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Two experiments evaluated the effect of retinal image size on the proto-object model of visual clutter
perception. Experiment 1 had 20 participants order 90 small images of random-category real-world sce-
nes from least to most cluttered. Aggregating these individual rankings into a single median clutter rank-
ing and comparing it to a previously reported clutter ranking of larger versions of the identical scenes
yielded a Spearman’s q = .953 (p < .001), suggesting that relative clutter perception is largely invariant
to image size. We then applied the proto-object model of clutter perception to these smaller images
and obtained a clutter estimate for each. Correlating these estimates with the median behavioral ranking
yielded a Spearman’s q = .852 (p < .001), which we showed in a comparative analysis to be better than six
other methods of estimating clutter. Experiment 2 intermixed large and small versions of the Experiment
1 scenes and had participants (n = 18) again rank them for clutter. We found that median clutter rankings
of these size-intermixed images were essentially the same as the small and large median rankings from
Experiment 1, suggesting size invariance in absolute clutter perception. Moreover, the proto-object
model again successfully captured this result. We conclude that both relative and absolute clutter percep-
tion is invariant to retinal image size. We further speculate that clutter perception is mediated by
proto-objects—a preattentive level of visual representation between features and objects—and that using
the proto-object model we may be able to glimpse into this pre-attentive world.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Everyone knows what clutter is; it is the typically negative per-
cept resulting from the disordered organization of an excessive
number of objects. Most previous work on clutter has focused on
its consequences for task performance. The clearest example of this
is the decrease in visual search efficiency accompanying an
increase in clutter (Bravo & Farid, 2008; Henderson, Chanceaux,
& Smith, 2009; Mack & Oliva, 2004; Neider & Zelinsky, 2011;
Rosenholtz, Li, & Nakano, 2007). This effect of clutter on search effi-
ciency led some researchers to suggest that clutter might be used
as a surrogate measure of search set size (Neider & Zelinsky,
2011; Rosenholtz, Li, & Nakano, 2007), the number of objects
appearing in a search display. This suggestion in turn led to the
development of several computational methods for quantifying
clutter (e.g., Bravo & Farid, 2008; Lohrenz et al., 2009;
Rosenholtz, Li, & Nakano, 2007; van den Berg, Cornelissen, &
Roerdink, 2009) so as to predict search efficiency in real-world sce-
nes, stimuli in which a set of discrete objects cannot be defined
objectively. A goal of our study is to further evaluate one of these
methods for quantifying clutter—the proto-object model of clutter
perception (Yu, Samaras, & Zelinsky, 2014).

There is a fundamental relationship between clutter and visual
attention. Much attention research has been devoted to identifying
those mental processes that can be performed simultaneously,
without creating interference or performance costs, and those that
result in performance costs when combined. The former have been
termed pre-attentive and the latter post-attentive (or simply, atten-
tive), referring to the fact that individual processes must be
selected for serial execution so as to avoid incurring costs. This dis-
tinction largely shaped the massive literature on visual search (see
Wolfe, 1998; for a review), but dates even farther back to the sem-
inal attention studies using dichotic listening paradigms (see
Pashler, 1998; for a review). In addition to a small set of basic
visual features that can be extracted and used in parallel (Wolfe
& Horowitz, 2004), our perception of clutter is likely
pre-attentive; we seem able to effortlessly estimate how much
‘‘stuff’’ there is over a region of space (see Alvarez, 2011; for a
review). This follows from the fact that clutter perception is likely
derived from summary statistics computed over local pooling
regions (Rosenholtz, Huang, & Ehinger, 2012; van den Berg,
Cornelissen, & Roerdink, 2009), as has been proposed for crowding
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(Balas, Nakano, & Rosenholtz, 2009; Rosenholtz, Huang, Raj, et al.,
2012). Setting aside for now the question of what units are actually
summed, the assumption is that this summary is obtained
pre-attentively and does not involve an actual count of discrete
things; visual information is accumulated in parallel and summed
to derive the clutter estimate. Indeed, our percept of clutter may be
more than just the product of a pre-attentive process; it may be
our perception of pre-attention.

Size also matters. Limiting this statement to vision, examples
range from older work showing that larger shapes are given greater
perceptual weight by the oculomotor system, causing saccades to
land closer to bigger objects (Findlay, 1982), to recent work show-
ing that common objects have a canonical size that affects their
recognition speed and accuracy (Konkle & Oliva, 2011). Shifting
focus from objects to scenes, another goal of our study asks how
the retinal size of visual scenes impacts the perception of scene
clutter.

Understanding the relationship between retinal image size and
clutter perception is important. We live in a very cluttered world,
filled with busy city streets, messy desks, and computer screens
packed with icons numbering in the dozens if not hundreds. The
sizes of these screens, however, have taken two trends. One has
been to make computer monitors bigger so as to fit even more
things in our field of view. The other has been to decrease the size
of these screens so that we can put them in our purses and pockets
and carry them wherever we go. This latter trend creates an obvi-
ous problem: given that the screens through which we increasingly
interact with the world have become smaller, but the number of
apps and other icons that we put on these screens has increased
or stayed about the same, our world is becoming perceptually
compressed into increasingly smaller spaces.

What are the consequences of this compression for our percep-
tion of clutter? One possibility is that perceived clutter might
increase with decreasing retinal size. Objects in smaller scenes
are closer together. If the absolute distance between objects affects
perceived clutter, small scenes should be perceived as being more
cluttered than larger ones. Another possibility is that retinal size
doesn’t matter for clutter perception, and that what is important
is the number of perceived objects (or proto-objects). If so, decreas-
ing the size of an image should not affect perceived clutter so long
as this manipulation is not so drastic as to change the number of
objects that are perceived.
2. Experiment 1

To investigate the relationship between retinal image size and
perceived clutter we adopt the joint behavioral and computational
approach reported recently by Yu, Samaras, and Zelinsky (2014).
These authors asked participants to rank order 90 images of ran-
dom category scenes from least to most cluttered. Note that a
time-unlimited clutter ranking task is perfectly suited to the
broader goal of our study, to demarcate the boundary between
pre-attention and attention by obtaining an explicit estimate of
clutter (pre-attention) that is minimally confounded with more
goal-directed (attentive) tasks such as search, scene memory, or
even free viewing. Yu et al. then modeled this clutter ranking by
computing proto-objects for each scene and ordering them based
on the number of proto-objects in each. Model success was
assessed by correlating these behavioral and computational rank-
ings. In Experiment 1 we used the scenes from Yu et al. to obtain
another behavioral ranking of clutter, only these scenes were
one-quarter the size of those used in the earlier study. This consis-
tency in both stimuli and task allows the new behavioral clutter
ranking to be compared directly to the one from Yu and colleagues
so as to determine the effect of retinal image size on clutter
perception. Additionally, we test the proto-object model of clutter
perception from Yu et al. to determine how well it predicts the
effect of changing image size on these behavioral clutter rankings,
and compare these predictions to those from other models of clut-
ter perception.

2.1. The proto-object model of clutter perception

Central to our approach is the suggestion that clutter perception
can be predicted by how much stuff appears in a scene, where
‘‘stuff’’ is quantified in terms of locally similar image features that
become merged into perceptual fragments that we refer to as
proto-objects. This definition of a proto-object loosely follows the
original usage of the term as coined by Rensink and Enns (1995).
These authors conceptualized proto-objects as being relatively
small and highly volatile clusters of visual features, created by
the pre-attentive application of local grouping processes, from
which more extensive visual object representations are ultimately
built (see also Rensink, 2000). We subscribe to all of these defining
properties. Indeed, rather than substantively reconceptualizing
what a proto-object is, we see our work as contributing to the fur-
ther quantification of this construct and its application to
real-world objects and scenes.

Several models of attention have appealed to proto-objects in
the context of visually complex stimuli. These have taken two basic
approaches. One has been to redefine proto-objects as regions of
high image salience. For example, Walther and Koch (2006) used
a saliency map (Itti & Koch, 2001; Itti, Koch, & Niebur, 1998) to
identify salient points in an image, then spread the activation from
each back through the intensity, orientation, and color feature
maps to obtain a saliency-based segmentation that they referred
to as proto-objects (see also Borji, Sihite, & Itti, 2013; Russell
et al., 2014, for related approaches). Using this method,
Nuthmann and Henderson (2010) compared these salient
proto-objects to objects hand labeled from a scene to see which
could better describe the preferred viewing location (PVL) of behav-
ioral participants performing various scene inspection tasks. They
found that proto-objects were less successful than actual objects
in describing the PVL effect, at least for proto-objects defined by
feature salience. Another approach has been to use color blob
detectors (Forssén, 2004) applied directly to unprocessed images
(Wischnewski et al., 2009) and video (Wischnewski et al., 2010)
to define proto-objects. These proto-objects are then combined
with the Theory of Visual Attention (TVA, Bundesen, 1990) to pro-
duce a priority map that is used to predict allocations of visual
attention.

Our method for deriving proto-objects differs from previous
methods in at least two key respects. First, saliency is not consid-
ered in our method. We quantify how much stuff there is in a
scene, regardless of whether this stuff is salient or not. Second,
rather than using blob detectors to segment proto-objects from
an image, which at best restricts the shape of proto-objects to
coarse elliptical regions, we use more sophisticated image segmen-
tation techniques developed in the computer vision literature.
Specifically, we combine superpixel image segmentation (Liu
et al., 2011) with a clustering method (Comaniciu & Meer, 2002)
to merge featurally-similar superpixels into proto-objects. Note
that superpixels themselves are atomic regions of an image con-
taining pixels that are similar in some feature space, but superpixel
methods tend to over-segment images. For this reason we treat
superpixel segmentation as a preprocessing stage, one that we fol-
low with a merging stage in which neighboring superpixels that
are similar in color are combined to create more spatially extended
image fragments that we define as proto-objects. Our model then
simply counts the number of proto-objects in an image to obtain
an estimate of its clutter (Yu, Samaras, & Zelinsky, 2014).
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By quantifying the amount of stuff in an image, our proto-object
model of clutter perception differs fundamentally from another
popular method of quantifying image clutter—the feature conges-
tion model (Rosenholtz et al., 2005; Rosenholtz, Li, & Nakano,
2007). Rather than specifying an image’s perceptual fragments, this
model computes the local variance of color, luminance, and orien-
tation features in an image. It then builds from this a
three-dimensional covariance ellipse, the volume of which is used
to estimate visual clutter; the larger the volume the greater the
feature congestion and, presumably, the perception of clutter
(Rosenholtz, Li, & Nakano, 2007). In recent work Yu, Samaras,
and Zelinsky (2014) implemented and compared several models
of visual clutter, including the proto-object and feature congestion
models, and found that the proto-object model outperformed all of
the others in predicting the behavioral clutter ranking of 90
real-world scenes. Moreover, they observed that approaches based
on an initial superpixel segmentation of an image generally did
better in predicting this clutter ranking than approaches based
on feature variability. They concluded that proto-objects, a
mid-level perceptual representation residing between features
and objects, underlies clutter perception, and may be instrumental
in mediating other basic visual tasks. The present work builds
directly on this earlier study, asking how the previously obtained
clutter ranking will compare to another clutter ranking obtained
using smaller versions of the same images, and whether the
proto-object model will be as successful in capturing this ranking
when evaluated against other models of clutter perception.

2.2. Methods

Because our goal was to compare new behavioral results to
those from Yu, Samaras, and Zelinsky (2014), and to use the model
introduced there to describe these new results, our behavioral and
computational methods followed closely those from the earlier
study. Yu, Samaras, and Zelinsky (2014) should therefore be con-
sulted for additional methodological details and demonstrations
of model reliability and robustness.

2.2.1. Behavioral
2.2.1.1. Participants. Twenty undergraduate students from Stony
Brook University participated for course credit, none of whom par-
ticipated in the clutter ranking task from Yu, Samaras, and Zelinsky
(2014). All participants had normal or corrected-to-normal vision,
by self-report, and gave informed consent in accordance with the
Code of Ethics of the World Medical Association (Declaration of
Helsinki).

2.2.1.2. Stimuli. Stimuli were the same 90 images of random cate-
gory real-world scenes used by Yu, Samaras, and Zelinsky (2014),
only reduced in size from 800 � 600 pixels to 200 � 150 pixels.
This re-sizing to one-quarter their original dimension was done
using bi-cubic interpolation in Matlab (version R2011a). Scenes
were originally selected from the SUN09 image database (Xiao
et al., 2010), and Yu, Samaras, and Zelinsky (2014) should be con-
sulted for constraints on this scene selection.

2.2.1.3. Procedure and apparatus. Following the identical procedure
from Yu, Samaras, and Zelinsky (2014), participants were told that
they would see 90 images, one at a time, and would have to rank
order these images from least to most visually cluttered using their
own idiosyncratic definition of what constitutes clutter.

This clutter ranking task was controlled by in-house software
written in Matlab (version R2011a) and running on a Windows 7
PC. The interface and apparatus, again identical to the one used
in Yu, Samaras, and Zelinsky (2014), consisted of two LCD moni-
tors, one on top of the other. Scenes to be ranked for clutter were
displayed one at a time on the bottom monitor. In the Yu,
Samaras, and Zelinsky (2014) study these scenes filled the entire
display and subtended a visual angle of 27� � 20�; in the present
study these scenes subtended a visual angle of approximately
6.75� � 5� and were centrally positioned when displayed on the
monitor. Order of scene presentation was randomized across par-
ticipants. The top monitor displayed scenes that the participant
already ranked for clutter, although only two images from this par-
tial ranking were shown at a time (with the less cluttered scene on
the left and the more cluttered scene on the right). The partici-
pant’s task was to scroll through these clutter-ranked scenes with
the goal of finding the two neighboring images between which the
new image (from the bottom monitor) should be inserted. After
making this insertion, that image would be added to the accumu-
lating list of clutter-ranked scenes and a new unranked scene
would be displayed on the bottom monitor. This procedure contin-
ued until all 90 scenes were ranked. Participants were also given
the opportunity to re-order their ranking at any time during the
task. This would be accomplished by selecting a previously ranked
image, removing it from the ranked set (causing it to be
re-displayed on the bottom monitor), then re-inserting it into a
new position in the ranking.

There was a 12-image practice set, during which participants
could form their idiosyncratic clutter scale and become familiar
with the interface used to assign clutter rankings, followed by
the test set of 90 images. In total, this ranking task took 60–
90 min, and an experimenter remained in the room with partici-
pants to observe whether they were making thoughtful clutter
ranking decisions.

2.2.2. The proto-object model
This study used the proto-object model of clutter perception

from Yu, Samaras, and Zelinsky (2014). This model consists of
two basic stages: A superpixel segmentation stage to obtain image
fragments, followed by a clustering and merging stage to assemble
these fragments into proto-objects (see Fig. 1). Specifically, entropy
rate superpixels (Liu et al., 2011) were obtained for each image
using k = 500 initial seeds, and the median HSV color was obtained
for each superpixel. Mean-shift clustering (Cheng, 1995;
Comaniciu & Meer, 2002), using a feature space bandwidth of
2.5, was applied to these superpixel color medians to obtain an
optimal number of color clusters in the feature space. Each super-
pixel was assigned to a color cluster based on its median color sim-
ilarity, and then merged with adjacent superpixels falling into the
same cluster to obtain proto-objects. The number of proto-objects
for a given scene was normalized between 0 and 1 by dividing the
segmented number by 500, the initial k number of superpixel
seeds. This value is then used as the clutter estimate, with a higher
normalized value indicating a more cluttered scene. The following
sections provide additional details and background regarding the
key superpixel segmentation and superpixel clustering stages.

2.2.2.1. Superpixel segmentation. Although early superpixel meth-
ods analyzed the eigenspace of intensity values in an image to pro-
duce a segmentation (Shi & Malik, 2000; see also Arbelaez et al.,
2011), more generally, superpixel segmentation refers to the pro-
cess of ‘‘seeding’’ an image then iteratively growing the seed cov-
erage based on an objective function that incorporates local
feature similarity. This iterative process ends when this objective
function is optimized, resulting in an over-segmented partitioning
of an image into superpixels.

Following the comparative evaluation of different superpixel
segmentation methods conducted by Yu, Samaras, and Zelinsky
(2014), the entropy rate method (Liu et al., 2011) was adopted
and used in the present study. This method initially distributes
seeds uniformly over an input image. The number of seeds is



Fig. 1. Illustration of the proto-object model procedure for a representative scene.
(A) An entropy rate superpixel segmentation using k = 500 seeds. (B) 177 clusters of
median superpixel color using a mean-shift feature bandwidth of 2.5 in HSV color
space. (C) 359 proto-objects obtained after merging, normalized visual clutter
score = 0.719. (D) A visualization of the proto-object segmentation showing each
proto-object filled with the median color from the original image pixels.
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specified by a user-supplied input parameter, k, and because each
seed grows into a superpixel, this parameter determines the num-
ber of superpixels that will be extracted from an image. Each seed
is then grown by maximizing an objective function that considers
edge strengths and local affinity until a stationary segment cover-
age is achieved. The proto-object model uses superpixel image
segmentation as a pre-process because there are two properties
that make it undesirable as a direct estimate of clutter: it produces
highly over-segmented images (note in Fig. 1A that the relatively
uniform water in the pool is segmented into multiple superpixels
due to multiple seeds falling within this region) and it requires that
the desired number of superpixels be input as a parameter (k). This
latter property is particularly undesirable because it is our goal to
use the number of fragments segmented from an image as the clut-
ter estimate. For these reasons we therefore include a second clus-
tering stage that uses feature similarity to merge these superpixel
image fragments into more spatially extended regions that we call
proto-objects.

2.2.2.2. Superpixel clustering. Neighboring superpixels having simi-
lar features are merged into proto-objects based on a cluster anal-
ysis performed on the color feature space. We use the mean-shift
algorithm (Cheng, 1995; Comaniciu & Meer, 2002) to obtain these
clusters. Mean-shift clusters data into groups by iteratively shifting
every data point to a common density mode, with the data con-
verging to the same density mode forming a cluster. Bandwidth
parameters determine the search area for the shift directions.
Mean-shift is often used as an image segmentation method, and
indeed is one of the methods that we include in our analysis com-
paring the proto-object model to other approaches. However, the
application of mean-shift inside the proto-object model differs
from this standard application in that we use the algorithm, not
for segmentation, but only for clustering. We apply mean-shift
solely to the space of color medians in an image, where each med-
ian corresponds to a superpixel. This application means that only
the feature-space bandwidth parameter is used; the spatial band-
width parameter is needed only for segmentation. The algorithm
returns the optimal number of color clusters in this space, which,
again following Yu, Samaras, and Zelinsky (2014), was HSV in the
present study. Superpixels are then assigned to clusters based on
the median color obtained for a given image fragment in HSV fea-
ture space. From these assignments, superpixels falling into the
same color cluster and sharing a boundary (i.e., neighbors) are
finally merged into a larger proto-object.

2.3. Results and discussion

We evaluate the relationship between image size and clutter
perception in three ways. First, we compare the behavioral clutter
ranking obtained for the large 800 � 600 pixel images by Yu,
Samaras, and Zelinsky (2014) to the clutter ranking of the smaller
200 � 150 pixel images from the present study. This comparison
will give us our first answer to how visual clutter perception
changes with retinal image size. Second, we compare the clutter
ranking of the small images to a rating of the same images
obtained from the proto-object model of clutter perception. This
comparison will tell us whether predictions from this model,
and, more generally, the proto-object approach to quantifying clut-
ter, can generalize to smaller images. Third, we evaluate how well
the proto-object model compares to other clutter estimation meth-
ods in predicting the clutter ranking of small images, and how this
evaluation differs from the model comparison made by Yu,
Samaras, and Zelinsky (2014). This comparison will tell us the
model that should be preferred when estimating clutter perception
across images of different sizes.

2.3.1. Evaluating the effect of scene size on behavioral clutter rankings
Does the retinal size of a scene affect its position in a ranking of

similarly-sized scenes for visual clutter? To answer this question
we first obtained a single representative scene ranking from the
20 individual rankings from our participants. Yu, Samaras, and
Zelinsky (2014) did this for the 800 � 600 pixel versions of these



1 Note that the values in this table are correlations between the noise-free
proto-object model and the median clutter ranking from participants. Variability
therefore does not exist in these values, making it impossible to conduct satisfying
statistical tests to determine if one is significantly different from another. However,
our conclusions do not require us knowing whether differences exist among these
values. Indeed, the fact that these correlations are all high bolsters our point that any
differences, should they exist, are not likely to be meaningful.
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scenes by finding the median of each image’s ranked position in
the ordered set, and we followed an identical procedure for the
smaller 200 � 150 pixel images used in the present study.
Ordering these medians from least to most cluttered produced a
single ranking, which we then correlated with the comparable
median ranking from Yu, Samaras, and Zelinsky (2014). As shown
in Fig. 2A, these clutter rankings correlated highly, yielding a
Spearman’s q of 0.953 (p < .001). This near perfect correlation sug-
gests that the perception of clutter between scenes is highly invari-
ant to retinal image size. Regardless of whether these scenes were
viewed as large or small, participants ranked them similarly for
visual clutter. Moreover, because reducing the size of an image is
equivalent to a form of blurring, this finding also suggests that
visual clutter perception is invariant to blur, at least at the levels
explored in this study. The fact that retinal image size decreases
with increasing viewing distance means that same-sized scenes
viewed from different distances might also be ranked similarly
for clutter, although this specific manipulation was not tested.

2.3.2. Evaluating the proto-object model as a predictor of clutter in
small scenes

The proto-object model from Yu, Samaras, and Zelinsky (2014)
proved to be a good predictor of clutter rankings in the large
800 � 600 pixel scenes used in that study; will this model be as
successful in predicting clutter rankings in smaller versions of
these images? To answer this question, we computed a
proto-object segmentation for the 90200 � 150 pixel images used
in the present study, counted the number of proto-objects in each,
then normalized this count by dividing it by the number of initial
superpixels (k = 500) to obtain a clutter rating for each scene.
Correlating these model ratings with the behaviorally-derived
median ranking yielded a Spearman’s q = .852 (p < .001), using
k = 500 superpixel seeds and a mean-shift feature bandwidth
parameter of 2.5. Those scenes that were judged by participants
to be least (most) cluttered tended also to be estimated as least
(most) cluttered by the model (Fig. 2B). Moreover, this result is
comparable to the q = .814 correlation reported by Yu, Samaras,
and Zelinsky (2014) for the larger scenes, demonstrating that the
proto-object model of clutter perception is robust to changes in
retinal image size. Fig. 3 shows representative proto-object seg-
mentations for 2 (of the 90) scenes at both large and small image
sizes.

It should be noted that the good agreement between the clutter
ranking from the proto-object model and the ranking from our par-
ticipants was based on parameters optimized over the entire image
set. This has implications for the conclusions that can be drawn, as
the high q = .852 correlation might reflect a form of training accu-
racy rather than true prediction. To determine whether the model’s
performance would generalize to new scenes we performed
10-fold cross validation on our clutter-ranked images.
Specifically, we used 90% of the images for training and 10% for
testing, and repeated this procedure 10 times using different ran-
dom splits. Averaging over these 10 tests produced a correlation
of .827, numerically lower than the correlation obtained without
cross validation but still highly significant (p < .001). This finding
suggests, not only that the proto-object model is able to predict
the clutter ranking of small images, but also that its predictive suc-
cess is likely to generalize to new image sets that might be used in
future experimentation, at least with respect to random categories
of real-world scenes. Note also that a similar cross validation per-
formed by Yu, Samaras, and Zelinsky (2014) on the larger
800 � 600 pixel scenes yielded an average correlation of .74
(p < .001), suggesting that the proto-object model might be an even
better predictor of clutter as image size decreases.

Aside from our choices of superpixel segmentation method
(entropy rate superpixels) and color feature space (HSV), both
of which were informed by Yu, Samaras, and Zelinsky (2014),
the proto-object model of clutter perception has only two param-
eters: the number of initial superpixel seeds (k) and the feature
bandwidth for mean-shift clustering. The Spearman’s correlation
of .852 (.827 after cross validation) was based on the selection
of optimal seed and bandwidth parameters, which begs the ques-
tion of how robust the model is to different parameter settings.
Table 1 answers this question by showing 45 correlations span-
ning nine levels of superpixel seeds (ranging from 300 to 700)
and five feature bandwidths (ranging from 1 to 7).1 Even with
the least desirable setting of parameters, 300 superpixel seeds
and a bandwidth of 7, the proto-object model still produced a
.713 correlation with the behavioral clutter rankings. Taken
together with a similar observation by Yu, Samaras, and Zelinsky
(2014), the clear conclusion from this analysis is that the predictive
success of the proto-object model, regardless of whether the model
is applied to large or small images, is highly robust to changes in
its parameters.
2.3.3. Evaluating the effect of scene size on models of clutter perception
At its best, the proto-object model produced a Spearman’s cor-

relation of .852 (.827), but how does this compare to other meth-
ods of estimating clutter after similar parameter optimization
(when applicable)? To answer this question we obtained clutter
estimates of our 90 200 � 150 pixel scenes from six other clutter
models, then correlated these estimates with the median behav-
ioral clutter ranking, just as we did when evaluating the
proto-object model. The models included in this comparative anal-
ysis were: the feature congestion model (Rosenholtz, Li, & Nakano,
2007), the power law model (Bravo & Farid, 2008), the C3 model
(Beck, Lohrenz, & Trafton, 2010; Lohrenz et al., 2009), an edge den-
sity model (Mack & Oliva, 2004), mean-shift image segmentation
(Comaniciu & Meer, 2002), and a graph-based segmentation
method (Felzenszwalb & Huttenlocher, 2004). These latter two
models, although not really models of clutter perception, use
image segmentation methods to merge pixels into larger image
fragments. Clutter predictions can therefore be easily generated
simply by counting the number of segmented fragments, similar
to what was done for the proto-object model. Yu, Samaras, and
Zelinsky (2014) should be consulted for descriptions of each of
these models and methods, and for implementation details.

Fig. 4 shows the results of this model comparison. Plotted are
Spearman’s q correlations for each of the seven evaluated methods
applied to the 200 � 150 pixel scenes, together with the corre-
sponding correlations re-plotted from Yu, Samaras, and Zelinsky
(2014) obtained from the 800 � 600 pixel scenes. For each method,
care was taken to optimize any and all parameters so as to achieve
the best possible correlation. Focusing first on the data from the
smaller images, although the proto-object model yielded the high-
est correlation out of all the methods tested, several other models
performed nearly as well. Specifically, mean-shift segmentation,
the power law model, and the graph-based model all produced cor-
relations of .80 or higher. Notably, all of these best performing
methods included an initial superpixel segmentation stage,
whereas all of the poorer performing methods, edge density, fea-
ture congestion, and the C3 model, did not. This suggests that clut-
ter perception may engage a process that spatially groups feature
information into perceptual fragments.



Fig. 3. Examples of 2 of the 90 images used in this study (left column), shown with their proto-object segmentations (middle column) and reconstructions obtained after filling
each proto-object with its median color (right column). First and third rows: segmentations and reconstructions from Yu, Samaras, and Zelinsky (2014) using 800 � 600 pixel
images. Second and fourth rows: corresponding segmentations and reconstructions from the present study using images scaled to one-quarter their size, shown slightly larger
here for better visibility. Results are based on entropy rate superpixel segmentation with 600 (large images) and 500 (small images) initial seeds, and mean-shift clustering
bandwidths of 4 (large images) and 2.5 (small images) within an HSV color feature space.

Fig. 2. (A) The median behavioral clutter ranking of the 90 scenes viewed at a resolution of 200 � 150 pixels (present study) plotted as a function of the median behavioral
clutter ranking of the same 90 scenes viewed at a resolution of 800 � 600 pixels (Yu, Samaras, & Zelinsky, 2014). Spearman’s q = .953. (B) The median behavioral clutter
ranking of the 90 200 � 150 pixel scenes plotted as a function of the clutter ranking from the proto-object model for the same 200 � 150 pixel scenes. Spearman’s q = .852.
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How does image size affect the performance of these models?
One clear trend from Fig. 4 is that all of the evaluated methods per-
formed better for the smaller images compared to the larger, and
for some methods this difference was dramatic. Fig. 5 quantifies
these differences as the percentage drop in Spearman’s q resulting
from application of a method to large images relative to its small
image correlation ([1 � largeq/smallq] � 100). This analysis shows
that the proto-object model’s performance on the 200 � 150 pixel
image set declined by less than 5% after application to the larger
800 � 600 pixel images. The same cannot be said for the other



Fig. 5. Percent drop in the Spearman’s correlations between predicted and
behavioral rankings for the 800 � 600 pixel scenes relative to the correlations for

Table 1
Spearman’s correlations between the median behavioral clutter ranking and rankings
from the proto-object model as a function of the number of initial entropy rate
superpixel seeds and mean-shift feature bandwidth.

Mean-shift # Of superpixel seeds

Bandwidth 300 350 400 450 500 550 600 650 700

1 .717 .729 .740 .723 .727 .718 .734 .724 .720
2.5 .832 .836 .848 .833 .852 .834 .846 .846 .831
4 .846 .825 .808 .842 .813 .833 .797 .797 .826
5.5 .764 .799 .785 .796 .784 .803 .774 .761 .762
7 .713 .750 .763 .757 .751 .734 .735 .749 .770

Note: The highest correlation is indicated in bold.
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evaluated methods, which showed performance drops in the 13–
22% range. We know from Fig. 2A that clutter ranking is highly
invariant to changes in image size. A model of clutter perception
should be able to capture this size invariance to clutter. Only the
proto-object model is able to do this. Out of all the models included
in this comparative evaluation, not only is the proto-object model
the best predictor of clutter perception in both large and small
images, it is also the model that was least affected by changing
image size.
the 200 � 150 pixel scenes for each of the clutter prediction methods tested.
3. Experiment 2

Experiment 1 demonstrated that relative clutter perception is
invariant to image size—small images were ranked for clutter the
same as larger images. This need not have been the case. It could
have been that different-sized images might have engaged
different-scale filters used to extract spatial information, resulting
in different clutter rankings. Our data argue against this possibility.
Image size did not affect how cluttered one image appeared rela-
tive to another.
Fig. 4. Spearman’s correlations between the median behavioral clutter ranking and
ratings from seven clutter prediction methods for the 200 � 150 pixel scenes (blue
bars, present study) and the 800 � 600 pixel scenes (red bars, from Yu, Samaras, &
Zelinsky, 2014). Results are ordered from most correlated (left) to least correlated
(right) based on the 200 � 150 pixel image set. PO: proto-object clutter model (Yu,
Samaras, & Zelinsky, 2014). MS: mean-shift image segmentation (Comaniciu &
Meer, 2002). PL: power law clutter model (Bravo & Farid, 2008). GB: graph-based
image segmentation (Felzenszwalb & Huttenlocher, 2004). ED: edge density (Mack
& Oliva, 2004). FC: feature congestion clutter model (Rosenholtz, Li, & Nakano,
2007). C3: color clustering clutter model (Lohrenz et al., 2009). All p < .001.
But what of absolute clutter perception—are smaller images per-
ceived as more or less cluttered than larger ones? In some sense
this is the more interesting question, one that might even impact
the type of content that we view on our devices. For example, con-
tent providers may make viewing recommendations depend on the
device used to view the content. If an action movie will appear
cluttered when viewed on a phone, the viewing experience may
be more enjoyable if you save the action movie for a large screen
and view a sitcom on the phone instead.

Interestingly, the relationship between retinal image size and
absolute clutter perception is unknown, and a case can be made
for an effect appearing in either direction. To the extent that clut-
ter perception depends on the number of discrete ‘‘things’’ in an
image, then as an image gets smaller so too might the number of
things. Small things might dissolve into just ‘‘stuff’’. This would
be expected to produce a positive relationship between image
size and clutter perception, with smaller images tending to be
perceived as less cluttered. The opposite relationship might also
exist. To the extent that clutter perception is affected by the
absolute distance between neighboring objects, this distance will
necessarily be greater for larger images. This would result in an
inverse relationship between image size and clutter—as image
size increases objects spread farther apart resulting in the scene
appearing less cluttered. Of course finding no difference between
large and small images would suggest that absolute clutter
perception, like relative clutter perception, is invariant to image
size.

The goal of Experiment 2 was to discover the nature of the rela-
tionship between retinal image size and absolute clutter, and to
determine if the proto-object model could account for this rela-
tionship. We did this by again asking participants to produce a
clutter ranking of the same 90 scenes used in Experiment 1, only
now these scenes were a mixture of large and small images
(one-quarter the size). If smaller images are perceived as more
cluttered, they will tend to be clustered toward the ‘‘more clut-
tered’’ end of the ranking; if smaller scenes are perceived as less
cluttered they will be clustered toward the ‘‘less cluttered’’ end.
If image size is unrelated to clutter perception, the prediction is
that a ranking of intermixed large and small images should not dif-
fer from a ranking of only large or only small images.
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3.1. Methods

Eighteen undergraduate students from Stony Brook University
participated for course credit, none of whom participated in
Experiment 1 or the clutter ranking task from Yu, Samaras, and
Zelinsky (2014). All participants had normal or
corrected-to-normal vision, by self-report, and gave informed con-
sent in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki).

Stimuli were the same 90 images of random category
real-world scenes used by Yu, Samaras, and Zelinsky (2014), with
the only difference being that half of the scenes, selected at ran-
dom, were reduced in size from 800 � 600 pixels (large) to
200 � 150 pixels (small), the same reduction to one-quarter size
used in Experiment 1.

The procedure was identical to what was described for
Experiment 1, participants were told that they would see 90
images, one at a time, and would have to rank order these images
from least to most visually cluttered using their own idiosyncratic
definition of what constitutes clutter. Order of scene presentation
was randomized both within and across participants, meaning that
small and large images appeared unpredictably in the presentation
sequence and varied from participant to participant. Image size
was counterbalanced across participants; half of the participants
viewed half of the scenes as small, while the other participants
viewed the same scenes as large.

The apparatus used to collect the clutter rankings was also iden-
tical to the one used by Yu, Samaras, and Zelinsky (2014) and in
Experiment 1, only now the viewing conditions were a mixture
of both visual angles. Scenes to be ranked for clutter were dis-
played one at a time on the bottom monitor of the two-monitor
setup, with the large images filling the screen and subtending a
visual angle of 27� � 20� (as in Yu, Samaras, & Zelinsky, 2014)
and the small images centered on the screen and subtending a
visual angle of 6.75� � 5� (as in Experiment 1). All other aspects
of the apparatus and its functionality were identical to what was
described for Experiment 1.

There was a 12-scene practice set consisting of a randomly
interleaved mixture of six large and six small images, followed
by the 90-scene test set. This experiment also took 60–90 min,
and an experimenter again remained in the room with the
participants.

3.2. Results and discussion

We predicted that if small and large images are perceived dif-
ferently with respect to absolute clutter, an intermixed set of these
images should be ranked differently for clutter when compared to
a ranking of either all large or all small images. Specifically, the
small images from this intermixed set should be ranked differently
from the images in the all-small set (Experiment 1) due to the
opportunity now for absolute clutter comparisons to the larger
images. The same logic holds true for the large images when com-
pared to the ranking from Yu, Samaras, and Zelinsky (2014). A final
prediction is that the ranking of the small images from Experiment
2 should correlate weakly with the ranking of the large images
from Experiment 2, as the two would have been perceived differ-
ently with respect to absolute clutter. Finding evidence for any or
all of these predictions would be support for absolute clutter per-
ception being dependent on the size of an image. However, finding
uniformly strong correlations across these three comparisons
would be support for the opposite conclusion, that absolute clutter
perception is also invariant to image size.

To test these predictions we first had to obtain a median clutter
ranking of the Experiment 2 images for comparison to the others,
and this required segregating the intermixed images into large
and small rank-ordered sets. Recall that, across participants, each
of the scenes used in Experiment 2 was ranked for clutter when
it was viewed as large (by nine participants) and when it was
viewed as small (by nine participants). This made it possible to cre-
ate two median clutter rankings of the 90 scenes, one for large
images and the other for small images. Correlating the
small-image median ranking with the ranking from Experiment 1
yielded a Spearman’s q = .920 (p < .001). Correlating the
large-image ranking with the ranking of large images from Yu,
Samaras, and Zelinsky (2014) yielded a similar result, Spearman’s
q = .932 (p < .001). The fact that these two correlations are essen-
tially the same, and both nearly perfect, suggest that it does not
matter whether images were viewed as large, small, or a mixture
of the two, all were ranked similarly for clutter. We also compared
the large-image ranking to the small-image ranking and, as
expected from the previous result, found that the two were highly
correlated, Spearman’s q = .887 (p < .001). Collectively, these anal-
yses argue strongly for absolute clutter perception, like relative
clutter perception, being largely invariant to retinal image size.

Parallel analyses were performed to evaluate whether the
proto-object model would show a similar invariance to absolute
differences in image size. We again used the small-image and
large-image rankings obtained from Experiment 2, but instead of
correlating these to other behavioral rankings we now correlated
them to the ratings of small and large images obtained from the
proto-object model. This was done using the optimal superpixel
seed and mean-shift bandwidth settings identified by Yu,
Samaras, and Zelinsky (2014) for the large images (k = 600, band-
width = 4) and in Experiment 1 for the small images (k = 500, band-
width = 2.5). Doing this, we found that the clutter ratings from the
proto-object model correlated highly with both the small-image
ranking (Spearman’s q = .761, p < .001) and the large-image rank-
ing (Spearman’s q = .769, p < .001). Moreover, the fact that these
correlations are essentially identical argues that the proto-object
model, like the behavioral perception of absolute clutter, is largely
invariant to changes in image size.

We also explored the possibility that participants ranking the
intermixed images may have adopted a single setting of their clut-
ter ‘‘parameters’’, ones tuned for either large images or small
images, and did not switch back and forth between different set-
tings depending on the size of the image being ranked. To evaluate
the effect of using fixed settings we correlated the small and
large-image rankings from Experiment 2 with ratings from
proto-object models trained using the non-corresponding parame-
ter settings. We found that a proto-object model optimized for
small images (k = 500, bandwidth = 2.5) still correlated highly with
the large-image median ranking (Spearman’s q = .790, p < .001), as
did a proto-object model optimized for large images (k = 600,
bandwidth = 4) when correlated with the small-image ranking
(Spearman’s q = .787, p < .001). These correlations are comparable
to, and certainly not lower than, the correlations found when
parameters were optimized based on image size. This suggests that
the above-demonstrated invariance of the proto-object model to
changes in absolute image size does not depend on parameter opti-
mization. To the extent that our behavioral participants had com-
parable parameters, it also suggests that it may not have mattered
if they used a fixed setting of these parameters, either for large or
small images, or toggled back and forth between the two, their per-
ception of clutter would have been essentially the same.

4. General discussion

In this study we evaluated whether the proto-object model
could account for effects of image size on clutter perception. We



2 See http://www.visionsciences.org/symposium_detail.php?year=2014&id=3 for a
member-initiated symposium on this topic held at the 2014 meeting of the Vision
Sciences Society.
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all know clutter when we see it, but does this perception of clutter
change when images are viewed as large or small? This question
was addressed in two experiments, both of which used a clutter
ranking task. In Experiment 1 we had participants rank order small
images of scenes for visual clutter, then correlated their median
clutter ranking with a similarly obtained ranking of larger versions
of the same scenes from Yu, Samaras, and Zelinsky (2014). The
result was surprising in its clarity; a near perfect correlation. It
did not matter whether the scenes were viewed as large or reduced
to one quarter in size, they were ranked for clutter nearly the same.
This means that relative clutter perception is invariant to retinal
image size, as are the operations underlying relative clutter judg-
ments. In Experiment 2 we intermixed large and small images
and again asked participants to rank order the images for perceived
clutter. The task therefore required absolute judgments of clutter
across images of different sizes. Here, too, the results were clear.
Regardless of whether the images were all small, all large, or
size-intermixed, participants ranked them for clutter much the
same, suggesting that absolute clutter perception, like relative
clutter perception, is also invariant to retinal image size. In
addition to adding to our basic understanding of clutter, these
findings also have applied significance. They suggest that it may
not matter whether image content is viewed on a small cell phone
or tablet or a large monitor or television, clutter perception
depends on the image content and not the medium used to view
this content.

These findings also have implications for attention, and in par-
ticular the things that attention might select. If clutter perception
reflects the amount of stuff over some region of space, what is
actually being summed to compute this percept? Most models of
clutter assume that this stuff can be quantified in terms of a set
of basic visual features, with those used to construct edges cer-
tainly included in this set (Henderson, Chanceaux, & Smith, 2009;
Mack & Oliva, 2004). The summary would therefore be an
estimate of the number of features in this space, with features
being the presumed units that can increase in number and result
in the perceptual congestion that we experience as clutter
(Rosenholtz, Li, & Nakano, 2007). Objects are another potential
unit of attention (Scholl, 2001), so presumably the summary could
also be of these. While not excluding either of these possibilities,
our data suggest a third alternative, that there is another
pre-attentive unit existing between features and objects,
proto-objects, and that these are the units that are summed to
derive the clutter percept.

This conclusion follows from the fact that the proto-object
model of clutter perception introduced in Yu, Samaras, and
Zelinsky (2014) was successful in predicting the clutter ranking
of scenes from our behavioral participants. The model builds on a
superpixel segmentation of an image by adding a process that
merges neighboring superpixels that share a common color cluster.
The products of this merging are spatially extended regions of
coherent features—proto-objects. In Experiment 1 we applied the
proto-object model to a set of small images ranked by participants
and counted the number of proto-objects in each to obtain clutter
estimates. We found a .852 correlation between these estimates
and the median behavioral clutter ranking, with this correlation
remaining high even after cross validation (.827). In Experiment
2 we showed similarly high correlations between the estimates
of the proto-object model and small-image and large-image med-
ian rankings of size-intermixed images. Taken together with the
findings reported by Yu, Samaras, and Zelinsky (2014), we can con-
clude that the proto-object model nicely captures the size invari-
ance to clutter found for both relative and absolute clutter
perception judgments, and is the only existing model of clutter
estimation that is able to do so.
Although the proto-object model is not a model of attention per
se, it informs and constrains these models in a basic respect. Given
that attention can only select what is pre-attentively available, we
speculate that proto-objects may be the smallest unit of visual
space that is available for selection and use by the higher-level rou-
tines mediating goal-directed behavior. As such, understanding
proto-objects may be fundamental to understanding attention.
For one, constraints on the size of proto-objects, or the merging
of image fragments into proto-objects, may determine the resolu-
tion of visual spatial attention. With the proto-object model we
will be able to form testable predictions of what this resolution
should be for stimuli ranging from simple patterns to fully realistic
scenes. Secondly, if proto-objects constitute the set of things that
are available for selection, then the spatial distribution of
proto-objects in an image may constrain how attention can be allo-
cated during scene viewing. Stated differently, if proto-objects are
the stuff that is preattentively available for selection, the output of
the proto-object model might be the input to models of visual
selective attention. Future work will test this conjecture by using
the proto-object model to predict the allocation of gaze during
scene viewing and visual search. It may be the case that the overt
allocation of attention is best explained, not by feature-based mod-
els (Borji, Sihite, & Itti, 2013; Elazary & Itti, 2008) or object-based
models (Einhäuser, Spain, & Perona, 2008; Nuthmann &
Henderson, 2010) but rather by models that assume competition
on a priority map between proto-objects.

Finally, we interpret our results as further evidence for clutter
perception being mediated by a mid-level visual representation,
one that we are capturing with our proto-object model.
Mid-level visual representations live in the fertile ground between
low-level visual features and high-level objects, and evidence from
multiple perspectives is mounting for the importance of these rep-
resentations.2 We believe that proto-objects represent a key step in
the neurocomputational transformation of features into objects,
loosely corresponding to the formation of simple closed-form shapes
that is thought to occur in cortical area V4 (Cadieu et al., 2007;
Pasupathy & Connor, 2002). These visual fragments are the ‘‘stuff’’
of our perception, and we speculate that some percepts and percep-
tual decisions can be mediated directly from these proto-object rep-
resentations. We contend that clutter is one of these percepts, and
that clutter estimation is one of these perceptual decisions. Clutter
estimation is potentially crucial to many everyday tasks.
Consistent with the suggested relationship between clutter and a
search set size (Neider & Zelinsky, 2011; Rosenholtz, Li, & Nakano,
2007), it provides a rough idea of the size of a search space; an esti-
mate of the difficulty in selecting some particular piece of informa-
tion from the palate of pre-attentive pieces residing at the mid-level
of vision. Future work will be aimed at discovering other behaviors
that can be predicted directly from proto-objects, and how these
predictions might depend on summary features and spatial statistics
computed from these mid-level visual representations. If the
pre-attentive world consists of proto-objects, the proto-object model
might enable us to glimpse into this world.
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