptors. Methods marked “-AutoSeg” are trained and
tested with automatically segmented rail surface images.
Methods trained and tested using manually segmented rail
surface images are marked “-GTseg”. Main Diag AC: Main
Diagonal Accuracy. Tridiag AC: Tridiagonal Accuracy.

visual words and because missing rail surface pixels may
include discriminant texture patterns.

5.3. Ensemble Model Classification Results

The first level learners in our proposed ensemble model
are 5 texton forest SVM classifiers and 4 texton dictionary
SVM classifiers. The texton forest models are trained on
different subsets of the data (bagging), so that the classifiers
are decorrelated. We create 3 texton dictionaries with 256,
512 and 1024 words, respectively. We also create a fourth
dictionary, by clustering the filter responses of each cate-
gory separately into 64 clusters. Then, we aggregate the 64
words from each category to create a 512-word dictionary.

The proposed meta-learner is a linear-kernel SVM
trained with the probability estimation output of all 9 first-
level learners. In Table 4, we show classification results
for the meta-learner. The meta-learner trained with ground-
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(b) Confusion matrix on automatically segmented images

Figure 5: Confusion matrices of the ensemble model re-
sults.

Category Recall Precision F-measure
0 87.0 82.4 84.7
1 81.5 83.0 82.2
2 85.0 89.5 87.2
3 79.0 87.3 83.0
4 89.6 81.9 85.6
5 65.2 75.0 69.8
6 82.7 76.1 79.3
7 73.2 75.9 74.5

mean 80.4 81.4 80.8
std 7.9 5.4 6.0

Table 5: Performance of ensemble model in each cate-
gory

truth segmentation (ES-GTseg) accurately predicts 82% of
the rail surface images. That is a 3% increase with respect
to a single Texton Forest classifier (TF in Table 3. Further-
more, the tridiagonal accuracy of the meta-learner is 95.8%,
(94.9% for the single Texton Forest classifier). In figure 5.b
we show the confusion matrix results of the meta-learner.

We compare the performance of the SVM meta-learner
with the results of averaging the probability output of the
first level learners in table 4. The SVM meta-learner clearly
outperforms averaging texton dictionary classifiers (4TD-
GTseg), texton forest classifiers(5TF-GTseg), and also av-
eraging all first level classifiers(4TD5TF-GTseg).



(a) actual level: 0
predicted level: 3

(b) actual level: 1
predicted level: 4

(c) actual level: 2
predicted level: 0

(d) actual level: 3
predicted level: 1

(e) actual level: 5
predicted level: 7

(f) actual level: 7
predicted level: 2

Figure 6: Failure cases.

We also measured the performance of the proposed SVM
meta-learner when using first level learners trained on auto-
matically segmented images (ES-AutoSeg). As we can see
in table 4, there is a small performance drop when compared
to using ground truth segmentation. Main diagonal accu-
racy drops by 2% while tridiagonal accuracy drops by 1.5%.
In Figure 5 we compare the confusion matrices for the SVM
meta-learner using ground-truth segmentation (Figure 5.a)
and automatic segmentation segmentation (Figure 5.b).

Moreover, we evaluate the performance of the meta-
learner in each category in table 5. The definition of recall,
precision and F-measure follows that in [25]. The perfor-
mance of the meta-learner in each category varies within
a relatively small range. Recall in category 0 is highest,
which is 87.0%, while category 5 has the lowest recall of
65.2%. Category 2 has the highest precision of 89.5%, and
precision in category 5 is lowest, that is 75.0%. The meta-
learner achieves the highest F-measure of 87.2% in category
2 and the lowest of 69.8% in category 5.

5.4. Classification Failures

Some failure cases are shown in figure 6. The defect
severity level is over-estimated in figure 6.a and figure 6.b
possibly because dirt on the surface is mistakenly classified
as a defect. In figure 6.c, the defect severity level is under-
estimated because the lower-right part of the rail surface is
under-lit and the texture is suppressed. The severity level in
figure 6.d is underestimated because while there are numer-
ous small-scale defects scattered on the surface, individual
textons do not contain enough defects.

Figure 6.e and figure 6.f are challenging cases. Though
it appears that the severity level of figure 6.e is higher than
that of figure 6.f, the depth of the defect in figure 6.f might
be deeper, which might require more grinding to restore.

6. Conclusions and Future Work
In this paper, we presented an automatic rail surface de-

fect severity level classification system. This system con-

tains 2 modules: a rail surface segmentation module and a
defect severity classification module. To reduce the influ-
ence of the background pixels, the automatic segmentation
module locates the boundaries of the rail surface by using
Generalized Hough transform together with the edge map
obtained by a trained structured random forest. The seg-
mented rail surface images are classified using a stacked
ensemble model. The first-level learners of this model are
χ2-kernel SVM classifiers which are trained on the descrip-
tors extracted by 5 texton forest models and 4 texton dictio-
naries and the meta-learner is a linear kernel SVM built on
the probability output of the first-level learners. Thus, we
achieved a main diagonal accuracy of 82% and tridiagonal
accuracy of 95.58% on our dataset.

We have demonstrated how the use of state-of-the-art
techniques for texture analysis can produce information that
can be useful to directly improve rail condition, with signif-
icant safety, financial and environmental benefits.

Currently, we are working to augment the size of the
dataset, which could lead to training higher accuracy CNN
models. Moreover, we will subdivide the rail surface into
several zones, and try to investigate if more serious defects
are correlated with certain parts of the rail surface.
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