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Abstract Functional Magnetic Resonance Images acquired during rest-
ing-state provide information about the functional organization of the
brain through measuring correlations between brain areas. Independent
components analysis is the reference approach to estimate spatial com-
ponents from weakly structured data such as brain signal time courses;
each of these components may be referred to as a brain network and
the whole set of components can be conceptualized as a brain functional
atlas. Recently, new methods using a sparsity prior have emerged to deal
with low signal-to-noise ratio data. However, even when using sophisti-
cated priors, the results may not be very sparse and most often do not
separate the spatial components into brain regions. This work presents
post-processing techniques that automatically sparsify brain maps and
separate regions properly using geometric operations, and compares these
techniques according to faithfulness to data and stability metrics. In par-
ticular, among threshold-based approaches, hysteresis thresholding and
random walker segmentation, the latter improves significantly the sta-
bility of both dense and sparse models.
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1 Introduction

Functional connectivity between brain networks observed during resting state
functional Magnetic Resonance Imaging (R-fMRI) is a promising source of di-
agnostic biomarkers, as it can be measured on impaired subjects such as stroke
patients [9]. However, its quantification highly depends on the choice of the brain
atlas. A brain atlas should be i) consistent with neuroscientific knowledge ii) as
faithful as possible to the original data and iii) robust to inter-subject variability.

Publicly available atlases (such as structural [8] or functional [13] atlases)
went through a quality assessment process and are reliable. To extract a data
driven atlas from R-fMRI, Independent Component Analysis (ICA) remains the
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reference method. In particular, it yields some additional flexibility to adapt the
number of regions to the amount of information available. Networks extracted by
ICA are full-brain and require a post-processing step to extract the salient fea-
tures, i.e., brain regions, which is often done manually [5] (see figure 3). To avoid
post-processing and directly extract regions, more sophisticated approaches rely
on sparse, spatially-structured priors [1]. Indeed, maps of functional networks or
regions display a small number of non-zero voxels, and thus are well characterized
through a sparsity criterion, even in the case of ICA [11,3]. However, sophisti-
cated priors such as structured sparsity come with computational cost and still
fail to split some networks into separate regions. Altogether, region extraction is
unavoidable to go from brain image decompositions to Regions-of-Interest-based
analysis [6].

A simple approach to obtain sharper maps is to use hard thresholding, which
is a good sparse, albeit non convex, recovery method [2]. We improve upon it by
introducing richer post-processing strategies with spatial models, to avoid small
spurious regions and isolate each salient feature in a dedicated region. Based
on purely geometric properties, these take advantage of the spatially-structured
and sparsity-inducing penalties of recent dictionary learning methods to isolate
regions. These can also be used in the framework of computationally cheaper ICA
algorithms. In addition to these automatic methods that extract brain atlases,
we propose two metrics to quantitatively compare them and determine the best
one. The paper is organized as follows. In section 2, we introduce the region
extraction methods. Section 3 presents the experiments run to compare them.
Finally, results are presented in section 4.

2 Region extraction methods

Extracting regions to outline objects is a well-known problem in computer vision.
For the particular problem of extracting regions of interest (ROIs) out of brain
maps, we want a method that i) handles 3D images ii) processes one image
while taking into account the remainder of the atlas (e.g., region extraction for a
given image may be different depending on the number of other regions) and iii)
isolates each salient feature from a smooth image in an individual ROI without
strong edges or structure (see figure 1). Here, we assume that a given set of brain
maps has been obtained by a multivariate decomposition technique.

Most of the following methods allow overlapping components after region ex-
traction. In fact, multivariate decomposition techniques most often decompose
the signal of one voxel as a linear mixture of several signal components. In prac-
tice, these overlapping regions are small and located in areas of low confidence.
Voxels that belong to no component are left unlabeled.

2.1 Foreground extraction

Let I = {I1, ..., Ik} be a set of brain maps (3D images), or atlas. I(p) designates
the value for image I at point p. We define by F(I) the set of foreground points
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of image I, i.e., the points that are eligible for region extraction. We propose
two strategies to extract the foreground.

Hard assignment. Hard assignment transforms a set of maps into a brain seg-
mentation with no overlap between regions. That means that each voxel will be
represented by a unique brain map from the atlas. This map is the one that has
the highest value for this voxel. The result is a segmentation from which we can
extract connected components.

Fhard(Ii) = {p ∈ Ii | argmaxj∈[1,k] Ii(p) = i}

Automatic thresholding. Thresholding is the common approach used to extract
ROIs from ICA. However, the threshold is usually set manually and is different
for each map. In order to propose an automatic threshold choice, we consider
that on average, an atlas assigns each voxel to one region. For this purpose, we
set the threshold tk(I) so that the number of nonzero voxels corresponds to the
number of voxels in the brain:

Fautomatic(Ia) = {p ∈ Ia, I(p) > tk(I)}

2.2 Component extraction

Connected components. Let N (p) be the set of neighbors of point p. Two points
p1 and pn are N -connected if pn can be reached from p1 by following a path of
consecutive neighboring points:

(p1, pn) N -connected ≡ ∃(p2, ..., pn−1) : pi+1 ∈ N (pi),∀ i ∈ [1, n− 1]

We define a connected component as a maximum set of foreground points that
are N -connected. The set of all N -connected components for a given image I
(see figure 1.c1) is written ccs(N , I). Extraction of connected components can be
done after hard assignment or automatic thresholding to obtain ROIs (figures 2
and 3). In the following methods, we consider the points extracted with auto-
matic thresholding as foreground (F = Fautomatic) and use more sophisticated
priors to extract ROI.

a. Original b. Foreground extraction c1. Connected components c2. Random Walker

Figure 1. Example of region extraction. Foreground pixels (b) are extracted from the
original image (a). Regions are extracted using connected component extraction (c1)
or random walker (c2).
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Hysteresis thresholding. Hysteresis thresholding is a two-threshold method where
all voxels with value higher than a given threshold thigh are used as seeds for
the regions. Neighboring voxels with values between the high threshold thigh and
the low threshold tlow are added to these seed regions. In our setting, the high
threshold can be seen as a minimal activation value over the regions in order to
sort out regions of marginal importance. Each brain map has its own optimal
value but, in practice, cross validation has shown that keeping the 10% highest
foreground voxels as seeds gives the best results. The automatic thresholding
strategy described above is used to set the low threshold tlow.

Conserving connected components that have their maximum value over thigh
is done at component extraction:

ccshysteresis(N , I) = {c ∈ ccs(N , I) | max(c) ≥ thigh}

Random Walker. Random Walker is a seed-based segmentation algorithm similar
to watershed. It calculates, for each point p, the probabilities to end up in each
of the seeds by doing a random walk across the image starting from p. The
original version of the algorithm [4] was of probabilistic nature, whereby the
probability to jump to a neighboring point is driven by the gradient magnitude
between them. After convergence the point is attached to the seed with the
highest probability.

Random Walker can also be seen as a diffusion process. It is equivalent to
hysteresis thresholding where regions that have grown enough to share a bound-
ary are not allowed to be merged. The probabilities to reach each of the seeds
can be computed using the laplacian matrix of the graph associated with the
map. Due to space limitations we refer the reader to [4] for the complete de-
scription of the algorithm. We suppose seed(p) returns the seed associated with
point p. We refine our neighborhood relationship by considering two points as
neighbours only if they are associated to the same seed:

Nrw(p) = {q ∈ N , seed(p) = seed(q)} ; ccsrw(I) = ccs(Nrw, I)

Note that, in our setting, a high value in the map means a high confidence. So,
instead of using the finite difference gradient, we consider the max of the image
minus the lowest voxel. Therefore, diffusion is facilitated in areas of high confi-
dence and more difficult elsewhere. We take the local maxima of the smoothed
image as seeds for the algorithm.

3 Experiments

Experiments are made on a subset of the publicly available Autism Brain Imag-
ing Database Exchange5 dataset. Preprocessing is done with SPM and includes
slice timing, realignment, coregistration to the MNI template and normalization.
We select 101 subjects suffering from autism spectrum disorders and 93 typical

5 http://fcon_1000.projects.nitrc.org/indi/abide/
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controls from 4 sites and compute brain atlases on 10 cross-validation iterations
by taking a random half of the dataset as the train set. We extract regions from
these atlases and quantify their performance on the other half of the dataset
with two metrics.

We investigate two decomposition methods to extract brain maps from rest-
ing-state fMRI: ICA –independent component analysis– that yields full brain
continuous maps, and MSDL –multi-subject dictionary learning–, [1], that di-
rectly imposes sparsity and structure on the maps thanks to the joint effect of
`1 norm and total variation minimization. Our goal is to compare the effects of
region extraction on sparse and non-sparse sets of maps.

To quantify the usefulness of a set of regions extracted automatically, we
consider metrics that characterize two different aspects of the segmentation: the
ability to explain newly observed data and the reproducibility of the informa-
tion extracted, as in the NPAIRS framework [7]. We use Explained Variance
(EV) to measure how faithful the extracted regions are to unseen data. Stability
with regards to inter-subject variability is measured using Normalized Mutual
Information (NMI) over models learned on disjoint subsets of subjects.

Following [10], we extract k = 42 maps. For the metrics to be comparable, we
need to apply them on models of similar complexity, i.e. with the same number of
regions. For this purpose, we assume that there must be on average 2 symmetric
regions per map (some of them may have more, and some of them may have
only one inter-hemispheric region). We therefore aim at extracting 2k regions,
and take the largest connected components after region extraction. In the end,
some maps may not contribute to the final atlas.

3.1 Data faithfulness – Explained variance

The explained variance measures how much a model accounts for the variance of
the original data. The more variance is explained, the better the model explains
the original data. Linear decomposition models original data yorig by decom-
posing them into two matrices. In our case, these matrices are brain networks
I and their associated time series ymodel. Time series of regions are measured
using least square fitting instead of simple averaging to handle mixed features
in region overlaps. Explained variance of these series is then computed over the
original ones.

yorig = I×ymodel+yε ; EV(ymodel) = 1− Var(yε)

Var(yorig)
=

Var(yorig)−Var(ymodel)

Var(yorig)

3.2 Stability – Normalized Mutual Information

To assess model stability, we rely on Normalized Mutual Information, a standard
clustering similarity score, applied on hard assignments [12]: given two hard
assignments U and V with marginal entropy H(U) and H(V ) respectively,

NMI(U, V ) =
H(U) + H(V )−H(U, V )√

H(U) ∗H(V )
;H(X) = −

n∑
i=1

p(xi) log p(xi)
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4 Results

Figure 2 presents region extraction results using each method on the same map.
In all figures, the threshold applied during region extraction is shown in a given
slice to help understanding. Results for each metric are displayed on the right.
We vary parameters for each model (smoothing for ICA, 3 parameters of MSDL)
and, for each region extraction method, display the best 10% results across
parametrization. Figure 3 shows 2 networks out of 42 extracted.

Region shape The regions extracted by hard assignment (figure 2.a) present
salient angles and their limits do not follow a contour line of the original map.
The straight lines are the results of two maps in competition with each other.
The 1D cut shows that the threshold applied when using hard thresholding is
not uniform on the whole image. The other methods look smoother and follow
actual contour lines of the original map. On this particular example, automatic
thresholding (figure 2.b) extracts 2 regions: a large one on the left and a very
small one on the right. This is one of the drawbacks of thresholding: small regions
can appear when their highest value is right above the threshold. Thanks to its
high threshold, hysteresis thresholding (figure 2.c) gets rid of the spurious regions
but still fails to separate the large region on the left. Random Walker (figure 2.d)
manages to split the large region into two subregions.

Similarly, in figure 3 we can see that Random Walker manages to split the
default mode network into 3 components, where other methods extract two.

Stability. Random Walker dominates the stability metric. It uses local maxima
to get regions seeds, and will thus split regions even if they are connected after
thresholding. Its performance is statistically significant for both dense and sparse
atlases and any parametrization. The stability improvement is larger for sparse
than for dense maps. This could be due to the inability of random walker to
compensate for the original instabilities of the models.

Data fidelity. The explained variance scores on best performing models, shown
in figure 2, are similar for all methods. In poorly performing models, we observe
that automatic and hysteresis thresholdings are slightly above random walker
(about 2%), exhibiting the same trade-off as in [1].

5 Discussion and conclusion

Functional atlases extracted using ICA or sparse decomposition methods are
composed of continuous maps and sometimes fail to separate symmetric func-
tional regions.

Starting from hard thresholding [2], we introduce richer strategies integrating
spatial models, to avoid small spurious regions and isolate each salient feature
in a dedicated region. Indeed, the notion of regions is hard to express with
convex penalties. Relaxations such as total-variation used in [1] only captures it
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Figure 2. Comparison of region extraction methods (after selection of 2k regions).
Brain maps obtained with MSDL are located on the left. The activated regions are
symbolically represented below in a height map. The bars on the right of each image
represent the Normalized Mutual Information and Explained variance obtained on
dense maps (ICA) and sparse maps (MSDL). Random walker is the most stable method.

Visual cortex

︸ ︷︷ ︸ ︸ ︷︷ ︸
Original Manual Hard Automatic Hysteresis Random Walker

Default mode network

︸ ︷︷ ︸ ︸ ︷︷ ︸
Original Hard Automatic Hysteresis Random Walker

Figure 3. Region extraction from ICA maps using different approaches. For each net-
work, Random Walker is better at extracting ROIs
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partially, while a non-convex segmentation step easily enforces regions. We find
that a Random-Walker based strategy brings substantial increase in stability
of the regions extracted, while keeping very good explanatory power on unseen
data. Finer results and interpretation may arise by using more adapted metrics,
for example a version of DICE that can deal with overlapping fuzzy regions. This
point is under investigation.
Acknowledgments We acknowledge funding from the NiConnect project and
NIDA R21 DA034954, SUBSample project from the DIGITEO Institute, France.
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