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Simultaneous Cast Shadows, lllumination
and Geometry Inference Using Hypergraphs
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Dimitris Samaras, Member, IEEE Computer Society, and Nikos Paragios, Fellow, IEEE

Abstract—The cast shadows in an image provide important information about illumination and geometry. In this paper, we utilize this
information in a novel framework in order to jointly recover the illumination environment, a set of geometry parameters, and an estimate
of the cast shadows in the scene given a single image and coarse initial 3D geometry. We model the interaction of illumination and
geometry in the scene and associate it with image evidence for cast shadows using a higher order Markov Random Field (MRF)
illumination model, while we also introduce a method to obtain approximate image evidence for cast shadows. Capturing the
interaction between light sources and geometry in the proposed graphical model necessitates higher order cliques and continuous-
valued variables, which make inference challenging. Taking advantage of domain knowledge, we provide a two-stage minimization
technique for the MRF energy of our model. We evaluate our method in different datasets, both synthetic and real. Our model is robust
to rough knowledge of geometry and inaccurate initial shadow estimates, allowing a generic coarse 3D model to represent a whole
class of objects for the task of illumination estimation, or the estimation of geometry parameters to refine our initial knowledge of scene

geometry, simultaneously with illumination estimation.

Index Terms—Markov random fields, photometry, shading, image models

1 INTRODUCTION

THE appearance of a scene depends considerably on the
illumination conditions, which therefore influence a
large number of computer vision tasks. Illumination is one
of the three components of the image formation process,
along with the 3D geometry of the scene and the reflectance
properties of the surfaces in it. The interaction among these
three components means that estimation of one or two of
them requires knowledge or strong assumptions about the
rest [18], [23], [26], [28], [29]. Previous work in illumination
estimation usually assumes known scene geometry and
makes strong assumptions about reflectance. Our goal in
this work is, through a statistically robust inference
approach, to diminish the effect violations of such assump-
tions have on the final illumination estimate, based on the
information contained in cast shadows. Compared to
illumination cues such as shading or specularities, cast
shadows are relatively stable in the presence of large
inaccuracies in the knowledge of geometry and reflectance.

Estimating illumination from cast shadows implies
obtaining an estimate of the cast shadows in the image,
which can be challenging in complex images. Shadow
detection in the absence of illumination estimation or

e A. Panagopoulos and D. Samaras are with the Department of Computer
Science, Stony Brook University, Stony Brook, NY 11794-4400.

E-mail: {apanagop, samaras}@cs.stonybrook.edu.

o C. Wang and N. Paragios are with the Center for Visual Computing, Ecole
Centrale Paris, Chdtenay-Malabry, France, and Equipe GALEN, INRIA
Saclay-Ile-de-France, Orsay, France.

E-mail: {chaohui.wang, nikos.paragios|@ecp.fr, ch.wang@cs.ucla.edu.

Manuscript received 30 Mar. 2011; revised 30 Oct. 2011; accepted 5 Apr.
2012; published online 9 May 2012.

Recommended for acceptance by R. Ramamoorthi.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-03-0188.

Digital Object Identifier no. 10.1109/TPAMI.2012.110.

0162-8828/13/$31.00 © 2013 IEEE

knowledge of 3D geometry is a well-studied problem.
Salvador et al. [25] use invariant color features to segment
cast shadows in still or moving images. Finlayson et al. [5], [4]
propose illumination invariant features to detect and remove
shadows from a single image. Their method makes several
assumptions about the lights and the camera and its
performance reduces in lower quality consumer-grade
photographs. Recently, Zhu et al. [31] combined a number
of different features in a probabilistic framework to
recognize shadows in monochromatic images, while in [16]
Lalonde et al. propose a learning approach to detect shadows
in consumer-grade photographs, focusing on shadows cast
on the ground. Guo et al. [22] consider image regions,
combining classifiers for individual regions as well as region
pairs in a graph in order to label the shadow regions.

Much research in the computer vision community has
dealt with extracting illumination from shading, specular
reflections, or cast shadows. Yang and Yuille [29] estimate
multiple light sources from the intensity along occluding
boundaries and critical points; Wang and Samaras [28]
estimate multiple directional illuminants utilizing both
shading and shadows, assuming known scene geometry.
Sato et al. [26] estimate illumination from cast shadows,
assuming known geometry illuminated by a set of infinitely
distant light sources, casting shadows onto a planar Lamber-
tian surface. Their method uses nonnegative least squares
(NNLS) optimization to obtain an illumination estimate. Hara
et al. [9] remove the distant illumination assumption while
simultaneously estimating illumination and reflectance. In
[30], Zhou and Kambhamettu propose a unified framework
to estimate both distant and point light sources.

The prior art on illumination estimation from shadows
cast on textured surfaces is limited. Sato et al. [26] require an
extra image to deal with texture. Li et al. [18] propose a
method that integrates multiple cues from shading, shadow,
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and specularities, utilizing physical consistencies between
lighting cues to handle textured surfaces. Kim and Hong [12]
use regularization by correlation to estimate illumination
from shadows in the presence of texture, but require extra
user-specified information and assume Lambertian reflec-
tance and known geometry. Panagopoulos et al. [19] propose
a method able to deal with inaccurate geometry and texture,
but the shadow detection results on textured surfaces are
limited. In the more special case of daytime outdoor scenes,
Lalonde et al. [15] propose an approach that combines cues
from the sky, cast shadows on the ground, and surface
brightness to estimate illumination where the sun is the
single light source, which does not require known 3D
geometry but is not applicable to general scenes.

In general, illumination estimation necessitates strong
assumptions about geometry. The main goal of this paper is
to relax such assumptions so that simplistic geometry
approximations, like the ones that can be extracted
automatically or provided from limited user input, will
suffice to estimate the illuminants in a scene. To this end,
we propose a novel framework to recover the illumination
environment of a scene, a rough cast shadow estimate, and
a set of geometry parameters from a single observed image,
given coarse initial 3D geometry. With our method, very
coarse approximations of geometry, such as bounding
boxes, are enough to estimate illumination, while the
geometry of the occluders can be refined as part of
the illumination estimation process. The initial approximate
geometric information we require could be derived as part
of more general scene understanding techniques while
enabling illumination estimation to be incorporated in the
scene understanding loop; the obtained illumination and
geometry information could be a crucial contextual prior in
addressing various other scene understanding questions.

Graphical models can efficiently incorporate different
cues within a unified framework [27]. In order to deal with
the complex illumination/geometry/shadows estimation
problem robustly in a flexible and extensible framework,
we jointly model the geometry, light sources, and shadow
values within an MRF model. All the latent variables can then
be simultaneously inferred through the minimization of the
energy of the MRF. This work was originally reported in [21].

The MRF model we propose captures the interaction
between geometry and light sources and combines it with
image evidence of cast shadows. Cast shadow detection is
well posed in terms of graph topology since it can be
expressed using a graph in the form of a 2D four-connected
lattice where each image pixel corresponds to a graph node.
Modelingl the creation of cast shadows from the interaction
of light sources and geometry in the MRF mode, on the other
hand, implies a potential dependence between each pixel
and all nodes representing the light sources and the
occluder geometry. This generally results in higher order
cliques in the graph representing our MRF model. Further
complications arise from the fact that the number of light
sources is unknown, resulting in unknown MRF topology,
and that the search space is continuous. We are able to
reduce the search space and identify the MRF topology
through an initial illumination estimate obtained using a
voting algorithm. Inference in higher order MRF models has
received a lot of attention recently [11], [13]; here we take
advantage of domain knowledge to describe a two-stage
minimization approach that can effectively minimize the
MRF energy. Our approach is based on a decomposition
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of the energy and requires solving only pairwise MRF
problems. We make the following assumptions (common in
illumination modeling): An initial coarse 3D geometry is
known, the illumination environment can be approximated
by a set of distant light sources, the reflectance of surfaces is
roughly Lambertian, and there are no interreflections.
Furthermore, if estimation of occluder geometry parameters
is desired, these occluders have to be identified in the
original image by providing a 2D bounding box and one or
more candidate geometric models. The shadow detection
method of Section 5 assumes that shadows are cast on flat
surfaces. Our illumination MRF model does not rely on this
assumption, however.

To obtain the initial shadow estimate required by our
method, we describe a method based on the observation
that illumination affects the whole image in a consistent
way. Therefore, features such as hue or brightness changes
across shadow edges are consistent across the whole image,
a fact that we exploit to detect shadows. Our approach is
also aided by a simple measure of image brightness, the
bright channel [20]. It should be noted, however, that the
proposed MRF model can incorporate other shadow cues.

We provide qualitative evaluation of our method on
different datasets, including images captured in a con-
trolled environment, car images collected from Flickr, and
images from the Motorbikes class of Caltech 101 [17]. We
also provide quantitative results on a synthetic dataset. The
experimental evaluation shows that our method is robust
enough to be able to use geometry consisting of bounding
boxes or a common rough 3D model for a whole class of
objects, while it can also be applied to scenes where some of
our assumptions are violated. Results on geometry para-
meter estimation show that through our model we can
extract useful information about object geometry and pose
from the cast shadows.

This paper is organized as follows: Section 2 presents
related fundamentals; Section 3 describes the MRF model to
jointly estimate the shadows, illumination, and geometry
parameters. In Section 4 we discuss the inference process.
Section 5 presents the shadow cue we used, the bright channel
cue. Experimental evaluation is provided in Section 6, and
Section 7 concludes the paper.

2 PROBLEM DESCRIPTION

The input required by our method is a single color image I,
an approximate 3D model of the geometry G of the scene,
and approximate camera parameters. If geometry para-
meter estimation is desired, a 2D bounding box and a set of
candidate geometric models should be provided for each
identified occluder, as described in Section 2.1.

We adopt a commonly used set of assumptions: The
surfaces in the scene exhibit Lambertian reflectance, and the
scene is illuminated by N point light sources at infinity, as
well as some constant ambient illumination term. Under
these assumptions, the outgoing radiance at a pixel i can be
expressed as:

N
L,(p) = pp <on + Z Vo (d;)oy max{—d; - n,,, 0}) .

where pj, is the albedo at point p with normal n,, «y is the
ambient intensity, «;, ¢ € {1,...,N}, is the intensity of
the ith light source, d; is the illumination direction of the
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ith light source, and V},(d
d; at point p:

;) is a visibility term for direction

|1, if ray to p along d; intersects G
Vo(di) = {0, otherwise. (2)

Therefore, illumination information is fully captured by
parameters 0; = {a,a1,...,ay,d1,...,dy}, where the set
of lights £ includes the ambient light.

If we assume a simplified linear model for the camera
sensors, the observed value at pixel (z,y) is

](l’a y) = CLo(p) + € (3)

where c¢ is an exposure parameter and ¢ is noise. Since we
can only estimate light source intensities up to scale, we can
safely assume that ¢ = 1.

In our method, we first obtain an initial cast shadow
estimate from the input image I (see Section 5). This
estimate should contain the shading intensity at each pixel
in shadow, without any variations due to albedo p, and the
nonshadow pixels of I should be masked out. Ideally,
therefore, the value of each shadow pixel (z,y) in such a
shadow image I, would be the shading at that point due to
the nonoccluded light sources:

I(x, y)—ag—l-ZV

i=1

i)a; max{d; - np, 0}, (4)

where p is the 3D point where (z, y) projects to. In practice,
we can obtain a cast shadow cue I, which is a rough
approximation of L.

2.1 Geometry Modeling

One of the goals of this work is to provide a model that
allows reasoning about illumination to be incorporated in
more complex scene understanding tasks. Toward this goal,
we describe here how we can incorporate objects with
unknown parameters to be estimated to our model.
Estimation of these parameters happens jointly with the
estimation of illumination and cast shadows. Different
parameterizations of the scene geometry could be handled
by our model without significant changes as long as the
total number of geometry parameters remains small.

As mentioned, G is the known, approximate 3D geometry
which is provided as input. We assume that there may also
exist a (small) set of objects O, which are the parametric
objects to be estimated. The information we assume as
known about the objects O is restricted, for each object i, to a
2D boundmg box that bounds the object in the image and a
set Go'” of potential approximate 3D models for this object.
The potential 3D models can be thought of as the geometric
models representing common instances of the class to which
object i belongs (e.g., if the object is a car, we could assume a
small number of 3D models representing common car
shapes). Our goal is to recover, concurrently with illumina-
tion estimation, the most probable geometry and the pose
(orientation/translation/scale) for each of these objects in
order to best approximate the real scene geometry.

In the following sections, we will present a model to
jointly estimate the shadows, the illumination parameters 6,
and a set of geometry parameters from the approximate
shadow cue I,. In Section 5, we present the shadow cue
which we used to obtain our results.

3 GLoBAL MRF For CAST SHADOW FORMATION

We associate the image-level evidence for cast shadows
with high-level information about geometry and the lights
through the MRF model described below.

3.1 Markov Random Field Formulation

The proposed MRF consists of one node for each image
pixel i € P, one node for each light source [ € £, one node
for the ambient intensity «p, and one node for the geometry
of each object & in the set of objects O. Each pixel node, all
the light nodes, and all the object nodes compose a high-
order clique c € C. The four-neighborhood system [1]
composes the edge set £ between pixels. The energy of
our MRF model has the following form:

X) = Z¢p(xl Z wp l'z,l'] +Z¢k xk

ieP (i,9)e€ keO (5)
+ > dilwnx0) + Y velwi, Xz, %0),
leL i€P

where ¢,(z;) and ¢(z)) are the singleton potentials for
pixel nodes and object nodes, respectively, 1, (z;, z;) is the
pairwise potential defined on a pair of neighboring pixels,
¢i1(x1, %) is the clique potential expressing a shadow shape-
matching prior, and ¢.(x;, Xz, %) is the high-order poten-
tial associating all lights in £, all objects in O, and a pixel ;.

The latent variable z; for pixel node i € P represents the
intensity value for that pixel. We uniformly discretize the real
intensity value [0, 1] into N bins to get the candidate set X; for
z;. The latent variable z; for light node [ € £ is composed of
the intensity and the direction of the light. We sample the
space in the vicinity of the light configuration obtained by
the voting approach explained later to initialize the candi-
date set X for z; (see details later in this section).

By xo we signify the labels corresponding to the objects
in O. The label z¢ of object node k determines a set of
parameters (Gk» Pier tar by, L2y Sz, Sy, 52), Where g is an index
into g@ ) that determines which of the potential object
geometries is selected for label z¢, ¢, is the azimuth
orientation of the object, (¢,t,,t.) is the translation, and
(5z, Sy, S2) is the scale of the ob]ect

3.1.1 Singleton Potentials for Pixel Nodes

This term encodes the similarity between the estimated
intensity value at pixel i and the shadow cue value I,(i) and
is defined as:

()|t} (6)

where an upper bound ¢, for this cost term is used to avoid
overpenalizing outliers and w, is a positive weight
coefficient (the same for w;, w,, and w,. below).

p(xi) = w; min{|xi -1,

3.1.2 Singleton Potentials for Geometry

In our attempt to extract information about the geometry of
object k, in the model of (5) we obviously take into account
the information in the shadow cast by object k. However,
the cast shadow provides only one projection of the object,
which is often insufficient to extract useful information
about the object shape. We can, however, obtain a second
projection of the object, the one onto the image plane, which
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will provide us with extra information to make reasoning
about the object pose and shape possible.

To obtain the shape of the object on the image plane, we
use GrabCut [24] with the user-provided 2D bounding box
for the object as input. GrabCut gives us a foreground/
background segmentation, where pixels in the foreground F
are the pixels most likely to belong to the object contained
in the initial 2D bounding box.

The singleton potentials ¢;(z);) penalize geometry
labels z; that are inconsistent with the extracted
shape F of the object k € O in the image. This potential
also penalizes geometry labels z;, that correspond to a scale
that significantly deforms the initial geometry. The form of
the potential is

S(rr) = Y (F(i) = My, (1)) +w[[x = [1,1,1]]],,  (7)
i€P

(scale)

where x; is a vector (s, sy,s.) determining the object
scale corresponding to label z;, F is the object mask
obtained by GrabCut:

0= {3

and M is the mask corresponding to the projection I¢ of the
geometry assigned to object k£ from label z; at the
corresponding rotation, translation, and scale:

if © € background
if 4 € foreground,

(®)

N -1 ifigI?
Mm’{+1ﬁie§. ©)

As demonstrated in our experiments (Fig. 10), the
obtained mask M is not by itself adequate for determining
the geometry parameters. The combination of M with the
information contained in shadow regions in our MRF
model, however, allows us to obtain a good estimate of
the geometry parameters.

3.1.3 Pairwise Potentials

We adopt the well-known Ising prior [7] to define the
pairwise potential between neighboring pixels (i,7) € € to
favor neighboring pixels having the same value:

Wp if €T; 7é Zj

%@”W:{o if oy - 1, (10)

3.1.4 Shadow Shape-Matching Prior

Terms ¢;(x;, Xp) incorporate into the MRF model a shadow
shape-matching prior for light [ in order to favor illumina-
tion/geometry configurations generating shadows that
match observed shadow outlines.

We apply Gaussian smoothing and the Sobel edge
detector [8] to detect edges in the shadow cue image. Let
7(i) € [0, 27) be the angle of the gradient at pixel ¢ with the
z-axis and 7(¢) € {0, K — 1} a quantization of 7(z). For each
possible direction d € {0, K — 1}, we compute a distance
map vy so that, for pixel i, vy() is the distance from pixel ¢
to the closest edge pixel of orientation d.

For pixel i with gradient angle 7(z), the distance function
is computed by interpolating between the distance map
values for the two closest quantized orientations:

distri)(1) = (1 = A) - vy (3) + A - vp(3)1(9), (11)

NO. 2, FEBRUARY 2013

(55

where {.} indicates the fractional part. In our experiments,
we chose K = 4.

The shape-matching prior expresses the quality of the
match between the observed edges in the shadow cue
image and the edges of the synthetic shadow S; associated
with x; and geometry configuration xo:

(12)

1

s (o) (13)

¢](X17XO) =w distTS( (i) (2)7

i€, (x1,%0)

where Eg,(x;, %) is the set of all pixels that lie on edges of
the shadow S; generated by light label x; and 75, (%) is the
gradient angle of the synthetic shadow edge generated by z;
at pixel i. To determine the set of shadow edge pixels
Es,(x1,%X0), we generate the shadow S; created by light
label x; and the geometry xo and then apply Gaussian
smoothing and the Sobel edge detector. The set Es,(x;,x0)
contains all pixels whose gradient magnitude is above 6.

3.1.5 Higher Order Potentials
The higher order terms .(z;,%x.,Xp) impose consistency
between the light source labels x., the geometry labels x(,
and the pixel intensity values.

Let S be the synthetic shadow, generated by light
configuration x; and geometry configuration xo. The
intensity at pixel i € S is

si(xz,x0) = X% + > af Vi(x{" [xo)max{—x{" - n(i), 0},
lel
(14)

where x® corresponds to the ambient intensity, «f* is the
light intensity component of z;, x" is the light direction
component, n(i) is the normal at 3D point p imaged at
pixel i, and V;(x¢") € {0,1} is the visibility term for light
direction x{" at 3D point p (cf. (2)). For pixels i ¢ S, we set
si(xc) = 1, according to the definition of our shadow cue I.

The clique potential is defined as

w£1>(wi,xL,xo) = w, min{(s}(xz,x0) — )t} (15)
where ¢, is also an upper bound to avoid overpenalizing
outliers.

In cases where the geometry G is far from the real scene
geometry, a light configuration that does not generate any
visible shadows in the image might result to a lower MRF
energy than the true light source. Similarly, if there are
falsely identified shadows covering a large portion of the
image, a configuration where the whole image is in shadow
(light source under the ground plane) might correspond to
a lower energy. To avoid these degenerate cases, we
introduce the term ¥?(x.,x0), which assigns a very high
penalty to light configurations that do not generate any
visible shadows or that generate shadows at every pixel.
The final form of the clique potential is

wC(l‘h XL, XO) = wgl) (1‘i7 XL, X(Q) + ¢£2) (Xl:7 XO)' (16)
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3.2 Initializing the MRF Model

As mentioned earlier, the continuous search space compli-
cates inference in our MRF model. Furthermore, in our
discussion of the model so far, we assumed that the number
of light sources |£| is known. In practice, however, |£| may
be unknown, which results in unknown MRF topology.
To deal with these two issues, we use a rough initial
illumination estimate both to determine |£|, if it is
unknown, and to set the initial values of the light source
variables, before inference begins.

To obtain this rough illumination estimate, we use the
greedy approach described in Algorithm 1, based on the
shadow cue I, and geometry G. We examine a fixed set of
possible illumination directions, corresponding to the nodes
of a geodesic sphere [26]. In each iteration of this algorithm,
the pixels in shadow which are not explained by already
discovered light sources vote for all occluded illumination
directions. Pixels not in shadow vote for all directions that
are not occluded. After all pixels cast a vote, the most
popular direction is chosen as the direction of the new light
source. Having the light source direction, we estimate the
light source intensity using the median of local intensity
estimates from each pixel in the shadow of this light source,
and the new light source is added to the set of discovered
light sources. The algorithm stops when the estimated
intensity of the new light source is near zero, meaning that
it has no significant contribution to the observed shadows.

Algorithm 1. Voting for initial illumination estimate
Lights Set: £L — @
Direction Set: D «+ all the nodes of a unit geodesic sphere
Pixel Set: P «— all the pixels in the observed image
loop
votes[d] < 0, Vd € D
for all pixel ¢ € P do
for all direction d € D\ £ do
if I,(i) < s and Vd' € £,Vi(d') = 0 then
if V;(d) = 1 then votes|[d] < votes[d] + 1
else
if V;(d) = 0 then votes[d] < votes[d] + 1
d* — arg maxq(votes[d])

Pa- — {ilc;(d") =1 and Vd # d*, ¢;(d) = 0}

1-1,(0)

max{—n

<p‘<z>>-d*¢0}}iepd*

if ag- < ¢, then
stop the loop
L—Lu{(d aa)}

ag — median{

4 INFERENCE

We simultaneously estimate the cast shadows, illumination,
and geometry parameters by minimizing the MRF’s energy
defined in (5):

x" = arg min E(x). (17)
Minimizing this energy, however, is challenging because
our MRF model contains high-order cliques of size up to
L]+ O] + 1.

To efficiently perform inference, we can split the
minimization of the energy in (5) into two stages [2]. In
the light and geometry parameter selection stage, we choose
a candidate set of light and geometry parameters for which
we will compute the MRF energy, and if this energy is
lower than the current minimum, we accept them. In the
pixel label selection stage, assuming fixed light and
geometry parameters, we compute the MRF energy solving
a pairwise MRF.

If we assume that the light parameters are fixed, the
high-order clique potentials ¢! in (15), which are part of
1., become singleton potentials of the form

wﬁl)(zﬂxﬂ,xo) = w, min{(sé(xt,xo) - mi)g,tc}. (18)

This way, for a fixed light configuration x, and a fixed
geometry configuration xo, after we split ¢, in /(! and ¢ as
in (16), we can rewrite the energy of the MRF model in (5) as:

E(X) = E[(X|XL, X()) + EL(XLZa Xo) —+ E(;(X()), (19)
where

Ei(x[xc,%x0) = > (¢p(@:) + ¥ (wilxc, %0))
ieP -
+ Yyl y), 20)

(i.j)€€
Er(xc,x0) = Y (dul@) + [P (xe,%0)),  (21)
leL

Eg(x0) =Y ¢r(xx) (22)

keO

are the energy terms associated with the (fixed) light
configuration x, and the (fixed) geometry configuration xo
but independent of the per-pixel variables.

For a given light configuration x; and geometry
configuration xo, the energy E;(x|x.,x¢) can be minimized
using any inference algorithm for pairwise MRFs. The
speed of the chosen algorithm is, however, important
because the energy E;(x|x;,Xo) is minimized many times
(for different light and geometry configurations). The
FastPD algorithm [14] is a fitting choice and was adopted
in our experiments.

The energy minimum min,{E;(x|xz,x0)} changes with
different light configurations and different geometry con-
figurations. To minimize FE(x), a (blocked) coordinate
descent approach in the light and geometry parameter
domain is used.

Let 5(2571),5(871) be the set of light and geometry
parameters that correspond to the minimum energy
encountered up to iteration s — 1. At iteration s, we generate
proposed light labels xf) and geometry labels xg) by
sampling the light parameter space around the current light
estimate XS_I) and the geometry parameter space around
the current geometry configuration estimate 5{871). We then

compute the total MRF energy as

B ) + B,
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which includes minimizing the pairwise energy EI()cbc(Z)7
xE’;)). If the new energy E*)(x) is lower than the previous
lowest energy, we keep the proposed illumination and
geometry labels x(ﬁs) and x(';) ; otherwise they are discarded.

As the number of geometry and illumination parameters
is increasing, the choice of which dimensions of the
illumination-geometry parameter domain to resample in
order to generate proposals x;”’ and x;,’ becomes crucial
for the effectiveness of the mmlmlzatlon In our experi-
ments, we used the following proposal schedule: At some
iteration s, a single light source [ is chosen, and new values
are generated only for the parameters of light source ! and
the ambient intensity to produce xﬁ At iteration s+ 1,
new values for the azimuth rotation and geometry Class
label of a single object k are generated to produce xgg LAt
iteration s 4 2, new values are generated for the six scalar
parameters defining the 3D translatlon and 3D scale of a
single object k to produce xj; " ). This proposal schedule is
repeated every three iterations.

The proposed labels at each iteration are generated in the
following way.

Light directions. Proposed light source direction x|
generated by drawing a sample from a von Mises- Flsher
distribution [6] with mean direction X Xz " and concentration
parameter Kgyqmpr, where x}l” is the current light direction
estimate. The estimate from the voting algorithm is used for
the first iteration. In our experiments, Kympe = 200 was
chosen and samples were drawn using the accept-reject
algorithm.

Light intensities. The proposed intensity for light source {
is computed from the current light source intensity
estimate adding a random offset, drawn from a normal
distribution. The same method is used for ambient
intensity proposals

Geometry parameters. The parameters used to define the
geometry of an object are azimuth rotation, 3D translation, 3D
scale, and a geometry class label. This means that the
geometry for an object is defined by seven scalars and one
discrete value. The scalar values are drawn from normal
distributions with the current value of the respective
parameters used as the distribution mean. The geometry
class label is drawn from a uniform distribution for each
proposal.

The final solution corresponds to the light parameter
sample s that generated the labeling with the lowest energy:

dir i

Xopt

—argmmE ) (x). (24)
This method is more tolerant to local minima in the model
energy (which appear often in practice) and it requires
a limited number of the costly evaluations of energy

Er(x|xz,x0)-

5 SHADOwW CUES

In our discussion so far, we have assumed that some per-
pixel estimate 1, of the shadow image I, is available to be
used as input in our MRF model. In this section, we explain
how we obtain this initial estimate of shadow intensity.
We detect shadows by examining the change of image
features across the borders of potential shadow regions.
We start from the observation that light sources affect the
whole image in a consistent way; therefore, edges due to
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cast shadows will generally exhibit characteristics that are
consistent across the whole image, while edges due to other
effects, such as albedo variations, will exhibit a more
random behavior. To aid in the detection of shadows, we
also utilize an appropriate measure of brightness, the bright
channel [20]. In this section, we explain our approach to
initial shadow detection in detail.

5.1 Bright Channel
We first extract a measure of brightness from the image, the
bright channel cue [20] (similar to [10]):

Ibr‘iyht (Z) =

where I¢(j) is the value of color channel ¢ for pixel j and
Q(2) is a rectangular patch of size m x m pixels, centered at
pixel i (in our experiments, m = 6).

The bright channel cue is based on the following
intuition: The image values in patch (i) are bounded by
the incident radiance and modulated by the albedo at each
pixel. However, in natural images, often a patch will
contain some pixels with albedo that has high values in at
least one color channel. By maximizing over color channels
over all pixels in the patch, we reduce the effect of local
variations of albedo within the image patch, getting a
measure of brightness which is closer to the incident
radiance at pixel 7 than the brightness at that pixel only.

postprocess the bright channel by choosing a white
point J;,; ,, such that at least 3 percent of the pixels are fully
illuminated, corresponding to bright channel values of 1.0
(in our experiments, 3 = 20%). Then, the adjusted bright
channel values I'b,.i!,hf are

mawce{r,g,b} (mal)jEQ(i) (Ic(j)))v (25)

/

Tyrignt (i) = min{ Tpvigns () /1)1, 1.0}

Furthermore, the max operator in (25) implies a dilation
operation, meaning that the dark regions in the bright
channel image appear shrunk by m/2 pixels (m x m is the
size of patches Q(4)). We correct this by expanding the dark
regions in the bright channel image by m/2 pixels, using an
erosion morphological operator [8]. An example of the bright
channel is shown in Fig. 1b.

(26)

5.2 Shadow Detection

As mentioned above, we take advantage of the global
nature of the effects of illumination to detect cast shadows.
For example, if we examine features like the brightness ratio
or the hue difference across the two sides of shadow edges,
in a scene with a single light source we will notice that the
values we observe are concentrated around a clearly
defined center. Intuitively, the shadows are similarly dark
and exhibit a similar color change everywhere when they
are caused by the same light source. On the other hand, the
same features across the sides of nonshadow edges are
distributed in a much more random way in most images
because they are caused by albedo variations and other
effects that are local in the image. The distribution of such
features exhibits peaks that correspond to shadow borders
in the image. Our goal is to detect such peaks.

All our computations to obtain confidence values for
shadows are based on comparing image features on the two
sides of potential shadow borders. To improve the robust-
ness of such computations, when examining values on the
two sides of pixel i lying on the border of segment S; we
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‘ Mﬁ

Fig. 1. Shadow detection: (a) Original image (from [31]), (b) bright channel, (c) segmentation, (d) for each segment border pixel, feature values are
compared between two patches inside (yellow) and outside (blue) the segment; then we form histograms of the features observed for all segments
and for segments that are good candidates to correspond to shadows and compute the difference of the two distributions, (e) the final shadow

estimate.

compare the average of values on two semicircular patches
P! and P!, centered at pixel i and oriented so that P! is
inside segment S; and P! , is outside, as seen in Fig. 1d. We
examine only border pixels where the ratio of the average
bright channel value between the two patches P! and P!, is
larger than 6, or smaller than 1/6,, to ignore pixels that do not
correspond to image edges (in our experiments, 6, = 1.2).

We first obtain a segmentation S of the bright channel
image jbm’,ght [3]. From the set of segments in S, we choose a
subset of segments that are “good candidates” to corre-
spond to shadow regions. We define a “good candidate” for
shadow as a segment where all three RGB color channels
reduce in value across most of its edges as we move from
outside the segment toward the inside. We compute the
confidence gqq.nq(S;) that a segment S} is a “good candidate”
to be a shadow as:

Geand(S5) = 1/18j1 Y alis S)),

i€S;

(27)

where ¢(i;.5;) =1 if the average of the 7, g, and b color
channels in P}, is darker than P!, and 0 otherwise.

Let f be the chosen feature across segment borders
(bright channel ratio or hue difference in our experiments)
that depends on illumination. We create a histogram h‘}” of
the values of feature f at all segment border pixels. We also
create a histogram 7% of the values of feature f at each
border pixel i of each segment .S;, where each border pixel i
contributes to the histogram proportionally to the con-
fidence geand(S;). These two histograms represent the
distribution of the values of feature f over all segment
borders and over only segment borders that may be
shadows. Normalizing them and taking their difference
gives us a third histogram h}”’ff which corresponds to peaks
in the distribution of feature f at borders in the set of “good
candidates” that are not prominent in the distribution of f
in the set of all segment borders. We expect that these peaks
will correspond to the characteristics of the shadows: For
example, if f is the bright channel ratio, then the peaks in
h}]’.’:ff will indicate how dark the shadows in the image are.

Based on the extracted histograms, we compute a
confidence for each segment to correspond to a shadow.
We approximate the distribution of feature f in h?lff by a
mixture of normal distributions. Each component & of this
mixture model is characterized by mean ,uﬁ, variance a£ ,and
mixing factor 7T{ We estimate these parameters through an
Expectation-Maximization algorithm. To choose the number
of distributions in the mixture we minimize a quasi-Akaike
Information Criterion (QAIC). The confidence, based on a
feature f, for segment S; € S is then defined as:

V(S = g RASPLPY), (29)
|BJ | & ieB;

where B; is the set of all border pixels of segment S;, k
identifies the mixture components, and, for patches P} and
P, on the two sides of border pixel i, P.(Af(Pi,Py)) is
the probability of observing the difference A f(P},P,) in the
average value of feature f between the two patches P} and
P}, according to mixture component & (and weighed by the
mixture factor 7).

If we know that there is only a single light source, as in
the case of outdoor scenes, we can improve performance
further by fitting a single normal distribution centered at the
highest peak of h}wf .

The features used in our work are the bright channel
value ratio and hue difference across patches P} and P}. We
compute the final confidence p(S;) that segment S; is a
shadow as:

P(S)) = Geana(S;) (P (S)) + P (S))) /2.

The shadow intensity for a segment S; is computed as
the median of the bright channel value ratio of patch pairs
inside and outside the segment (Fig. 1le), assuming shadows
are cast on a roughly flat surface.

This process is based on a segmentation of the image. In
order to reduce our method’s dependency on the quality of
segmentations, we compute confidence values for different
initial segmentations of the image. The final confidence
value at pixel ¢ is the mean of confidence values computed
from each segmentation. Shadow detection can then be
performed by thresholding the confidence value at each
image pixel. In our experiments, we chose the threshold for
shadow detection to maximize the classification rate on
100 training images from the UCF dataset [31].

(29)

6 EXPERIMENTAL VALIDATION

In this section, we present results with our approach. We
first evaluate our shadow detection approach used to
obtain an initial shadow estimate. We then evaluate
illumination estimation with the proposed MRF model,
both quantitatively in a synthetic dataset, as well as
qualitatively in real datasets. Finally, we present results
when geometry parameters are estimated jointly with
shadows and illumination.

6.1 Shadow Cue Evaluation

We evaluated our shadow detection approach quantita-
tively on the UCF dataset [31], which consists of 356 images
and manually annotated ground truth for the cast shadows,
using the same set of 123 test images as [31]. We also
evaluated our approach on the 135 image dataset of [16]. In



444 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

true positive rate

/] — Zhuetal[31]
03 | brightness + threshold
| | — bright channel + threshold
021/ == our method, hue

1 «= our method, bright channel ratio
== our method, combined

L L L L L L L L L
0 01 02 03 04 05 06 07 08 08 1
false positive rate

true positive rate
o
o

03 — Finlayson etal 5]
— Finlaysonetal [4]
02 == our method (hue+brightness)
% Lalondeetal[16]

0 L L L L L L L L L
[t} 01 02 03 04 05 06 07 08 089 1

false positive rate

Fig. 2. Comparison of our shadow detection method with different
features and methods [31], [16], [4]. ROC curves computed on the
datasets of [31] (top) and of [16] (bottom).

Fig. 2, we show ROC curves with our method on both
datasets and compare with [31], [4] and [16].

Our method performs similarly to [31] and significantly
better than [4], which is affected by the low image quality
and unknown camera sensors. One reason for the difference
in performance to [16] is that the annotation of the ground
truth in the dataset of [16] generally includes edges of cast
but not attached shadows, whereas our method does not
differentiate between the two. When the shadow is partially
cast and partially attached, the ground truth in [16] contains
only the partial boundary that corresponds to the cast
shadow and thus cannot be matched correctly by our
method that produces always closed shadow borders. In
Table 1, we show pixel classification rates on the 123 test
images from UCF dataset. To obtain these classification
rates, we chose the decision threshold (see Section 5.2) as
the optimal threshold for a different set of 100 training
images from the UCF dataset. The results show that our
method is comparable to much more complex approaches.
The average running time of our method for the test images
in the UCF dataset is 2.7 sec which compares very favorably
to the other methods.

The results in Fig. 2 also justify our choice of the bright
channel compared to simple image brightness (from the
HSV color model) by examining the performance of each in
shadow detection when used with simple thresholding.
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Fig. 3. Convergence of our algorithm. Left: The energy E(z) for each
iteration, averaged over a set of synthetic test images (using
approximate geometry and added noise to the initial shadow estimate);
right: the angular error per iteration, averaged over the same test set.

6.2 lllumination Estimation

We used three different datasets to evaluate the performance
of illumination estimation: images collected under con-
trolled illumination conditions, real-world images of cars
collected from Flickr, and the Motorbike images from
Caltech 101 [17]. We overlayed a synthetic vertical pole
(sun dial) onto the original images, rendered under the
illumination estimated by our method, in order to visualize
the results.

The weights used in our experiments were: (ws,w;, wp,
we) = (8,1,1,4). The upper bounds for the truncated
potentials were (t,,t.) = (0.5,0.5). Pixel node labels were
quantized to eight values and 1,000 iterations of our
algorithm were performed. Illumination estimation takes 5
to 30 minutes per image for the images in this paper,
depending on image size. However, 60 to 70 percent of the
running time is spent performing raytracing, which can be
sped up significantly with a faster raytracer implementation.
The convergence of our algorithm is shown in Fig. 3.

6.2.1 Synthetic Data Set

To evaluate our method quantitatively we used a set of
synthetic images, rendered using a set of known area light
sources. The number of light sources was randomly chosen
from one to three. The direction and intensity of the light
sources was also chosen randomly. We examined three
different cases:

Exact geometry. We used the same 3D model to render
the image and to estimate illumination.

Approximate geometry. We used a bounding box and a
ground plane that coarsely approximated the original
geometry to estimate illumination.

Approximate geometry and noisy shadow input. We
estimated illumination parameters using a coarse 3D model,
as above, and a noisy initial shadow estimate. The latter was
obtained by adding random dark patches to the rendered
shadow (Table 2c). We used such noise because, on one
hand, our methods are relatively insensitive to spatially
uniform random noise and, on the other hand, in real data
the errors generally affect large image regions which get
mislabeled, which is emulated by this patch-based noise.

We computed the difference between the estimated light
source parameters and the parameters of the true light

TABLE 1
Pixel Classification Results with Our Method Using Different Features and with [31] on the UCF Dataset [31]
method our method (bright channel ratio) | our method (hue) | our method (combined) [31]
classification rate 87.7% 86.7% 89.1% 88.7%
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TABLE 2
Synthetic Results

;

a. Exact geometry

b. Approx. geometry c. Approx. geometry +
noisy shadow input

#lights: 1 2 3 1 2 3 1 2 3
Voting 7.06 6.94 8.23 5.83 11.51 13.31 20.78 28.61 29.30
NNLS [26] 3.84 6.20 6.35 13.95 15.21 14.15 33.69 32.10 33.96
MRF(HOCR [11]) 3.29 541 8.13 5.14 14.67 13.99 14.35 20.60 22.83
MRF(2-stage minim.) 0.44 1.31 2.36 2.53 9.06 8.57 6.97 12.36 17.77
MREF(2-stage minim.) - || 1.27 3.82 5.40 3.11 11.12 11.95 10.81 12.24 17.91
w /o shadow shape prior

Number of light sources: || 0 (0%) | 0.047 0.143 0 (0%) | 0.309 0.32 0 (0%) | 0.285 0.33
mean error (error %) (4.7%) | (14.2%) (17.6%) | (23.8%) (26.7%) | (38%)

From left to right, we show the mean error (in degree) for the estimated light directions on a synthetic dataset: a) using the exact geometry, b) using
geometry approximated by bounding boxes (blue) and a ground plane, c) using approximate geometry and a noisy initial shadow estimate. For each
case, we show results for scenes rendered with 1, 2 or 3 light sources. We show results obtained with the voting algorithm used for the initialization;
with NNLS [26], with our MRF model when the MRF energy is minimized using [11], and when the MRF energy is minimized using our 2-stage
approach, which achieves the best results. We also include results with our MRF model and 2-stage approach without the shadow shape-matching
prior, which shows the benefits of this term. In the bottom we show the mean error in the estimated number of light sources and in what portion of

images that the number was estimated inaccurately.

source that was closest in direction to the estimated one.
The average light source direction errors are presented in
Table 2. We compare the results from the voting method
used to obtain the initial estimate and our MRF model. We
compare the proposed inference method with a state-of-the-
art method to perform inference on higher order MRF
models, the higher order clique reduction (HOCR) techni-
que of [11]. The results show that our method, taking
advantage of the topology of this particular MRF model to
efficiently perform inference, is able to achieve significantly
better results compared to our initialization method, HOCR
inference on our model, as well as the nonnegative least
squares optimization approach of [26].

Furthermore, Table 2 shows that the shadow shape-
matching prior significantly improves illumination esti-
mates. This is more pronounced in the case of inaccurate
input data, where a large number of pixels may be different
between the noisy observed shadow and the one produced
by the coarse geometry and true illumination. However,
when there are multiple light sources leading to a large
number of potential shadow edges, the benefits of the
shadow shape-matching prior are reduced.

We also evaluated the estimation of the number of light
sources through our voting procedure on our synthetic
dataset. Table 2 shows the mean error in the estimated
number of light sources in that dataset. We are generally able
to get a good estimate of the number of light sources. The
accuracy of that estimate is reduced when the true number of
light sources and the errors in the initial shadow estimate
increase. We further evaluated our light source number
estimation on the motorbike images of Caltech 101. The
images we selected contained a single light source (the sun)
and the average estimated number of light sources was 1.17,
with the number of light sources correctly estimated
91 percent of the time. We should also note that any
extraneous light sources identified by our voting algorithm
are generally assigned low intensities during MRF inference,
resulting in small errors in the synthesized cast shadows.

We further quantitatively evaluated the behavior of our
method in the case of soft shadows. We rendered the set of

synthetic scenes under illumination produced by a single
light source modeled by a vMF distribution of varying
concentration parameter x. Lower values of x mean a more
spread-out light distribution and softer shadows. Fig. 4
shows the error in the estimated light source direction as
the concentration parameter of the light source changes.
Even in the case of very soft shadows, our method is able to
estimate the direction of illumination with good accuracy.

6.2.2 Real Datasets

To evaluate our approach in real images, we used the class
“Motorbikes” of the Caltech 101 dataset [17] and images of
cars we collected from Flickr.

In the case of “Motorbikes,” we used the same coarse 3D
model (Fig. 11) corresponding to an average motorbike and
the same average camera parameters for every image. In this
dataset there are significant variations in geometry, pose,
and camera position in each individual image, deviating
from our average 3D model and camera parameters.
Despite these variations, our results in Fig. 5 show that
our algorithm is robust enough to effectively estimate
illumination using the same generic 3D model for all
instances of a class of objects.

In the case of car images collected from Flickr (Figs. 6 and
7), the geometry was limited even further to a bounding box
approximating to the car body and a ground plane (Fig. 11).
Camera parameters were matched manually. Fig. 7 demon-
strates that, in scenes with multiple shadow-casting objects,
our illumination estimate is robust to which subset of objects
we choose to model. For Figs. 6, 7, and 8 we assumed known
number of light sources. Despite our initial assumption of
Lambertian reflectance, the results show that our algorithm
can cope with the abundance of non-Lambertian surfaces in
these images.

We further evaluated our algorithm in a set of images
captured under controlled illumination conditions in the lab.
This set includes shadows cast on a variety of textured
surfaces, under 1, 2 or 3 light sources. Results on images from
this dataset can be found in Fig. 8. To estimate the
illumination in this images we used rough approximate
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Fig. 4. Behavior for soft shadows. lllumination was modeled by a vMF
distribution of varying concentration « to produce sets of images with
shadows of varying “softness.” Even for very “soft” shadows, the error
(in degrees) in the light source direction estimate is relatively small.
Examples of the images produced for sample « values are shown on
the top.

geometry, which can be seen in Fig. 11. In Fig. 8, we also show
two synthetic examples of illumination estimation where
shadows are cast on arbitrary geometry, demonstrating that
we do not make any assumptions about scene geometry.
Fig. 9 shows common cases where our algorithm fails.
One general reason is challenges in shadow detection. While
the shadow shape-matching prior helps our method differ-
entiate between adjacent shadows from different occluders,
it can still be challenging to correctly estimate illumination
when shadows from objects that are not modeled by the
geometry are very close to or overlap shadows of interest.
Furthermore, very dim shadows, as in the case of cloudy
outdoor scenes, can be hard to detect, therefore not allowing
us to obtain a good solution. On the other hand, coarse

geometry knowledge can sometimes lead to observed
shadows that cannot be explained under any illumination
configuration given the coarse geometry (as in Fig. 9c).
Inaccuracies in the placement of 3D models in the scene (e.g.,
with the Caltech 101 “Motorbike” images ) or in the camera
parameters can also lead to inaccurate illumination estimates
(Fig. 9d). Light sources close to the horizon also cause
inaccuracies because they generate long shadows which
reside in large part out of the image, offering ambiguous
image evidence about the illumination direction.

6.3 Geometry Reasoning

We evaluate joint illumination and geometry/pose estima-
tion qualitatively on the car images we collected from Flickr,
as seen in Fig. 10. The input to our algorithm in this case was
the original image, a 2D bounding box around the object of
interest (in this case, the car), a common ground plane, the
camera parameters, and a common set of four candidate
geometric models for cars (shown in Fig. 10). The geometric
models represent four common car shapes. The 2D bounding
box can be provided by a car detector. The camera parameters
are very similar across these images, probably because of the
common subject, and could be approximated automatically
using the information in the image EXIF tag, along with
horizon line estimation (and assuming the camera is at eye
level of an average human). In our experiments shown in
Fig. 10 however, we set camera parameters manually.

For experiments with geometry parameter estimation we
did not use our voting initialization method because the
random initial geometry reduces the benefits of such an
initialization. We assumed a single light source and used a
random initialization of the other parameters. A larger
number of iterations (4,000) was performed to obtain a
solution, with larger variance for the generation of light
parameter proposals. Despite the random initialization, our
MRF model is able to obtain a satisfactory solution.

Fig. 5. Results for the Motorbikes class of the Caltech101 dataset. We rendered a synthetic sun dial (orange) under the estimated illumination and
overlayed it on each original image. The geometry used for all instances was the same 3D model capturing an average motorbike, with the same

common camera parameters.
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Fig. 6. Results with car images from Flickr. Top row: The original image and a synthetic sun dial rendered with the estimated illumination. Bottom

row: The final shadow values. The geometry consists of the ground plane and a bounding box for

the car.
- = -

Fig. 7. Examples of scenes with more objects: The orange bounding boxes show the geometry provided as input to our method and the synthetic
orange sundial rendered using the estimated illumination shows our light source estimate. The illumination estimate is very stable regardless of

which part of the scene we choose to model.

Fig. 8. Results on images captured using different background textures and number of lights. The vertical image pairs (a, h), (b, i), (c, j), (d, k), (e, I),
(f, m) are captured under the same illumination. An orange synthetic sundial has been rendered under the estimated illumination and inserted into
the original image. We also show two results on synthetic images (g, n) where the input image was used as the initial shadow estimate, without using
the shadow detection method of Section 5. These images show that our MRF illumination model can be applied to arbitrary scene geometry, where
shadows are not cast on a flat ground (mean light direction error for g, n is 2.27 degrees).

Our results show that we can approximate the orientation
of the object with good accuracy (around 10 degrees), and get
visually convincing estimates of scale and orientation. The

Fig. 9. Common failure modes. Errors due to shadows (top): (a)
Shadows of other objects not modeled may overlap the shadows of the
objects of interest or (b) very dim shadows may not be detected, in
which case our algorithm tries to use other dark image regions. Errors
due to geometry (bottom): (c) Approximate geometry (in blue) cannot
explain the observed shadows for any choice of illumination direction
since the approximate geometry (blue) fully covers the cast shadow. (d)
Large errors in the positioning of geometry in the scene (when geometry
parameters are not estimated) affect the relative position of shadows in
the image to the object geometry.

object geometry is identified correctly in three of the four
images of Fig. 10. Notice that although we could fit an infinite
number of very different (and mostly incorrect) combina-
tions of geometry/rotation/translation/scale values to the
object outline obtained by GrabCut, as shown in Fig. 10b, the
combination of the object outline and the shadow leads our
algorithm to select parameter combinations close to the truth
(Fig. 10c) while estimating the illumination at the same time.
In some cases the pose estimate further improves when
combined with geometry class estimation.

An important observation is that, as the number of free
parameters that define geometry grows, local minima in the
energy become a bigger issue. An example of this problem
is the fourth image in Fig. 10d, where the geometry class
used for the pick-up truck corresponds to “jeep” and at the
same time the size chosen for the model omits the rear part
of the pick-up truck. In this case, our algorithm has found a
local minimum of the energy; to continue to the global
minimum, a large change in scale and translation along
with the change in the selected geometry class is needed. A
clever selection of the dimensions which change to produce
the new step on each iteration can help as the number of
geometry parameters grow—for example, the geometry
class could be locked to the simple bounding box for a
number of iterations, expecting that the bounding box will
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Fig. 10. Results of joint estimation of shadows, illumination, and geometry parameters. The geometry used in this case consists of a ground plane
and a bounding box for the object. The geometry parameters estimated are the azimuth rotation, 3D translation, and 3D scale of the object’s
bounding box. (a) Input: The original image and the initial configuration of the geometry, (b) the estimated geometry when only fitting the object to the
mask obtained by GrabCut, (c) the geometry estimated by our method. While the object silhouette is not enough to estimate the geometry
parameters, the combination of the object silhouette with information in the shadows allows us to obtain a good geometry estimate. (d) Here, we also
allow our model to select the most probable of four candidate geometry classes. The estimated geometry class for each image is, from left to right:
box, jeep, sedan, jeep. The four geometry classes are shown on the right.

Fig. 11. The 3D models for the experiments on cars (Fig. 6), motorcycles (Fig. 6), and the images of Fig. 8.

be positioned properly over the object before we begin
examining more specific geometry classes. Random
initializations of geometry very far from the true geometry
can also affect the final result, but constraining the initial
pose within the GrabCut mask is often sufficient.

7 CONCLUSIONS

In this paper, we introduced a higher order MRF model
of illumination which allows us to jointly estimate the
illumination parameters, cast shadows, and a set of geometry
parameters for the occluders in a scene, given a single image.
Our model incorporates both high-level knowledge about the
scene, such as illumination and geometry, and low-level
image evidence. Although this leads to a complex formula-
tion that makes inference challenging, we demonstrate that
inference can be performed effectively. Our results in various
datasets demonstrate the potential of the proposed model.
We are able to estimate the illumination parameters using the
same geometry, pose, and camera parameters for a large
number of scenes which belong to the same class, as shown by
the results on Caltech101. Bounding boxes can be sufficient
approximations of occluders for our method, as is the case
with our experiments with car images from Flickr. Geometry
reasoning is also incorporated in our model to allow
estimation of the object pose in the 3D scene, as well as
reasoning about the 3D geometry that best represents the
object. Our experiments show that the proposed approach is
more general and more applicable in real-world images

where other methods fail. In the future, we are interested in
incorporating our method in more general scene under-
standing applications. Geometry parameter estimation, as
presented here, is the first step toward this direction.
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