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Abstract. This paper proposes a geodesic-distance-based feature that
encodes global information for improved video segmentation algorithms.
The feature is a joint histogram of intensity and geodesic distances, where
the geodesic distances are computed as the shortest paths between super-
pixels via their boundaries. We also incorporate adaptive voting weights
and spatial pyramid configurations to include spatial information into the
geodesic histogram feature and show that this further improves results.
The feature is generic and can be used as part of various algorithms. In
experiments, we test the geodesic histogram feature by incorporating it
into two existing video segmentation frameworks. This leads to signifi-
cantly better performance in 3D video segmentation benchmarks on two
datasets.

1 Introduction

Video segmentation is an important pre-processing step for many high-level video
applications such as action recognition [1], scene understanding [2], or 3D recon-
struction [3]. A more compact representation not only reduces the subsequent
processing space and time requirements, but also provides sets of visual segments
that contain meaningful cues for higher-level computer vision tasks. However,
generating supervoxels from videos is a significantly more difficult task than
superpixel segmentation from images, due to the heavy computational cost and
the extra temporal dimension. Specifically, well delineated spatio-temporal video
segments can be used for tracking bounded regions, foreground moving objects,
or semantic understanding. For example, locating the movement of hands is help-
ful for gesture or action recognition, and separating foreground/background can
pin-point the region-of-interest for detecting moving objects. Therefore, these
spatio-temporal segments should be temporally consistent in order to be bene-
ficial for these computer vision tasks.

For video segmentations that are initialized from superpixels, the main goal is
to consider the connections between neighboring superpixels and to decide which
ones belong to the same spatio-temporal cluster. The connections are usually
represented as a spatio-temporal graph, where the nodes are the superpixels
and the edges connect superpixels that are adjacent to each other. The edges
are weighted based on the similarity distances between pairs of superpixels.
Previous work [4, 5] proposed a variety of features corresponding to a wide range
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Fig. 1: The segmentation results on video “monkey” from Segtrack v2 dataset [6]. Top
row: original frames with superimposed ground-truth (green). Second row: segmen-
tation results of the PGP algorithm ([7]) using their four predefined features. Third
row: result of PGP with our feature integrated. Fourth row: segmentation result of
spectral clustering with the6 features proposed in [8]. Bottom row: segmentation result
of spectral clustering with our feature integrated. Our results show better temporal
consistency and less over-segmentation.

of low and mid-level image cues from superpixels. For example, the within-frame
similarities were computed from boundary magnitude, color, texture, and shape,
and the temporal connections were defined by the direction of optical flow or
motion trajectories. Importantly, the aforementioned features that were used for
video segmentation encode only local information, extracted from within each
superpixel. One would expect improved performance when combining local and
global features, if the appropriate global features per superpixel were extracted.

The geodesic distance has been shown to be effective for image segmenta-
tion problems [9, 10] but its applications in the video domain have been limited
[11, 10, 12, 13]. In this work, we propose a complete methodology for the use of
geodesic distance histogram features in the video segmentation problem. The
histogram feature describes the superpixel-of-interest by the distribution of the
geodesic distances from it, to all other superpixels in the same frame. The repre-
sentation compactly encodes global similarity relations between segments. Thus,
we want to use per-frame geodesic distance information to associate superpixels
both within and across frames. However, the nature of this global representation,
poses several challenges that need to be addressed, in order to successfully use
geodesic distance histograms for video segmentation:

– The feature needs to be robust across frames in order to perform useful su-
perpixel association. That means if a superpixel has a unique representation
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in one frame, its representation in the next frame should be also unique, in
order to facilitate matching.

– For relatively small segments, their similar relationship to global context can
dwarf distinctive neighborhood information, which might make them hard
to differentiate.

– The feature does not encode any spatial relationships between segments.
Such relationships often offer constrains that allow otherwise similar seg-
ments to be distinguished from each other.

In this paper, we address these issues in order to derive a geodesic histogram
feature that is appropriate for video segmentation tasks. In essence, we introduce
the necessary local information in the global representation, in order to disam-
biguate associations across frames. For a given superpixel, we first extract the
soft boundary map of the frame where it belongs, then we compute geodesic dis-
tances from the superpixel-of-interest to all other superpixels in the same frame
using the boundary scores. If we were performing per frame segmentation, a
1D histogram of these scores would suffice [10]. However, due to motion, this 1D
histogram is not robust across frames. As observed previously [13], a 2D joint his-
togram of intensity and geodesic distance is much more robust. To encode more
spatial information into the feature, we compute multiple geodesic histograms
in a spatial pyramid [14]. Finally, we weigh the bins with respect to their spatial
distance from the superpixel-of-interest, in order to favor potentially discrimi-
native neighborhood information. We show in experiments that when we add
our complete geodesic histogram feature into existing frameworks, the resulting
segmentations are greatly improved, especially in 3D segmentation accuracy and
temporal consistency. The feature is also fast to compute, without increasing sig-
nificantly processing time for the existing frameworks. The geodesic histogram
features are added into two state-of-the-art video segmentation frameworks that
are based on superpixel clustering, and tested on two popular datasets using
standard 3D segmentation benchmarks.

The rest of paper is organized as follows: Section 2 discusses related work.
Section 3 discusses the motivation, computation, and analysis of the proposed
geodesic histogram features. Implementation details are described in Section 3.4.
Section 4 presents the experimental results. Section 5 concludes the paper and
discusses other possible applications.

2 Related Work

Many video segmentation works propose diverse features to capture various kinds
of information in order to estimate the similarity between the components of the
video. Appearance can be represented by features based on color [5, 15], texture
[16], and soft boundaries [17]. Motion related features have also been utilized
often, including short-term motion features based on optical flow [18, 19] and
long-term motion features based on trajectories [20–23]. Superpixel shape is used
to compute the similarities among superpixels across frames [15]. Some works
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discuss the choice of features to use [8] as well as the method to incorporate
various kinds of features into affinity matrices [4].

Geodesic distances provide appearance-based similarity estimates. Geodesic
distances have been applied widely on segmentation related problems on im-
ages [9, 13, 10]. A feature based on geodesic distance for matching images of
deformed objects has been introduced in [13]. The authors showed that the
geodesic distance could be invariant to object deformations, by encoding pix-
els as color histograms on the surrounding pixels that have the same geodesic
distances. The geodesic distance is also used to propose object segments on im-
ages [9], which is based on the correlation between the object boundary and the
change in the geodesic distance transform. Several video segmentation meth-
ods have employed geodesic distance for various purposes. The salient object
segmentation framework uses a geodesic distance in each frame to estimate the
objectness of superpixels [11] on a per frame basis. Further work further pro-
poses a spatio-temporal geodesic distance [10] that extends image segmentation
to video segmentation. However, the proposed spatio-temporal distance has to
be constrained to be temporally non-decreasing to preserve the metric property,
thus limiting the robustness of the method.

In this paper, we propose a feature based on geodesic distance to estimate
the similarity between the superpixels in the video. We consider the frame-wise
distribution of the geodesic distances, i.e., the histogram of geodesic distances
from each superpixel to all other superpixels in the same frame. This represen-
tation compactly encodes the relative similarity distances between the segment
containing the superpixel-of-interest to all the other segments on the frame. This
global information therefore serves as a complement to the set of to the set of
appearance, motion, and shape-based features which only encode information
from the inner region of the superpixel-of-interest.

3 Geodesic Distance Histogram Feature

Given a frame of the video, let X be the set of superpixels: X = {x1, . . . , xn}.
The frame is then represented by a non-negative, undirected graph G = (X,E),
where each value in E is associated with a pair of neighboring superpixels in
X, and the edge weight is computed as the boundary strength between the two
superpixels. The geodesic distance between any two superpixels xi, xj ∈ X is
defined as the weight of the shortest path between the two superpixels in G.

Given a superpixel xi on a frame, the geodesic distance between xi and all
other superpixels in the same frame is computed and pooled into a geodesic
distance histogram. This histogram contains the global information of the frame
with respect to xi in terms of geodesic distance distribution, and can be used
for computing pair-wise superpixel similarity both within and across frames.

3.1 1D Geodesic Distance Histogram.

The simplest approach is to use an 1D histogram to describe the distribution
of the geodesic distances, where a bin of the histogram represents the number
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(a)The superpixel-of-interest (b)1D Histogram (c)2D Histogram

Fig. 2: The figure shows an example of 1D (geodesic distances) and 2D (intensity-
geodesic distances) histogram features. (a): frame 1 of video “soccer” from Chen’s
Xiph.org dataset [24], with soft boundary scores highlighted, and a superpixel-of-
interest marked in red. (b) and (c): the 1D and 2D histograms of the superpixel-
of-interest, and the frame regions (green) that correspond to the selected bins and
cells of the 1D and 2D histograms, respectively. (b) shows that the bins of the 1D
histogram contain mixed information, while the cells in (c) contain regions that are
more semantically homogeneous.

of superpixels with a particular geodesic distance. This is similar to the concept
of critical level sets [9], where each critical level defines a group of superpixels
having their geodesic distances less than a certain threshold. Each bin of the
histogram is then associated with a region in the image.

In order to keep our feature relatively constant across frames, the value of
each bin should stay approximately the same. This means that the regions as-
sociated with each bin also remain relatively stable. Considering the superpixel
(in red) shown in Fig. 2(a), two regions corresponding to the first two bins of the
histogram are visualized in Fig. 2(b). The first bin collects the votes of all super-
pixels with the lowest geodesic distance interval, forming the region indicated
by the leftmost arrow. However, the region corresponding to the second bin is
the combination of superpixels from different semantic regions. The value of the
second bin is therefore not robust since these regions could potentially move in
different ways, and end up voting for different bins in subsequent frames.

3.2 2D Intensity-Geodesic Distance Histogram.

We incorporate the intensity feature as an additional cue to complement the
geodesic distance, on order to constrain bins to correspond to individual regions
instead of disparate groups of regions. Thus the histogram becomes a 2D table
where each cell is voted for by the superpixels that have a particular pair of
geodesic distance and intensity. The joint distribution of intensity-geodesic dis-
tance was originally proposed in [13], where the joint distribution was expected
to be stable and informative under a wide range of deformations.
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(a)“soccer”-fr49 (b)1D across-frame (c)2D across-frame

Fig. 3: The figures visualize the similarities between the superpixel-of-interest in Fig.
2(a) on a later frame (frame 49) to all other superpixels. Warmer color represents higher
similarity. (a): original frame. (b): the similarity map based on 1D geodesic distance
histograms. (c): the similarity map based on 2D intensity-geodesic distance histograms.
The figure shows that the 2D histogram is more robust than the 1D histogram for
across-frame matching: there are multiple superpixels located in multiple regions that
have similar 1D histograms with the superpixel-of-interest, while only the superpixels
located within the upper-body region have the most similar 2D histograms.

Fig. 2(c) visualizes the intensity-geodesic distance histogram of a superpixel-
of-interest (shown in red in Fig. 2(a)). Notice that the second bin of the 1D
histogram equals to the sum of all cells in the second row of the 2D histogram,
and the region from the second bin in the 1D histogram is now separated into
multiple smaller regions corresponding to these cells. This is a desired effect
given that each of the cells in the 2D histogram contains superpixels from the
same semantic region as the 1D case. We also visualized the cell with the highest
value in Fig. 2(c), which corresponds to the superpixels within the entire grass
field. Such a region is likely to be stable across frames and remain connected.
This implies that as long as the intermediate boundaries remain the same, these
regions would still contribute to the same cells in the histogram.

To compute the similarity distance between two histograms, we can use the χ2

distance or the Earth Mover’s Distance. Following [13], the χ2 distance between
two 2D histograms Hp and Hq with size M ×N is defined by:

χ2(Hp, Hq) =
1

2

∑K

k=1

∑M

m=1

[Hp(k,m)−Hq(k,m)]
2

Hp(k,m) +Hq(k,m)
(1)

The Earth Mover’s Distance (EMD) is computed as the sum of the 1D EMDs
at each intensity bin of the 2D histogram.

Fig. 3 visualizes the similarity values computed based on 1D and 2D feature
histograms from the superpixel-of-interest in Fig. 2(a) on a later video frame.
In the color scheme, higher similarity is represented by the warmer color. The
figure shows that the 1D histogram is less robust than the 2D histogram: there
are multiple regions having similar 1D histograms with the superpixel-of-interest,
and the superpixel with the highest 1D histogram similarity is in the background.
In contrast, the superpixel with the highest similarity using the 2D histogram
falls within the same upper-body region, a desirable result.
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3.3 Spatial Information

Pooling methods such as histograms discard spatial information, such as image
distance relationships or local neighborhood patterns. We encode spatial cues
in two ways: 1) by embedding spatial distances into the voting weight of each
superpixel, and 2) by adopting a commonly used spatial pyramid scheme [14].

Spatial distance voting weight For a given superpixel x, its histogram feature
is constructed by its intensity and geodesic distances to all other pixels in the
same frame. To take the spatial location of these other superpixels into account,
the geodesic distances are weighted by the spatial distance of those superpixels to
x. In particular, the weighting of superpixel y to the histogram bins of superpixel
x in frame f is defined by:

weighty =
|y|
|f |
× exp(−µ× L2(x, y)) (2)

where |·| is the area and L2(·) is the Euclidean distance between two superpixels’
center locations.

The area component normalizes the influence of superpixels of different sizes.
The exponential ensures that nearby superpixels contribute more to the geodesic
histogram of x. This is especially helpful for superpixels that belong to smaller
segments, for which most other superpixels have large geodesic distances, that
would dominate the histogram. Hence two small regions that are locally different
would have very similar histograms. The parameter µ of the exponential controls
the trade-off between global and local information.

Spatial pyramid histogram Inspired by the popularity of spatial pyramids
[14], we incorporated the pyramid scheme into the construction of our feature
histogram to encode more spatial information into the features. We implemented
two scales of the spatial pyramid: 1x1 and 2x2 grids over a given frame. A
histogram is extracted from each cell of the grid. Histograms from the same
scale are concatenated.

3.4 Implementation Details

Our features are constructed from the intensity and boundary probability maps.
For more robust boundary extraction, we also experiment with two different
boundary map methods: spatial edge maps using structured forests [25], and
motion boundary maps using the method proposed in [26].

Given the combined edge map and the superpixel graph, the geodesic dis-
tance feature for each superpixel is computed using Dijkstra’s algorithm in
O(|X||E|log|X|), with the cost of a path being the accumulated boundary scores
between one superpixel to another.

We empirically set the intensity dimension of the feature histogram at 13
bins, and the geodesic dimension at 9 bins.



8 Hieu Le, Vu Nguyen, Chen-Ping Yu, Dimitris Samaras

4 Experiments

In this section, we describe our experiments using the geodesic histogram fea-
tures for video segmentation. We incorporated our features into two existing
frameworks that are based on different clustering algorithms: spectral clustering
[8] and parametric graph partitioning [7]. Spectral clustering performs dimen-
sionality reduction on an affinity matrix based on eigenvalues, while parametric
graph partitioning directly performs the clustering on the superpixel graph by
modeling Lp affinity matrices probabilistically. Also, the method in [8] generates
coarse-to-fine hierarchical segmentation results, while [7] only outputs a single
level of segmentation.

The experiments were conducted on the Segtrack V2 [6] and Chen’s Xiph.org
[24] datasets, covering a wide range of scenarios for evaluating video segmenta-
tion algorithms. We evaluate our segmentation results using the metrics proposed
in [27], including 3D Accuracy (AC), 3D Under-segmentation Error (UE), 3D
Boundary Recall (BR), and 3D Boundary Precision (BP). All experiments were
conducted with the exact same set of initial superpixels and other parameter
settings.

4.1 Video Segmentation Using Spectral Clustering

We first evaluate the performance of the framework by adding our feature to
spectral clustering [8]. We use the same 6 features as [8]: short term tempo-
ral, long term temporal, spatio temporal appearance, spatio temporal motion,
across boundary appearance, and across boundary motion. The affinity matrix
was computed by combining the 6 affinity matrices computed from each feature.
We combined the original computed affinity matrix with the geodesic histogram
features in order to preserve the algorithm settings and superpixel configura-
tions. The similarity distances based on our features were computed using the
χ2 distance.

Fig. 4 shows the evaluation results of spectral clustering with and without our
feature on Segtrack v2 and Chen Xiph.org datasets. We tested four settings of
our feature: (i) 2D histogram using only spatial edge maps to compute geodesic
distances and without spatial distance voting weight (2D - 0), (ii) 2D histogram
using spatial edge maps and spatial distance voting weight with µ = 0.02 (2D -
0.02 ), (iii) 2D histogram using both spatial edge and motion boundary maps
with µ = 0.02 (2D + 0.02) and, (iv) 2D histograms with spatial pyramid (2D
+ 0.02 sp). Compared to the baseline, our feature significantly improved seg-
mentation performance. The improvement was most significant in 3D accuracy:
increased by 5% for Segtrack v2 and 10% for Chen Xiph.org. For Segtrack v2
dataset, our feature was able to improve the segmentation results on all four
metrics. For Chen Xiph.org dataset, the feature gave a strong boost to 3D accu-
racy and 3D boundary precision. For all settings tested, we noticed that motion
boundary maps did not affect performance much. Given that motion boundary
map generation requires optic flow computation, which can be time consuming,
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its omission might result in faster implementations. The spatial distance voting
weights had a strong impact on the results and clearly improved segmentation.
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Fig. 4: Performance of spectral clustering (SC) [8] on the Segtrack v2 dataset, using
four metrics: 3D Accuracy, 3D Under Segmentation Error, 3D Boundary Recall, and
3D Boundary Precision. For the 3D under-segmentation metric, the lower the error the
better. For all the other metrics, the higher the score the better. -: using only spatial
boundary edge. +: spatial boundary edge and motion boundary edge combined. 0: using
spatial voting weight with µ = 0. 0.02: µ = 0.02. sp: with spatial pyramid. These plots
show that the addition of our features result in major improvements on 3D Accuracy,
and minor but consistent improvements on the three remaining metrics.

In addition to these improvements, Fig. 6 shows that the average tempo-
ral length of supervoxels consistently increased for all parameter settings of our
feature by 10% for Segtrack v2 dataset and 5% for Chen Xiph.org dataset, show-
ing that the segmentation results acquired better temporal consistency. Having
both longer supervoxels and improved segmentation metrics indicate that our
feature provides additional information for more reliable temporal consistency.
This is significant, since connecting more corresponding superpixels temporally
is a crucial and challenging part of the video segmentation task.

An interesting qualitative example is shown in Fig. 7, showing the segmenta-
tion results for video “soldier” with only two clusters. The second row visualizes
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Fig. 5: Performance of spectral clustering (SC) [8] on the Chen Xiph.org dataset, using
four metrics: 3D Accuracy, 3D Under Segmentation Error, 3D Boundary Recall, and
3D Boundary Precision. For the 3D under-segmentation metric, the lower the error the
better. For all the other metrics, the higher the score the better. -: using only spatial
boundary edge. +: spatial boundary edge and motion boundary edge combined. 0: using
spatial voting weight with µ = 0. 0.02: µ = 0.02. sp: with spatial pyramid. These plots
show that the addition of our features result in major improvements on 3D Accuracy,
and minor but consistent improvements on the three remaining metrics.

the two clusters generated by [8] using the 6 predefined features with only local
information, only capturing the lower leg of the moving soldier. In contrast, the
segmentation results improved with the addition of our geodesic feature. The
global information that is encoded by our feature seems to have provided better
information to the spectral clustering algorithm to segment the main object out
of the background. Another qualitative example is shown in the 4th and 5th
row of Fig. 1. The segment of the baseline shown in the 4th row shows some
under-segmentation over the main moving object. This issue however, is less
pronounced with our feature.

4.2 Video Segmentation Using Parametric Graph Partitioning.

Parametric Graph Partitioning (PGP) [7] is a recent graph-based unsupervised
method that generates a single level of video segmentation. The method models
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Fig. 6: Average temporal length of supervoxels generated by spectral clustering (SC)
[8] on the Segtrack v2 and Chen Xiph.org datasets. The results show significant im-
provements on the temporal consistency with the addition of our feature on Segtrack
v2 dataset, and minor but consistent improvement on the Chen Xiph.org dataset.

Fig. 7: The figure shows the segmentation results for the video “soldier” from the Seg-
track v2 dataset using spectral clustering [8] with and without our feature. We set
the number of output clusters at 2 for this example. The top row shows the original
frames with the ground truth highlighted in green. The second row shows the results of
spectral clustering with 6 features, as originally proposed in [8]. The third row shows
the results of the algorithm when using the 6 original features plus our feature (2D
histogram with spatial information). All other settings were set to be exactly the same.

edge weights by a mixture of Weibull distributions, and requires that an Lp-norm
based similarity distance to be utilized. Therefore, we conduct experiments in
this section using Earth Mover’s Distance as in [7]. The baseline is the setting
originally proposed in [7] which uses four feature types: intensity, the hue of the
HSV color space, the AB component of LAB color space, and gradient orienta-
tion. We did not use the motion feature since it did not contribute significantly
toward PGP performance as suggested in the original paper.

Tables 1 and 2 report the quantitative evaluation of PGP with and without
our feature on the two datasets. We evaluated the 1D histogram feature on the
Chen Xiph.org dataset, shown in Table 2. While PGP with the 1D feature out-
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Fig. 8: The segmentation results of PGP on video “garden” from the Chen Xiph.org
dataset with and without our feature. The top row shows the original frames. The
second row shows the segmentation results of PGP using the 4 features proposed in
[7]. The bottom row is the segmentation results of PGP using the 4 features plus our
feature (2D histogram with spatial information).

performs the baseline in general, the benchmarks of 3 out of 8 videos decreased.
On the other hand, the 2D feature significantly improved the segmentation per-
formance of PGP. For the Segtrack v2 dataset, quantitative results in Table
1 show clear improvements of our feature for PGP, as well as the additional
benefits from the spatial pyramid configuration.

Two example cases of PGP are shown in Fig. 8, and the 2nd and 3rd row
of Fig. 1. For the over-segmented scenario in Fig.1, the water was unfavorably
divided into many spurious segments by the PGP baseline. Adding our feature
did not only help merging the background into one segment, but also enhanced
temporal consistency and boundary awareness. Given the under-segmented base-
line result on the lower part of the tree shown in Fig.8, our feature helped to
segment the entire tree and also reduced over-segmentation in other parts of the
video.

4.3 Feature Extraction Running Time

All experiments were conducted on an Intel Core i7 CPU with 3.5 Ghz, and 16
Gb of memory. When adding our feature into the framework of [8], the average
additional running time was increased by 67 seconds on a 85-frame video using
the default parameter settings, which is a just small fraction of the total running
time of several hours. The additional running time increase for the PGP frame-
work was on average 48 seconds, with 300 initial superpixels per frame. These
results show that the computational cost of our feature is low, and adds very
little overhead to existing frameworks.
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5 Conclusion

In this paper, we introduced a novel feature for video segmentation based on
geodesic distance histograms. The histogram is computed as a spatially-organized
distribution of accumulated boundary costs between superpixels, which is a rep-
resentation that includes more global information than conventional features. We
validated the efficacy of our feature by adding it into two recent frameworks for
video segmentation using spectral clustering and parametric graph partitioning,
and showed that the proposed feature improved the performance of both frame-
works in 3D video segmentation benchmarks, as well as the temporal consistency
of the resulting supervoxels. We believe that the encoded global information can
be further applied to other video related tasks such as moving object tracking,
object proposals, and foreground background segmentation.

Table 1: Quantitative evaluation on the Chen Xiph.org dataset. Best values are shown
in bold. The table shows the evaluation results of the segmentation generated from
the method proposed in [7] with and without our feature in two configurations: 1D
geodesic distance histogram and 2D intensity-geodesic distance histogram. All videos
are initialized with 300 superpixels.

Metrics 3D ACC UE 3D BR 3D BP 3D

Methods [7] 1D 2D [7] 1D 2D [7] 1D 2D [7] 1D 2D

Bus fa 70.72 70.58 70.98 6.22 10.31 5.75 80.22 81.64 82.46 37.64 38.60 38.98

Container fa 88.68 86.69 89.05 3.66 7.54 3.45 71.24 70.38 70.74 8.68 16.28 8.55

Garden fa 81.69 83.72 85.46 1.80 1.68 1.47 72.46 77.48 79.91 12.83 12.73 12.41

Ice fa 86.71 87.54 77.83 26.70 42.58 58.59 83.29 80.82 67.47 30.99 29.54 44.48

Paris fa 40.46 51.37 61.44 13.50 12.99 13.15 47.17 53.73 56.68 4.22 4.70 4.73

Soccer fa 85.79 83.95 87.04 4.84 5.46 2.74 31.37 30.47 43.35 5.51 5.20 5.49

Salesman fa 83.39 72.54 84.69 40.48 54.33 12.41 73.01 72.76 79.88 22.41 19.93 13.47

Stefan fa 83.56 81.57 90.14 6.76 19.80 4.87 80.66 74.62 83.30 10.98 15.16 11.04

Mean 77.62 77.25 80.83 12.99 19.34 12.80 67.43 67.74 70.47 16.66 17.77 17.40
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tion, NSF IIS-1161876, FRA DTFR5315C00011, the Stony Brook SensonCAT,
the SubSample project from the DIGITEO Institute, France, and a gift from
Adobe Corporation
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Table 2: Quantitative evaluation on the SegTrack v2 dataset. Best values are shown in
bold. The table shows the evaluation results of the segmentation generated from the al-
gorithm proposed in [7], and two of our feature configurations: basic 2D histogram (2D)
and 2D histogram with spatial information (2Dsp). The algorithms are all initialized
with 300 superpixels per frame.

Metrics 3D ACC UE3D BR3D BP3D

Methods [7] 2D 2Dsp [7] 2D 2Dsp [7] 2D 2Dsp [7] 2D 2Dsp

B.o.paradise 96.77 96.81 96.79 2.74 3.62 3.90 93.12 94.47 94.80 6.83 6.98 6.71

Birdfall 58.61 67.54 62.22 24.42 11.15 10.52 77.99 90.92 92.36 0.61 0.45 0.47

Bmx-1 94.60 94.50 94.56 5.49 6.44 5.40 98.31 98.32 98.58 4.05 4.66 4.23

Bmx-2 78.00 78.39 81.40 11.43 13.33 12.48 94.00 91.49 95.01 3.72 4.17 3.92

Cheetah-1 73.26 75.76 76.35 30.62 6.59 5.46 92.19 97.54 98.62 1.65 1.09 1.10

cheetah-2 63.84 73.68 69.38 34.64 6.95 8.73 97.85 98.54 98.66 2.19 1.38 1.38

Drift-1 93.85 93.20 93.34 3.77 3.29 3.42 92.70 94.54 94.53 1.22 1.20 1.22

Drift-2 92.43 92.41 92.06 3.31 2.98 2.96 90.52 92.53 92.13 0.94 0.93 0.94

Frog 56.92 64.72 86.67 16.32 14.01 11.60 59.28 76.14 83.26 10.42 3.84 2.25

Girl 87.71 89.18 89.18 10.76 10.18 10.27 90.18 94.59 94.68 5.46 5.39 5.32

Hum.bird-1 65.07 73.32 73.27 9.41 9.16 9.20 88.50 88.48 87.10 3.14 3.26 3.76

Hum.bird-2 77.71 84.95 85.52 6.35 7.04 9.06 94.64 94.26 94.58 5.00 5.18 6.09

Monkey 86.86 89.06 89.62 13.66 3.84 3.73 93.07 98.32 98.37 2.79 1.59 1.62

M.dog-1 88.09 88.70 88.97 9.50 9.30 9.38 95.74 97.44 98.50 1.40 1.42 1.42

M.dog-2 62.57 65.60 64.79 5.82 5.36 5.15 86.80 91.13 90.56 0.91 0.95 0.94

Parachute 92.54 92.31 92.31 19.54 18.29 5.65 95.24 95.71 97.34 1.27 1.13 0.76

Penguin-1 95.72 23.36 93.45 3.38 3.56 3.56 49.25 44.57 44.53 0.89 0.83 0.66

Penguin-2 95.51 95.77 95.79 3.39 3.28 3.28 73.19 71.41 74.78 1.38 1.39 1.17

Penguin-3 96.49 96.79 96.48 3.87 3.87 3.83 67.89 68.13 74.44 1.28 1.32 1.16

Penguin-4 95.72 94.50 94.74 3.87 3.95 3.92 73.54 73.82 73.44 1.16 1.21 0.96

Penguin-5 93.27 92.25 91.63 8.38 8.21 8.22 74.01 72.87 71.14 1.03 1.05 0.82

Penguin-6 92.37 92.64 93.09 3.73 4.02 4.03 62.33 63.52 59.50 1.02 1.08 0.81

Soldier 89.81 90.19 90.19 4.71 4.11 4.40 92.38 93.29 93.48 1.87 1.86 1.89

Worm 92.21 92.71 92.75 10.31 15.18 14.95 89.28 92.72 93.48 1.01 1.19 1.17

Average 84.16 83.26 86.86 10.39 7.40 6.80 84.25 86.45 87.24 2.55 2.23 2.12
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