
3D ASSISTED FACE RECOGNITION VIA PROGRESSIVE POSE ESTIMATION 
 

Wuming Zhang1, Di Huang2, Dimitris Samaras3, Jean-Marie Morvan4, Yunhong Wang2, Liming Chen1 
 

 1MI Department, LIRIS Laboratory, CNRS 5205, Ecole Centrale de Lyon, 69134, Lyon, France 
2School of Computer Science and Engineering, Beihang University, 100091, Beijing, China 

3Image Analysis Lab, Computer Science Department, Stony Brook University, 11794, New York, USA 
4Institut Camille Jordan, UMR 5208 du CNRS, Université Lyon 1, 69622, Lyon, France 

 
 

ABSTRACT 
 
Most existing pose-independent Face Recognition (FR) tech-
niques take advantage of 3D model to guarantee the natural-
ness while normalizing or simulating pose variations. Two 
nontrivial problems to be tackled are accurate measurement 
of pose parameters and computational efficiency. In this pa-
per, we introduce an effective and efficient approach to esti-
mate human head pose, which fundamentally ameliorates the 
performance of 3D aided FR systems. The proposed method 
works in a progressive way: firstly, a random forest (RF) is 
constructed utilizing synthesized images derived from 3D 
models; secondly, the classification result obtained by apply-
ing well-trained RF on a probe image is considered as the 
preliminary pose estimation; finally, this initial pose is trans-
ferred to shape-based 3D morphable model (3DMM) aiming 
at definitive pose normalization. Using such a method, simi-
larity scores between frontal view gallery set and pose-nor-
malized probe set can be computed to predict the identity. 
Experimental results achieved on the UHDB dataset outper-
form the ones so far reported. Additionally, it is much less 
time-consuming than prevailing 3DMM based approaches. 
 

Index Terms— asymmetric face recognition, pose esti-
mation, 3D morphable model, random forest 
 

1. INTRODUCTION 
 
In the light of tremendous progress that has been made in 
traditional FR where pose variations are strictly prohibited or 
controlled, it is natural to extend the research interest to un-
constrained environment. Compared with conventional 2D 
techniques [1, 2, 3], 3D methods, which could account for 
pose variations, show complete dominance using compre-
hensive facial information [4, 5]. However, the expensive 
cost in acquisition, registration and calculation of 3D data 
makes it difficult to be widely used in FR systems. 

As a trade-off between 2D and 3D techniques, 2D/3D 
asymmetric FR has recently become an attractive topic. The 
main motivation of this scenario is to integrate superiorities 
of both 2D and 3D based methods and avoid their drawbacks, 
such as unilateral enrollment of 3D data in gallery with 2D 

texture images in probe. In this way more robustness could 
be gained by applying 3D models on 2D image analysis, 
meanwhile acquisition of 3D data is not required in verifica-
tion stage so as to largely reduce the computational cost. 

To deal with such an issue, a few attempts have been 
made [6]. Blanz and Vetter [7] build a statistical model by a 
set of training data and densely fit it to a given facial image 
for matching, but it generally requires a long convergence 
process. Riccio and Dugelay [8] established a correspond-
ence between the 3D gallery face and the 2D probe using ge-
ometric invariants on the face; Toderici et al. [9] also located 
some pre-defined key landmarks (eye corners and nose tip) 
on the facial images in different poses, and then roughly align 
them to a frontal 3D model for matching. Nevertheless, they 
both assumed that accurate localization in multi-view facial 
images was fulfilled, which turns out to be another tough 
topic. Zhang et al. proposed an asymmetric 3D-2D FR ap-
proach [10] which performs a 2D-2D matching by synthesiz-
ing 2D images from 3D models towards the same pose as 
probe samples, where a preprocessing pipeline for illumina-
tion normalization and pose correction as well as Oriented 
Gradient Maps (OGMs) based facial representation [11] are 
adopted. This approach was further compared and associated 
with work of Zhao et al. [12] as a benchmarking asymmetric 
3D-2D FR system on the UHDB face database [13]. Unfor-
tunately they both suffer from high computational cost owing 
to considerable complexity of pose synthesis and their pose 
estimation processes still lack satisfactory accuracy. 

In this work, we are especially concerned with an effi-
cient pose-independent face recognition approach. It deals 
with accurate pose reconstruction by introducing a progres-
sive pose estimation processing while greatly improving 
computational efficiency. Experiments carried out on the 
UHDB dataset demonstrate our prominence compared with 
prevailing techniques. Fig. 1 shows an illustrative overview 
of the proposed method, in which we organize our system 
and the remainder as well by concatenating three main parts: 
random forest based pose estimation (Section 2), 3D mor-
phable model based pose normalization (Section 3) and LBP-
based matching (Section 4). Finally the experimental results 
and conclusions are presented in Section 5 and Section 6 re-
spectively. 
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2. RANDOM FOREST BASED POSE ESTIMATION 
 
As a strong classifier in machine learning, Random Forest 
(RF) inherits and enhances the classification capacity of a 
single decision tree while overcoming its inconvenience of 
over-fitting, therefore it is commonly used in applications to-
wards pose estimation and feature point extraction [14, 15].  

In our preprocessing stage, 3D models in the gallery set 
are firstly rotated to specific poses and then projected onto 
2D plane to obtain a multi-pose 2D face database with accu-
rate ground truth of pose value. As shown in Fig. 2, these 
images are regarded as training data of RF after a rough de-
lighting processing. Moreover, aiming at decreasing the im-
pact of over-fitting, only a randomly selected subset of im-
ages will be adopted for each tree, and it is thus sufficient to 
present  the  proceeding  of  a  single  tree’s  training. 

Instead of directly utilizing the grayscale value of a ran-
domly selected region as feature value in previous work [14], 
which leads to heavy computational cost and potential error, 
we extract LBP (Local Binary Patterns) features of each im-
age to construct an SVM (Support Vector Machine) based 
classifier for each split node. The detailed algorithm is pre-
sented in Algorithm 1. 
Algorithm 1. The outline of our RF training 
1. Select a subset of images at random as training data for 

a new tree  𝑇௜ , each image 𝐼௝ is associated with its pose 
vector 𝜃௝ = ൛𝜃௬௔௪, 𝜃௣௜௧௖௛, 𝜃௥௢௟௟ൟ  where the three sub-
scripts stand for Euler angles representing conditions of 
3D space rotation. 

2. Judge whether current node is a leaf node or a split one. 
If any of these conditions is satisfied: 1) maximum depth 
of tree is reached, 2) remaining images are less than pre-
selected threshold, we define this node a leaf node and 
jump to step 5; or we go to step 3. 

3. Divide images into two classes. Histograms of LBP fea-
tures for each image in current node are calculated as 
features to be classified by SVM. Certain binary tests in 
the form of (1) 

ωℎ௝ − 𝜌 < 0                             (1) 
would be carried out by training certain SVMs. Note that 
ℎ௝ is the LBP histogram of image  𝐼௝, ω and 𝜌 are trained 
weight parameter and bias offset of each SVM obtained 
by randomly labeling images. The final SVM coeffi-
cients are chosen by minimizing the corresponding dif-
ferential entropy: 

E = 𝜔௟𝑙𝑜𝑔൫𝑑𝑒𝑡(𝜎௟)൯ + 𝜔௥𝑙𝑜𝑔൫𝑑𝑒𝑡(𝜎௥)൯      (2) 
where 𝜔௟  and 𝜔௥  stand for quantity weight of the left 
and right image subset compared with their parent node, 
𝜎௟ and 𝜎௥ represent the covariance matrix of the left and 
right subset. These SVM coefficients are stored in this 
node as attributes. 

4. Perform steps 2, 3 iteratively until a leaf node is found. 
5. Record the leaf node by storing the mean vector of all 

pose vectors arrived as an annotated attribute and the 
trace of covariance matrix. 

6. Perform steps 2 to 5 iteratively until all nodes of tree  𝑇௜  
are traversed. 
After training a certain number of trees, a random forest 

is constructed which actually performs a projection from 
continuous pose variations onto discrete pose candidates in 
order to transform the estimation problem to a classification 
problem. Upon largely enhancing classification performance 
by gathering considerable SVM classifiers, RF is capable to 
tackle this problem.  

When an unseen image enters, we simply release it to 
our well-trained RF and cluster all pose candidates obtained 
after discarding ones which are not informative, i.e. owning 
a too large trace. 
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Fig. 1. Framework of our proposed method. 
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3. 3DMM BASED POSE NORMALIZATION 

 
Despite   of   RF’s   powerful   classification capacity, it is still 
greatly restricted when it comes to a situation requesting high 
accuracy because of the intrinsic errors caused by training 
data’s  diversity  and  cluster  effect. Another formidable tool is 
subsequently introduced to perfect our system. 

Widely employed in 3D recovery and synthesis, 3D 
morphable model has always been a significant parametric 
modeling technique. Assuming that human face could be rep-
resented   by   linearly   combining   a   train   of   ‘prototype’   face  
models, 3DMM offers a 3D face generation processing: 

𝑆௠௢ௗ௘௟ = 𝑆̅ + ∑ 𝛼௜௠ିଵ
௜ୀଵ 𝑠௜ , 𝑇௠௢ௗ௘௟ = 𝑇ത + ∑ 𝛽௜௠ିଵ

௜ୀଵ 𝑡௜   (3) 
where 𝑆௠௢ௗ௘௟ and 𝑇௠௢ௗ௘௟  are generated shape and texture of 
a new face; 𝑆̅ and 𝑇ത are mean shape and texture of existing 
face models; 𝑠௜  and 𝑡௜  are eigenvectors of all models after 
PCA transformations; 𝛼௜ and 𝛽௜ stand for respective weights 
of 𝑖௧௛eigenvector of shape and texture. 

To date, 3DMM based FR methods could be categorized 
into  three  classes  by  model’s  usage  rules:  
1. Pose fitting [7, 16]: The most simple and primary 

method directly comparing shape and texture parameters 
between gallery and probe images obtained by fitting 3D 
models to both of them; 

2. Pose synthesis [17, 18]: Estimate the pose value of probe 
image by the aim of generating photo-realistic images 
with similar pose by fitting 3D models to gallery images, 
and pose-invariant matching is hence achieved; 

3. Pose normalization [19, 20]: Instead of rotating frontal 
gallery image to a specified pose, both gallery and probe 
images are normalized to frontal pose and then regular 
face recognition could be performed. 
The categorization could be intuitively illustrated and 

compared in Fig. 2. For pose fitting methods, despite of their 
simplicity and intuition, the performance depends largely on 
their fitting accuracy. Pose synthesis methods are easier to 

implement and could avoid texture missing; however they 
require high computational cost since all gallery images are 
processed for each probe image. Compared with them, pose 
normalization tends to be more appropriate for its merits of 
quickness and accuracy. Nevertheless, most existing meth-
ods still adopt the same framework which aims at searching 
for parameters 𝛼௜  and 𝛽௜   simultaneously or iteratively by 
minimizing the pixel-wise difference between the raw input 
image and the recovered image. Although they may finally 
acquire an accurate fitting result, they suffer from embarrass-
ing computational cost and pose initialization for optimiza-
tion procedure still remains a challenge. 

Starting from these problems, we propose a novel 
3DMM based framework by introducing a reasonable pose 
initialization and avoiding pixel-wise comparison in order to 
gain a quite considerable acceleration while preserving the 
performance. We utilize 100 3D models in USF face dataset 
[21] as ‘prototype’ models and assume that 18 feature points 
are manually labeled as prior knowledge for both USF mod-
els and all images in gallery and probe. Their positions are 
depicted in Fig. 3. For clarity purposes, the proceeding of 
proposed technique is shown in Algorithm 2.  
Algorithm 2. The outline of proposed pose normalization. 
1. Calculate mean shape   𝑠ிଷ஽തതതതത , PCA eigenvectors 𝑠ிଷ஽ =

[𝑠ிଵଷ஽, 𝑠ிଶଷ஽, … , 𝑠ி௡ଷ஽] and their corresponding eigenvalues 
𝜎ଷ஽ = [𝜎ଵଷ஽, 𝜎ଶଷ஽, … , 𝜎௡ଷ஽]of all 3D feature points la-
beled on the USF face models where n refers to number 
of eigenvectors selected in the final synthesis. 

2. Minimize the cost function  𝐹. Instead of processing the 
image pixel by pixel as previous work does, we merely 
retain the feature points and discard texture information. 
The new cost function is shown below: 

𝐹 = 𝑎𝑟𝑔 min
௙,ఝ,ఊ,ఏ,ఈ,௧మವ

ฮ൫𝑓𝑃𝑅൫𝑠ிଷ஽തതതതത + ∑ 𝛼௜𝑠ி௜ଷ஽௡
௜ୀଵ ൯ +

𝑡ଶ஽൯ − 𝑠ிଶ஽ฮ
ଶ + 𝜔∑ ฯ ఈ೔

ఙ೔యವ
ฯ
ଶ

௡
௜ୀଵ                (4) 

Note that 𝑓 refers to scale parameter; 𝑃 stands for or-
thogonal projection; 𝑅  indicates 3D space rotation 
formed by three Euler angles  𝜑, 𝛾, 𝜃; and  𝑠ிଶ஽ are feature 
points of input image. Particularly, we avail ourselves of 
the pose values estimated by RF in Sec. 3 for initializa-
tion so that the optimization procedure develops in a rel-
atively correct range. Furthermore, a variance-normal-
ized constraint weighted by a pre-defined value ω  is 
added to avoid abnormal shape parameters. 

3. Synthesize normalized face shape. Since all parameters 

Fig. 2. Annotation of 18 feature points in face images under 
4 different pose variations in which the first one is the frontal 
view image in the gallery set. 
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are recovered, we can synthesize the normalized face 
shape of an image by simply generalizing the shape pa-
rameters to whole point clouds: 

𝑠௡௘௪ଷ஽ = 𝑠ଷ஽തതതതത + ∑ 𝛼௜𝑠௜ଷ஽௡
௜ୀଵ                 (5) 

The proposed method benefits from RF based pose esti-
mation and much less computational cost. Notwithstanding 
the imperfect shape recovery accuracy shown in Fig. 4, we 
truly realize an effective and speedy pose normalization ap-
proach which inspires a novel pose-invariant FR system. 
 

4. LBP-BASED MATCHING 
 
Once the frontal shape model of an input face image is re-
constructed, texture values could be mapped to new model 
by respecting the correspondence between 2D and 3D. After 
that, we could carry out another projection of this textured 
3D model from 3D space onto 2D plane in order to gain a 
frontal-view 2D face image, several examples are depicted 
in Fig. 4. Manifold matching methods could afterwards be 
available for classical face recognition. In this work we cal-
culate the chi-square distance between LBP features [22] of 
gallery and probe images to evaluate the recognition rate. 
 

5. EXPERIMENTAL RESULTS 
 
The proposed method aims at achieving a 2D/3D asymmetric 
face recognition, and the dataset applied for evaluating its 
performance should hence satisfy two conditions: 1) 3D 
models are provided in the gallery set, 2) 2D images with 
pose variations are included in the probe set. In respect of the 
fact that most existing public face datasets, such as FRGC 
and CMU-PIE, could hardly meet these requirements all at 
once, a novel dataset is adopted in our work which is offered 
by University of Houston, known as the UHDB face dataset.  

The UHDB contains 23 3D meshes and their corre-
sponding textures of 23 subjects in the gallery set and 1692 
2D textures in the probe set. 6 illumination conditions and 12 
pose conditions are covered in the probe set, considering that 
only pose impact is handled in our work, we merely take into 
account all pose conditions under neutral lighting, including 
23*12 = 276 images. Several examples of one subject and 
their recovery results are illustrated in Fig. 4. We can infer 
from the figure that our method is capable to successfully re-
cover the shape information of given image and re-map the 
texture onto frontal face shape to obtain a pose-normalized 
image. Although identity inference based on shape fitting 
lacks accuracy and there might occur texture missing for 
large pose variations (as shown in last column of Fig. 4), we 
could still perceive that a high-quality pose normalization is 
achieved and FR based on pose-normalized image is feasible. 

As shown in Table. 1, the proposed method is compared 
with two previous work on UHDB [12]. Furthermore, an-
other comparison experiment without RF based pose estima-
tion is carried out as well for validating the efficiency of pro-
gressive pose estimation for pose-invariant face recognition. 
In the meanwhile, their computation complexities are also 

comparatively measured and analyzed through the average 
processing time for each image. 

It is clear to find out that our method outperforms the 
state-of-the-art 2D/3D FR approaches which report the per-
formance on this dataset and is much more computationally 
efficient. In addition, it is worth mentioning that RF based 
pose estimation helps improve the performance of the pro-
posed method and slightly shorten the processing time. 

 
Table 1. Verification result and average processing time 

 
6. CONCLUSIONS 

 
In this work, a novel 2D/3D asymmetric FR system is pro-
posed which takes advantage of random forest based pose 
estimation as a preprocessing pipeline to improve the pose-
invariant FR performance while limiting the use of 3D data 
so that a low computational cost is obtained. Compared with 
existing 2D/3D asymmetric methods, the proposed approach 
is much faster and less dependent of 3D model fitting accu-
racy. Furthermore, the experimental results on the UHDB 
prove the predominant verification power and computational 
efficiency of our method under unconstraint environment. 
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Method Rank-1 RR 
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Time 

LIRIS [12] 0.802 61.2s 

UR2D [12] 0.852 - 
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Fig.  4. Examples in UHDB. First row is raw image; second 
and third rows illustrate respectively the recovered face 
shape with and without estimated pose; last row shows the 
textured image after pose normalization. In particular, first 
column is gallery and others are probes. 
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