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Abstract
Convolutional Neural Networks (CNN) are state-of-the-

art models for many image classification tasks. However, to
recognize cancer subtypes automatically, training a CNN
on gigapixel resolution Whole Slide Tissue Images (WSI)
is currently computationally impossible. The differentia-
tion of cancer subtypes is based on cellular-level visual
features observed on image patch scale. Therefore, we ar-
gue that in this situation, training a patch-level classifier
on image patches will perform better than or similar to
an image-level classifier. The challenge becomes how to
intelligently combine patch-level classification results and
model the fact that not all patches will be discriminative.
We propose to train a decision fusion model to aggregate
patch-level predictions given by patch-level CNNs, which to
the best of our knowledge has not been shown before. Fur-
thermore, we formulate a novel Expectation-Maximization
(EM) based method that automatically locates discrimina-
tive patches robustly by utilizing the spatial relationships
of patches. We apply our method to the classification of
glioma and non-small-cell lung carcinoma cases into sub-
types. The classification accuracy of our method is simi-
lar to the inter-observer agreement between pathologists.
Although it is impossible to train CNNs on WSIs, we ex-
perimentally demonstrate using a comparable non-cancer
dataset of smaller images that a patch-based CNN can out-
perform an image-based CNN.

1. Introduction
Convolutional Neural Networks (CNNs) are currently

the state-of-the-art image classifiers [30, 29, 7, 23]. How-
ever, due to high computational cost, CNNs cannot be ap-
plied to very high resolution images, such as gigapixel

Whole Slide Tissue Images (WSI). Classification of cancer
WSIs into grades and subtypes is critical to the study of dis-
ease onset and progression and the development of targeted
therapies, because the effects of cancer can be observed in
WSIs at the cellular and sub-cellular levels (Fig. 1). Apply-
ing CNN directly for WSI classification has several draw-
backs. First, extensive image downsampling is required by
which most of the discriminative details could be lost. Sec-
ond, it is possible that a CNN might only learn from one of
the multiple discriminative patterns in an image, resulting
in data inefficiency. Discriminative information is encoded
in high resolution image patches. Therefore, one solution is
to train a CNN on high resolution image patches and predict
the label of a WSI based on patch-level predictions.

Figure 1: A gigapixel Whole Slide Tissue Image of a grade
IV tumor. Visual features that determine the subtype and
grade of a WSI are visible in high resolution. In this case,
patches framed in red are discriminative since they show
typical visual features of grade IV tumor. Patches framed in
blue are non-discriminative since they only contain visual
features from lower grade tumors. Discriminative patches
are dispersed throughout the image at multiple locations.

The ground truth labels of individual patches are un-
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known, as only the image-level ground truth label is given.
This complicates the classification problem. Because tu-
mors may have a mixture of structures and texture proper-
ties, patch-level labels are not necessarily consistent with
the image-level label. More importantly, when aggregat-
ing patch-level labels to an image-level label, simple deci-
sion fusion methods such as voting and max-pooling are not
robust and do not match the decision process followed by
pathologists. For example, a mixed subtype of cancer such
as oligoastrocytoma, might have distinct regions of other
cancer subtypes. Therefore, neither voting nor max-pooling
could predict the correct WSI-level label since the patch-
level predictions do not match the WSI-level label.

Figure 2: An overview of our workflow. Top: A CNN is
trained on patches. An EM-based method iteratively elimi-
nates non-discriminative patches. Bottom: An image-level
decision fusion model is trained on histograms of patch-
level predictions, to predict the image-level label.

We propose using a patch-level CNN and training a de-
cision fusion model as a two-level model, shown in Fig. 2.
The first-level (patch-level) model is an Expectation Maxi-
mization (EM) based method combined with CNN that out-
puts patch-level predictions. In particular, we assume that
there is a hidden variable associated with each patch ex-
tracted from an image that indicates whether the patch is
discriminative (i.e. the true hidden label of the patch is the
same as the true label of the image). Initially, we consider

all patches to be discriminative. We train a CNN model
that outputs the cancer type probability of each input patch.
We apply spatial smoothing to the resulting probability map
and select only patches with higher probability values as
discriminative patches. We iterate this process using the
new set of discriminative patches in an EM fashion. In the
second-level (image-level), histograms of patch-level pre-
dictions are input into an image-level multiclass logistic re-
gression or Support Vector Machine (SVM) [10] model that
predicts the image-level labels.

Pathology image classification and segmentation is an
active research field. Most WSI classification methods fo-
cus on classifying or extracting features on patches [17, 35,
50, 56, 11, 4, 48, 14, 50]. In [50] a pretrained CNN model
extracts features on patches which are then aggregated for
WSI classification. As we show here, the heterogeneity of
some cancer subtypes cannot be captured by those generic
CNN features. Patch-level supervised classifiers can learn
the heterogeneity of cancer subtypes, if a lot of patch la-
bels are provided [17, 35]. However, acquiring such labels
in large scale is prohibitive, due to the need for special-
ized annotators. As digitization of tissue samples becomes
commonplace, one can envision large scale datasets, that
could not be annotated at patch scale. Utilizing unlabeled
patches has led to Multiple Instance Learning (MIL) based
WSI classification [16, 51, 52].

In the MIL paradigm [18, 33, 5], unlabeled instances be-
long to labeled bags of instances. The goal is to predict the
label of a new bag and/or the label of each instance. The
Standard Multi-Instance (SMI) assumption [18] states that
for a binary classification problem, a bag is positive iff there
exists at least one positive instance in the bag. The probabil-
ity of a bag being positive equals to the maximum positive
prediction over all of its instances [6, 54, 27]. Combining
MIL with Neural Networks (NN) [43, 57, 31, 13], the SMI
assumption is modeled by max-pooling. Following this for-
mulation, the Back Propagation for Multi-Instance Prob-
lems (BP-MIP) [43, 57] performs back propagation along
the instance with the maximum response if the bag is posi-
tive. This is inefficient because only one instance per bag is
trained in one training iteration on the whole bag.

MIL-based CNNs have been applied to object recogni-
tion [38] and semantic segmentation [40] in image analy-
sis – the image is the bag and image-windows are the in-
stances [36]. These methods also follow the SMI assump-
tion. The training error is only propagated through the
object-containing window which is also assumed to be the
window that has the maximum prediction confidence. This
is not robust because one significantly misclassified window
might be considered as the object-containing window. Ad-
ditionally, in WSIs, there might be multiple windows that
contain discriminative information. Hence, recent seman-
tic image segmentation approaches [12, 41, 39] smooth the



output probability (feature) maps of the CNNs.
To predict the image-level label, max-pooling (SMI) and

voting (average-pooling) were applied in [36, 30, 17]. How-
ever, it has been shown that in many applications, learning
decision fusion models can significantly improve perfor-
mance compared to voting [42, 45, 24, 47, 26, 46]. Further-
more, such a learned decision fusion model is based on the
Count-based Multiple Instance (CMI) assumption which is
the most general MIL assumption [49].

Our main contributions in this paper are: (1) To the best
of our knowledge, we are the first to combine patch-level
CNNs with supervised decision fusion. Aggregating patch-
level CNN predictions for WSI classification significantly
outperforms patch-level CNNs with max-pooling or vot-
ing. (2) We propose a new EM-based model that identi-
fies discriminative patches in high resolution images auto-
matically for patch-level CNN training, utilizing the spatial
relationship between patches. (3) Our model achieves mul-
tiple state-of-the-art results classifying WSIs to cancer sub-
types on the TCGA dataset. Our results are similar or close
to inter-observer agreement between pathologists. Larger
classification improvements are observed in the harder-to-
classify cases. (4) We provide experimental evidence that
combining multiple patch-level classifiers might actually be
advantageous compared to whole image classification.

The rest of this paper is organized as follows. Sec. 2
describes the framework of the EM-based MIL algorithm.
Sec. 3 discusses the identification of discriminative patches.
Sec. 4 explains the image-level model that predicts the
image-level label by aggregating patch-level predictions.
Sec. 5 shows experimental results. The paper concludes in
Sec. 6. App. A lists the cancer subtypes in our experiments.

2. EM-based method with CNN
An overview of our EM-based method can be found in

Fig. 2. We model a high resolution image as a bag and
patches extracted from it as instances. We have a ground
truth label for the whole image but not for the individual
patches. We model whether an instance is discriminative or
not as a hidden binary variable.

We denote X = {X1, X2, . . . , XN} as the dataset con-
taining N bags. Each bag Xi = {Xi,1, Xi,2, . . . , Xi,Ni}
consists of Ni instances, where Xi,j = 〈xi,j , yi〉 is the j-th
instance and its associated label in the i-th bag. Assuming
the bags are independent and identically distributed (i.i.d.),
the X and the hidden variables H are generated by the fol-
lowing generative model:

P (X,H) =

N∏
i=1

(
P (Xi,1, . . . , Xi,Ni

| Hi)P (Hi)
)

, (1)

where the hidden variable H = {H1, H2, . . . ,HN}, Hi =
{Hi,1, Hi,2, . . . ,Hi,Ni

} andHi,j is the hidden variable that
indicates whether instance xi,j is discriminative for label yi

of bag Xi. We further assume that all Xi,j depends on Hi,j

only and are independent with each other given Hi,j . Thus

P (X,H) =

N∏
i=1

Ni∏
j=1

(
P (Xi,j | Hi,j)P (Hi)

)
. (2)

We maximize the data likelihood P (X) using EM.

1. At the initial E step, we set Hi,j = 1 for all i, j. This
means that all instances are considered discriminative.

2. M step: We update the model parameter θ to maximize
the data likelihood

θ ← argmax
θ

P (X | H; θ)

= argmax
θ

∏
xi,j∈D

P (xi,j , yi | θ)

×
∏

xp,q 6∈D

P (xp,q, yq | θ),

(3)

where D is the discriminative patches set. Assuming
a uniform generative model for all non-discriminative
instances, the optimization in Eq. 3 simplifies to:

argmax
θ

∏
xi,j∈D

P (xi,j , yi | θ)

= argmax
θ

∏
xi,j∈D

P (yi | xi,j ; θ)P (xi,j | θ).
(4)

Additionally we assume an uniform distribution over
xi,j . Thus Eq. 4 describes a discriminative model (in
this paper we use a CNN).

3. E step: We estimate the hidden variables H . In par-
ticular, Hi,j = 1 if and only if P (Hi,j | X) is above
a certain threshold. In the case of image classifica-
tion, given the i-th image, P (Hi,j | X) is obtained by
applying Gaussian smoothing on P (yi | xi,j ; θ) (De-
tailed in Sec 3). This smoothing step utilizes the spatial
relationship of P (yi | xi,j ; θ) in the image. We then
iterate back to the M step till convergence.

Many MIL algorithms can be interpreted through this
formulation. Based on the SMI assumption, the instance
with the maximum P (Hi,j | X) is the discriminative in-
stance for the positive bag, as in the EM Diverse Density
(EM-DD) [55] and the BP-MIP [43, 57] algorithms.

3. Discriminative patch selection
Patches xi,j that have P (Hi,j | X) larger than a thresh-

old Ti,j are considered discriminative and are selected to
continue training the CNN. We present in this section the
estimation of P (H | X) and the choice of the threshold.

It is reasonable to assume that P (Hi,j | X) is correlated
with P (yi | xi,j ; θ), i.e. patches with lower P (yi | xi,j ; θ)



tend to have lower probability xi,j to be discriminative.
However, a hard-to-classify patch, or a patch close to the
decision boundary may have low P (yi | xi,j ; θ) as well.
These patches are informative and should not be rejected.
Therefore, to obtain a more robust P (Hi,j | X), we apply
the following two steps: First, we train two CNNs on two
different scales in parallel. P (yi | xi,j ; θ) is the averaged
prediction of the two CNNs. Second, we simply denoise the
probability map P (yi | xi,j ; θ) of each image with a Gaus-
sian kernel to compute P (Hi,j | X). This use of spatial
relationships yields more robust discriminative patch iden-
tification as shown in the experiments in Sec. 5.

Choosing a thresholding scheme carefully yields sig-
nificantly better performance than a simpler thresholding
scheme [39]. We obtain the threshold Ti,j for P (Hi,j | X)
as follows: We note Si as the set of P (Hi,j | X) values for
all xi,j of the i-th image and Ec as the set of P (Hi,j | X)
values for all xi,j of the c-th class. We introduce the image-
level threshold Hi as the P1-th percentile of Si and the
class-level thresholdRi as the P2-th percentile ofEc, where
P1 and P2 are predefined. The threshold Ti,j is defined
as the minimum value between Hi and Ri. There are two
advantages of our method. First, by using the image-level
threshold, there are at least 1 − P1 percent of patches that
are considered discriminative for each image. Second, by
using the class-level threshold, the thresholds can be easily
adapted to classes with different prior probabilities.

4. Image-level decision fusion model
We combine the patch-level classifiers of Sec. 3 to pre-

dict the image-level label. We input all patch-level pre-
dictions into a multi-class logistic regression or SVM that
outputs the image-level label. This decision level fusion
method [28] is more robust than max-pooling [45]. More-
over, this method can be thought of as a Count-based Mul-
tiple Instance (CMI) learning method with two-level learn-
ing [49] which is a more general MIL assumption [20] than
the Standard Multiple Instance (SMI) assumption.

There are three reasons for combining multiple in-
stances: First, on difficult datasets, we do not want to assign
an image-level prediction simply based on a single patch-
level prediction (as is the case of the SMI assumption [18]).
Second, even though certain patches are not discriminative
individually, their joint appearance might be discriminative.
For example, a WSI of the “mixed” glioma, Oligoastrocy-
toma (see App. A) should be recognized when two single
glioma subtypes (Oligodendroglioma and Astrocytoma) are
jointly present on the slide possibly on non-overlapping re-
gions. Third, because the patch-level model is never perfect
and probably biased, an image-level decision fusion model
may learn to correct the bias of patch-level decisions.

Because it is unclear at this time whether strongly dis-
criminative features for cancer subtypes exist at whole slide

scale [34], we fuse patch-level predictions without the spa-
tial relationship between patches. In particular, the class
histogram of the patch-level predictions is the input to a
linear multi-class logistic regression model [8] or an SVM
with Radial Basis Function (RBF) kernel [10]. Because a
WSI contains at least hundreds of patches, the class his-
togram is very robust to miss-classified patches. To gener-
ate the histogram, we sum up all of the class probabilities
given by the patch-level CNN. Moreover, we concatenate
histograms from four CNNs models: CNNs trained at two
patch scales for two different numbers of iterations. We
found in practice that using multiple histograms is robust.

5. Experiments
We evaluate our method on two Whole Slide Tissue Im-

ages (WSI) classification problems: classification of glioma
and Non-Small-Cell Lung Carcinoma (NSCLC) cases into
glioma and NSCLC subtypes. Glioma is a type of brain
cancer that rises from glial cells. It is the most common ma-
lignant brain tumor and the leading cause of cancer-related
deaths in people under age 20 [1]. NSCLC is the most
common lung cancer, which is the leading cause of cancer-
related deaths overall [3]. Classifying glioma and NSCLC
into their respective subtypes and grades is crucial to the
study of disease onset and progression in order to provide
targeted therapies. The dataset of WSIs used in the exper-
iments part of the public Cancer Genome Atlas (TCGA)
dataset [2]. It contains detailed clinical information and the
Hematoxylin and Eosin (H&E) stained images of various
cancers. The typical resolution of a WSI in this dataset is
100K by 50K pixels. In the rest of this section, we first
describe the algorithm we tested then show the evaluation
results on the glioma and NSCLC classification tasks.

5.1. Patch extraction and segmentation

To train the CNN model, we extract patches of size
500×500 from WSIs (examples in Fig. 3). To capture struc-
tures at multiple scales, we extract patches from 20X (0.5
microns per pixel) and 5X (2.0 microns per pixel) objec-
tive magnifications. We discard patches with less than 30%
tissue sections or have too much blood. We extract around
1000 valid patches per image per scale. In most cases the
patches are non-overlapping given WSI resolution.

To prevent the CNN from overfitting, we perform three
kinds of data augmentation in every iteration. We select a
random 400×400 sub-patch from each 500×500 patch. We
randomly rotate and mirror the sub-patch. We randomly
adjust the amount of Hematoxylin and eosin stained on the
tissue. This is done by decomposing the RGB color of the
tissue into the H&E color space [44], followed by multiply-
ing the magnitude of H and E of every pixel by two i.i.d.
Gaussian random variables with expectation equal to one.



(a) GBM (b) OD (c) OA (d) DA (e) SCC (f) ADC
Figure 3: Some 20X sample patches of gliomas and Non-Small-Cell Lung Carcinoma (NSCLC) from the TCGA dataset. Two
patches in each column belong to the same subtype of cancer. Notice the large intra-class heterogeneity.

5.2. CNN architecture
The architecture of our CNN is shown in Tab. 1. We used

the CAFFE tool box [25] for the CNN implementation. The
network was trained on a single NVidia Tesla K40 GPU.

Layer Filter size, stride Output W×H×N
Input - 400× 400× 3
Conv 10× 10, 2 196× 196× 80

ReLU+LRN - 196× 196× 80
Max-pool 6× 6, 4 49× 49× 80

Conv 5× 5, 1 45× 45× 120
ReLU+LRN - 45× 45× 120

Max-pool 3× 3, 2 22× 22× 120
Conv 3× 3, 1 20× 20× 160

ReLU - 20× 20× 160
Conv 3× 3, 1 18× 18× 200

ReLU - 18× 18× 200
Max-pool 3× 3, 2 9× 9× 200

FC - 320
ReLu+Drop - 320

FC - 320
ReLu+Drop - 320

FC - Dataset dependent
Softmax - Dataset dependent

Table 1: The architecture of our CNN used in glioma and
NSCLC classification. ReLU+LRN is a sequence of Recti-
fied Linear Units (ReLU) followed by Local Response Nor-
malization (LRN). Similarily, ReLU+Drop is a sequence of
ReLU followed by dropout. The dropout probability is 0.5.

5.3. Experiment setup
The WSIs of 80% of the patients are randomly selected

to train the model and the remaining 20% to test. Depending
on method, training patches are further divided into i) CNN
and ii) decision fusion model training sets. We separate the
data twice and average the results. Tested algorithms are:

1. CNN-Vote: CNN followed by voting (average-
pooling). We use all patches extracted from a WSI
to train the patch-level CNN. There is no second-level
model. Instead, the predictions of all patches vote for
the final predicted label of a WSI.

2. CNN-SMI: CNN followed by max-pooling. Same as
CNN-Vote except the final predicted label of a WSI
equals to the predicted label of the patch with maxi-
mum probability over all other patches and classes.

3. CNN-Fea-SVM: We apply feature fusion instead of de-
cision level fusion. In particular, we aggregate the out-
puts of the second fully connected layer of the CNN
on all patches by 3-norm pooling [50]. Then an SVM
with RBF kernel predicts the image-level label.

4. EM-CNN-Vote/SMI, EM-CNN-Fea-SVM: EM-based
method with CNN-Vote, CNN-SMI, CNN-Fea-SVM
respectively. We train the patch-level EM-CNN on dis-
criminative patches identified by the E-step. Depend-
ing on the dataset, the discriminative threshold P1 for
each image ranges from 0.18 to 0.25; the discrimina-
tive threshold P2 for each class ranges from 0.05 to
0.28 (details in Sec. 3). In each M-step, we train the
CNN on all the discriminative patches for 2 epochs.

5. EM-Finetune-CNN-Vote/SMI: Similar to EM-CNN-
Vote/SMI except that instead of training a CNN
from scratch, we fine-tune a pretrained 16-layer CNN
model [46] by training it on discriminative patches.

6. CNN-LR: CNN followed by logistic regression. Same
as CNN-Vote except that we train a second-level multi-
class logistic regression to predict the image-level la-
bel. One tenth of the patches in each image is held
out from the CNN to train the second-level multi-class
logistic regression.

7. CNN-SVM: CNN followed by SVM with RBF kernel
instead of logistic regression.



8. EM-CNN-LR/SVM: EM-based method with CNN-LR
and CNN-SVM respectively.

9. EM-CNN-LR w/o spatial smoothing: We do not apply
Gaussian smoothing to estimate P (H | X). Otherwise
similar to EM-CNN-LR.

10. EM-Finetune-CNN-LR/SVM: Similar to EM-CNN-
LR/SVM except that instead of training a CNN from
scratch, we fine-tune a pretrained 16-layer CNN
model [46] by training it on discriminative patches.

11. SMI-CNN-SMI: CNN with max-pooling at both dis-
criminative patch identification and image-level pre-
diction steps. For the patch-level CNN training, in
each WSI only one patch with the highest confidence
is considered discriminative.

12. NM-LBP: We extract Nuclear Morphological fea-
tures [15] and rotation invariant Local Binary Pat-
terns [37] from all patches. We build a Bag-of-Words
(BoW) [19, 53] feature using k-means followed by
SVM with RBF kernel [10], as a non-CNN baseline.

13. Pretrained-CNN-Fea-SVM: Similar to CNN-Fea-
SVM. But instead of training a CNN, we use a
pretrained 16-layer CNN model [46] to extract
features from patches. Then we select the top 500
features according to accuracy on the training set [50].

14. Pretrained-CNN-Bow-SVM: We build a BoW model
using k-means on features extracted by the pretrained
CNN, followed by SVM [50].

5.4. WSI of glioma classification
There are WSIs of six subtypes of glioma in the TCGA

dataset [2]. The numbers of WSIs and patients in each class
are shown in Tab. 2. All classes are described in App. A.

Gliomas GBM OD OA DA AA AO
# patients 209 100 106 82 29 13
# WSIs 510 206 183 114 36 15

Table 2: The numbers of WSIs and patients in each class
from the TCGA dataset. Class descriptions are in App. A.

The results of our experiments are shown in Tab. 3.
The confusion matrix is given in Tab. 4. An experiment
showed that the inter-observer agreement of two experi-
enced pathologists on a similar dataset was approximately
70% and that even after reviewing the cases together, they
agreed only around 80% of the time [22]. Therefore, our
accuracy of 77% is similar to inter-observer agreement.

In the confusion matrix, we note that the classification
accuracy between GBM and Low-Grade Glioma (LGG)
is 97% (chance was 51.3%). A fully supervised method
achieved 85% accuracy using a domain specific algorithm
trained on ten manually labeled patches per class [35]. Our

Methods Acc mAP
CNN-Vote 0.710 0.812
CNN-SMI 0.710 0.822
CNN-Fea-SVM 0.688 0.790
EM-CNN-Vote 0.733 0.837
EM-CNN-SMI 0.719 0.823
EM-CNN-Fea-SVM 0.686 0.790
EM-Finetune-CNN-Vote 0.719 0.817
EM-Finetune-CNN-SMI 0.638 0.758
CNN-LR 0.752 0.847
CNN-SVM 0.697 0.791
EM-CNN-LR 0.771 0.845
EM-CNN-LR w/o spatial smoothing 0.745 0.832
EM-CNN-SVM 0.730 0.818
EM-Finetune-CNN-LR 0.721 0.822
EM-Finetune-CNN-SVM 0.738 0.828
SMI-CNN-SMI 0.683 0.765
NM-LBP 0.629 0.734
Pretrained CNN-Fea-SVM 0.733 0.837
Pretrained-CNN-Bow-SVM 0.667 0.756
Chance 0.513 0.689

Table 3: Glioma classification results. The proposed EM-
CNN-LR method achieved the best result, close to inter-
observer agreement between pathologists. (Sec. 5.4 ).

Predictions
Ground Truth GBM OD OA DA AA AO

GBM 214 0 2 0 1 0
OD 1 47 22 2 0 1
OA 1 18 40 8 3 1
DA 3 9 6 20 0 1
AA 3 2 3 3 4 0
AO 2 2 3 0 0 1

Table 4: Confusion matrix of glioma classification. The na-
ture of Oligoastrocytoma causes the most confusions. See
Sec. 5.4 for details.

method is the first to classify five LGG subtypes automat-
ically, a much more challenging classification task than
the benchmark GBM vs. LGG classification. We achieve
57.1% LGG-subtype classification accuracy with chance at
36.7%. Most of the confusions are related to oligoastrocy-
toma (OA) since it is a mixed glioma that is challenging
for pathologists to agree on, according to a neuropathology
study: “Oligoastrocytomas contain distinct regions of oligo-
dendroglial and astrocytic differentiation... The minimal
percentage of each component required for the diagnosis
of a mixed glioma has been debated, resulting in poor inter-
observer reproducibility for this group of neoplasms.” [9].

We compare recognition rates for the OA subtype. The
F-score of OA recognition is 0.426, 0.482, and 0.544 using
PreCNN-Fea-SVM, CNN-LR, and EM-CNN-LR respec-
tively. We thus see that the improvement over other methods
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Figure 4: Examples of discriminative patch (region) seg-
mentation (best viewed in color). Discriminative regions
are indicated in red. Diagnostic or highly discriminative re-
gions are yellow. Non-discriminative regions are in black.
Pathologist: ground truth by a pathologist. Max-pooling:
results by CNN with the SMI assumption (SMI-CNN-SMI).
The discriminative patches are indicated by red arrows.
EM: results by our EM-based patch-level CNN (EM-CNN-
Vote/SMI/LR). Notice that max-pooling does not segment
enough discriminative regions.

becomes increasingly more significant using our proposed
method on the harder-to-classify classes.

The discriminative patch (region) segmentation results in
Fig. 4 demonstrate the quality of our EM-based method.

5.5. WSI of NSCLC classification
We use three major subtypes of Non-Small-Cell Lung

Carcinoma (NSCLC). Numbers of WSIs and patients in
each class are in Tab. 5. All classes are listed in App. A.

NSCLCs SCC ADC ADC-mix
# patients 316 250 75
# WSIs 347 291 80

Table 5: The numbers of WSIs and patients in each class
from the TCGA dataset. Class descriptions are in App. A.

Experimental results are shown in Tab. 6; the confusion
matrix is in Tab. 7. When classifying SCC vs. non-SCC,
inter-observer agreement between pulmonary pathology ex-
perts and between community pathologists measured by
Cohen’s kappa is κ = 0.64 and κ = 0.41 respectively [21].
We achieved κ = 0.75. When classifying ADC vs. non-
ADC, the inter-observer agreement between experts and be-
tween community pathologists are κ = 0.69 and κ = 0.46
respectively [21]. We achieved κ = 0.60. Therefore, our

Methods Acc mAP
CNN-Vote 0.702 0.838
CNN-SMI 0.731 0.852
CNN-Fea-SVM 0.637 0.793
EM-CNN-Vote 0.714 0.842
EM-CNN-SMI 0.731 0.850
EM-CNN-Fea-SVM 0.637 0.791
EM-Finetune-CNN-Vote 0.773 0.877
EM-Finetune-CNN-SMI 0.729 0.853
CNN-LR 0.727 0.845
CNN-SVM 0.738 0.856
EM-CNN-LR 0.743 0.856
EM-CNN-SVM 0.759 0.869
EM-Finetune-CNN-LR 0.784 0.883
EM-Finetune-CNN-SVM 0.798 0.889
SMI-CNN-SMI 0.531 0.749
Pretrained CNN-Fea-SVM 0.778 0.879
Pretrained-CNN-Bow-SVM 0.759 0.871
Chance 0.484 0.715

Table 6: NSCLC classification results. The proposed EM-
CNN-SVM and EM-Finetune-CNN-SVM achieved best re-
sults, close to the inter-observer agreement between pathol-
ogists. See Sec. 5.5 for details.

Predictions
Ground Truth SCC ADC ADC-mix

SCC 199 26 0
ADC 30 155 11

ADC-mix 2 25 17
Table 7: The confusion matrix of NSCLC classification.

results appear close to inter-observer agreement.
The ADC-mix subtype is hard to classify because it con-

tains visual features of multiple NSCLC subtypes. The
Pretrained CNN-Fea-SVM method achieves an F-score of
0.412 recognizing ADC-mix cases, whereas our proposed
method EM-Finetune-CNN-SVM achieves 0.472. Consis-
tent with the glioma results, our method’s performance ad-
vantages are more pronounced in the hardest cases.

5.6. Rail surface defect severity grade classification
We evaluate our approach beyond classification of

pathology images. A CNN cannot be applied to gigapixel
images directly because of computational limitations. Even
when the images are small enough for CNNs, our patch-
based method compares favorably to an image-based CNN
if discriminative information is encoded in image patch
scale and dispersed throughout the images.

We classify the severity grade of rail surface defects. Au-
tomatic defect grading can obviate the need for laborious
examination and grading of rail surface defects on a regular
basis. We used a dataset [32] of 939 rail surface images with
defect severity grades from 0 to 7. Typical image resolution



(a) Grade 0 (b) Grade 2 (c) Grade 4 (d) Grade 7
Figure 5: Sample images of rail surfaces. The grade indi-
cates defect severity. Notice that the defects are in image
patch scale and dispersed throughout the image.

is 1200×500, as in Fig. 5.
To support our claim, we tested two additional methods:

1. CNN-Image: We apply the CNN on image scale di-
rectly. In particular, we train the CNN on 400×400
regions randomly extracted from images in each itera-
tion. At test time, we apply the CNN on five regions
(top left, top right, bottom left, bottom right, center)
and average the predictions.

2. Pretrained CNN-ImageFea-SVM: We apply a pre-
trained 16-layer network [46] to rail surface images to
extract features, and train an SVM on these features.

The CNN used in this experiment has a similar achitec-
ture to the one described in Tab. 1 with smaller and fewer
filters. The size of patches in our patch-based methods is 64
by 64. We apply 4-fold cross-validation and show the aver-
aged results in Tab. 8. Our patch-based methods EM-CNN-
SVM and EM-CNN-Fea-SVM outperform the conventional
image-based method CNN-Image. Moreover, results using
CNN features extracted on patches (Pretrained CNN-Fea-
SVM) are better than results with CNN features extracted
on images (Pretrained-CNN-ImageFea-SVM).

6. Conclusions
We presented a patch-based Convolutional Neural Net-

work (CNN) model with a supervised decision fusion model
that is successful in Whole Slide Tissue Image (WSI)
classification. We proposed an Expectation-Maximization
(EM) based method that identifies discriminative patches
automatically for CNN training. With our algorithm, we
can classify subtypes of cancers given WSIs of patients
with accuracy similar or close to inter-observer agree-
ments between pathologists. Furthermore, we experimen-
tally demonstrate using a comparable non-cancer dataset
of smaller images, that the performance of our patch-based
CNN compare favorably to that of an image-based CNN. In
the future we will leverage the non-discriminative patches

Methods Acc mAP
CNN-Vote 0.695 0.823
CNN-SMI 0.700 0.801
CNN-Fea-SVM 0.822 0.903
EM-CNN-Vote 0.683 0.817
EM-CNN-SMI 0.684 0.799
EM-CNN-Fea-SVM 0.830 0.908
CNN-LR 0.764 0.867
CNN-SVM 0.803 0.886
EM-CNN-LR 0.772 0.871
EM-CNN-SVM 0.813 0.895
SMI-CNN-SMI 0.258 0.461
Pretrained CNN-Fea-SVM 0.808 0.894
CNN-Image 0.770 0.876
Pretrained CNN-ImageFea-SVM 0.778 0.878
Chance 0.228 0.438

Table 8: Rail surface defect severity grade classification re-
sults. Our patch-based method EM-CNN-SVM and EM-
CNN-Fea-SVM outperform image-based methods CNN-
Image and Pretrained CNN-ImageFea-SVM significantly.

as part of the data likelihood in the EM formulation. We
will optimize CNN-training so that it scales up to larger
scale pathology datasets.

Acknowledgment
This work was supported in part by 1U24CA180924-

01A1 from the National Cancer Institute, R01LM011119-
01 and R01LM009239, and partially supported by NSF IIS-
1161876, IIS-1111047, FRA DTFR5315C00011, the Sub-
sample project from DIGITEO Institute, France, and a gift
from Adobe Corp. We thank Ke Ma for providing the rail
surface dataset.

Appendix A. Description of cancer subtypes
GBM Glioblastoma, ICD-O 9440/3, WHO grade IV. A

Whole Slide Image (WSI) is classified as GBM iff one
patch can be classified as GBM with high confidence.

OD Oligodendroglioma, ICD-O 9450/3, WHO grade II.
OA Oligoastrocytoma, ICD-O 9382/3, WHO grade II;

Anaplastic oligoastrocytoma, ICD-O 9382/3, WHO
grade III. This mixed glioma subtype is hard to clas-
sify even by pathologists [22].

DA Diffuse astrocytoma, ICD-O 9400/3, WHO grade II.
AA Anaplastic astrocytoma, ICD-O 9401/3, WHO grade

III.
AO Anaplastic oligodendroglioma, ICD-O 9451/3, WHO

grade III.
LGG Low-Grade-Glioma. Include OD, OA, DA, AA, AO.
SCC Squamous cell carcinoma, ICD-O 8070/3.
ADC Adenocarcinoma, ICD-O 8140/3.
ADC-mix ADC with mixed subtypes, ICD-O 8255/3.
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