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Abstract— Recognition of facial action units (AU) is one of
two main streams in the facial expressions analysis. Action units
deform facial appearance simultaneously in landmark locations
and local texture as well as geometry on 3D faces. Thus, it is
necessary to extract features from multiple facial modalities
to characterize these deformations comprehensively. In order
to fuse the contribution of the discriminative power from all
features efficiently, we propose to use our extended statistical
facial feature models (SFAM) to generate feature instances
corresponding to AU class for each feature. Then the similarity
between each feature on a face and its instances are evaluated so
that a set of similarity scores are obtained. All sets of scores on
the face are then weighted for AU recognition. Experiments on
the Bosphorus database show its state-of-the-art performance.

I. INTRODUCTION

Action Units (AUs) in the Facial Action Coding Sys-
tem (FACS) [5] objectively describe the facial deformations
in terms of visually observable muscle actions. They are
considered as signals to interpret human faces and thus
provide a possibility to infer expressions through a high-
level decision making process, such as Emotional FACS
rules and FACSAID [5]. Moreover, the recognition of AU
is often preferred by researchers in affect understanding and
psychology.

Most of the existing AU recognizers extract 2D spatio-
temporal facial features either in geometric modality such
as the shapes of the facial components (eyes, mouth, etc.)
[7] and landmark location (corners of the eyes, mouth, etc.)
[1] or in texture modality such as Gabor wavelet [18], [22],
Haar feature [23]. It is interesting to note that features in two
modalities are fused in [8], [19] for recognizing a various of
AUs and measuring their intensity.

AUs originate from the contraction of facial muscles and
cause the deformation on facial landmark locations, texture
and facial surface. Since 3D faces contain ample information
on both facial texture and geometry, they provide advantage
in recognizing AUs. There exist several works on analyzing
3D facial expressions, which can be globally categorized into
feature-based approaches [17], [14], [16], [21], [6], [15] and
model-based approaches [10], [9], [11], [20]. However, most
of them aim to identify the six universal expressions. AUs are
identified only in [15] on dynamic 3D face data displaying
expressions. They first use AAM to track feature points
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on texture maps and extract 3D motion vectors for feature
representation. HMM is learnt and used for classifying seven
AUs and one AU combination.

Most of feature based approaches in 3D use line properties
between landmarks, such as angles and distances [17], [14],
[16], [6], [15] and principal curvatures of vertices [21].
These approaches exclude information on other modalities
and thus fail to represent the comprehensive characteristics
of facial deformation including both geometry and texture.
Meanwhile, although experiments have proved their good
performance in recognizing the universal expressions, the
geometry based features adopted in them have not yet
been shown to demonstrate enough discrimination power for
distinguishing subtle facial AUs.

On the other hand, morphable facial models are built by
learning the deformation modes on texture and geometry
modality and uses the deformation parameters as features
for recognition [10], [9], [11], [20]. Two major problems
exist: firstly, the deformation modes learnt from whole faces
describe the major variations globally and thus can not
properly include local deformation patterns caused by AUs.
Secondly, the learnt variation modes are not necessarily
consistent with the variations among AUs and expressions,
thus may not synthesize the expression accurately. In other
words, AUs or expressions can only be approximated by a
set of variation modes, instead of being modeled by one
specific mode in the models. For certain expressions such as
happiness or surprise, or action units such as AU27 (mouth
opening), the deformation is prominent and thus can be
approximated well enough to be distinguishable. However,
for some of other moderate expressions and AUs, small
variances in parameters yield different expressions.

In order to characterize the facial deformations com-
prehensively, features from all three modalities of facial
landmark location, texture and geometry should be included,
which raises the problem on how to fuse the contribution
from each feature efficiently. We propose to extend our
previous proposed statistical facial feature model (SFAM)
for score computing and weighting for all kinds of features
without preseting any thresholds or parameters. SFAM is
a partial morphable facial model which learns both global
variations in 3D landmark configuration and local ones
around each landmark in terms of texture and geometry.
SFAM is able to approximate partial regions on a new face by
estimating parameters and then generating instances. Since
most of the AUs influence the facial appearance locally,
it is advantageous to use local based SFAM instead of
deformable face models built on whole faces. In this work,



TABLE I
DESCRIPTION OF ACTION UNITS AS DEFINED IN FACS. THE FIRST
COLUMN LISTS THE AUS DETECTED IN OUR EXPERIMENTS, THE
SECOND GIVES A DESCRIPTION OF THE AUS.

Action Unit | Description [ Action Unit | Description
2 Outer Brow Raiser 4 Brow Lowerer
7 Lid Tightener 9 Nose Wrinkler
10 Upper Lip Raiser 12 Lip Corner Puller
14 Dimpler 17 Chin Raiser
18 Lip Puckerer 22 Lip Funneler
24 Lip Presser 26 Jaw Drop
27 Mouth Stretch 28 Lip Suck
34 Puff 43 Eyes Closure

for each type of local feature extracted based on SFAM, we
learn a set of statistical feature models (SFM) from faces
displaying corresponding AUs. Then we use these SFMs to
approximate the feature from new faces and generate a set
of corresponding instances. The similarity scores between
the feature and its instances are evaluated. Then the sets
of similarity scores from all features are weighted for final
AU identification. 16 AUs are recognized in the experiments
selected based on data availability. They are described in
table I and demostrated in fig 3. The tests achieve 94.2%
positive rate on recognizing 7 AUs and 85.6% positive rate
on recognizing all 16 AUs.

The rest of paper is organized as follows: In the section II
we present how to build the extended SFAM, how to apply
Extended SFAM on AU recognition as well as the feature
extraction. The experimental results are presented in III. We
draw our conclusion in IV.

II. METHODOLOGY

The Statistical Facial Feature Model (SFAM) is a partial
3D face morphable model which contains both global varia-
tions in landmark configuration (morphology) and local ones
in terms of texture and shape around each landmark [24]. In
this section, we describe the extended SFAM and its learning,
its application to AU recognition as well as the extraction of
features.

A. Extended Statistical Facial Feature Model

In order to learn variations on global morphology, local
texture and local shape among training faces, 3D face models
are first preprocessed to remove noises, e.g. spikes, holes, and
to exclude such variations introduced by head pose and face
scale. Local grids with Imm resolution are used to remesh
regions around landmarks and extract intensity and range
data. The remesh process ensures that the same number of
vertices is sampled from all faces and these vertices are
aligned among them.

SFAM is learnt by applying PCA to three kinds of training
features while preserving 95% of variations for each type
of features. These three feature groups are respectively
landmark configuration which defines a face morphology,
local texture and local range around each landmark.
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Fig. 1. First variation modes on the landmark configuration, local texture
and local shape in the morphable SFAM.

where m, g, 7 are respectively the mean morphology, mean
intensity and mean range value while B,, P,, P are their
learnt variation modes respectively, by, bg, b, are the corre-
sponding sets of control parameters.

Partial face instances, consisting of local face regions with
texture and shape configured by the landmark configuration,
can be estimated and synthesized by a linear combination
of these components for a given face. The model building
is similar as that in [24], however in this paper we use 19
landmarks, as shown in fig. 1, so that the SFAM can be better
applied to the problem of facial expression recognition.

The SFAM is further extended in this work by considering
statistical feature models (SFM) for additional features which
are particularly relevant to subtle facial expression analysis,
including for instance local binary patterns (LBP) and shape
index as explained later in the section II-C, in that they help
to characterize local texture and shape changes which occur
in subtle facial expressions. Each feature set F; is divided
into Ne (number of AUs) subsets. For each subset i,, PCA is
applied to learn the major modes of variations (95%). Thus,
given a feature set, we therefore have Ne SFMs associated
with Ne action units under study.

Ff = Fl 4 BPby @



Where F;X is the mean of feature vectors in the i, subset,
P;" is the learnt matrix of major variation modes, and b;"
is parameters, which are supposed to follow corresponding
Gaussian distributions with std G;;.

B. AU Recognition using Matching Scores

Given an AU, the matching scores of a feature set extracted
from an input face model is computed through an analysis by
synthesize approach. Feature instances I:“l’; on an input face
K can be generated from the eqn. 2 using the feature set
Fj to estimate the best parameter b;’“ similar as in [3]. We
set a boundary (j:O.SO';%‘) for the corresponding parameter
to increase the distinction of instances. The matching score
Q;XK between the feature set F; extracted from the input face
K and its instance of i;th AU is computed as the correlation
response between feature sets Fj and 1:"1’*' defined in eqn. 3.

: Fe EE
Q(F;,z>=< ek > 3)

Fiell || i
Foell T

The final matching score for the iyth AU on k is then a
weighted sum of the matching scores produced by all feature
sets.
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where A; is a set of weight (they are all set to 1 in this
work). The highest matching score achieved by an AU i, on
the input face model k indicate that the face model is best
matched by the instances from the AU i,. This AU i, is then
recognized as the AU produced by the input face model k.

C. Feature extraction

Local features are extracted around each of the 19 land-
marks which are manually labeled or automatically located
thanks to the SFAM [24]. We first concatenate the 3D
coordinates of these landmarks into a single vector M which
thus describe the configuration of the landmarks (face mor-
phology). We then interpolate the locations of the eye centers
using the eye corners and replace the two nose saddles by
them in the M for local feature extraction. Two sets of
remeshed local grids are thus created centered at landmarks
in updated M and local texture features 7 and shape features
R are extracted by concatenating all the intensity and range
values on those grids. Local patches in Fig. 2 illustrate the
remeshed grids formed by the local shapes and rendered
using the corresponding local textures.

We also compute additional features to better capture
subtle facial expressions in terms of changes in morphology,
local texture and local shape. Concerning the characterization
of morphology changes, we compute a landmark displace-
ment vector D from the landmark vector M. We further form
a vector L by 11 distances between facial expression sensitive
landmarks as illustrated by the green lines in fig 2.

The displacement of a landmark means to capture the
change of the landmark location when an expression appears

Fig. 2. Feature extraction

on a neutral face. It is informative because it represents
the difference between the face with an expression and the
neutral one. However, this measurement imposes a constraint
that a neutral face model from each subject must be available
in the gallery and is therefore subject biased. In our work,
we lift this constraint and make use of a mean neutral face
model in averaging the landmarks from all training neutral
faces. Thus, we compute D by subtracting the mean of M,
(M,) from M, shown as red lines in fig. 2.

D=M - MPLneutral (5)

The LBP operator, a powerful texture measure used
widely in 2D face analysis, extracts information which is
invariant to local gray-scale variations of the image with
low computational complexity. Multi-Scale LBP [13] is an
improved facial representation as compared to standard LBP.
We adopt multiscale LBP features for three reasons: first,
LBP describes local property of images, which is consistent
with the local deformations that correspond to AUs; second,
the variance in the apparent AU magnitude is large, some are
quite noticable while some are subtle, thus it is necessary to
analyze them under different scale; third, LBP is efficient
and easy to compute.

In our case, LBP are computed and extracted from the
local grids on both texture maps and range maps with scale

1 to 5 respectively (LBPgél t,LBPt’{;Q)t,...,LBPgé 5yt and
LBPY:

(16,1)" LBP(I{;z)r, ...,LBP(LIIQ5 r). Superscript 42 indicates
that the definition relates to uniform patterns with a U value
of at most 2 [2]. The extracted LBP values on local grids
using each (P,R) pair parameter are concatenated into a
vector respectively. In total 10 LBP features are extracted
(LBP,1—5,LBP:1-5).

To describe local surface properties, we compute the shape
index [4] of all points on the local grids and concatenate
into vector SI. We choose shape index because it has been
proven to be an efficient feature to describe local curvature
information and is independent of the coordinate system. The
shape index is computed on each vertex on local grids and
feature SI is constructed by concatenating those values into
a vector.

In summary, three sets of features are extracted corre-
sponding to the three facial modalities. In landmark configu-



ration modality, person independent landmark displacement
D and distance between landmarks L are extracted based on
landmark locations. In facial texture modality, local texture
T as well as multi-scale LBP LBP;1 —5 are extracted from
local texture maps. In facial geometry modality, local range
R, shape index SI as well as multi-scale LBP LBP,1 —5 are
extracted from local range maps.

III. EXPERIMENTAL RESULTS

The Bosphorus dataset [12] consists of 105 subjects in
various poses, expressions and occlusion conditions. The
number of face scans from each subject varies from 31 to
54 and the number of total face scans is 4652. Face scans
which relate to facial expression analysis are those displaying
the six universal facial expressions and those displaying
Action Units. The number of scans displaying AUs from
each subject varies from less than 7 to more than 20. The
Bosphorus dataset is chosen because it is the only public
database which contains 3D face scans displaying separate
AUs.

In the first experiments for facial AU recognition, 100 sub-
jects who have displayed 7 AUs are used (AU2, AU4, AU9,
AU12, AU27, AU28 and AU34). This test follows a ten-
fold cross-validation process, where subjects are independent
between training sets and testing sets. In the ten-fold person-
independent cross-validation method, subjects are partitioned
into two subsets in each round (totally 10 rounds): one with
90% subjects for training and the other with 10% subjects for
testing. This experiment setup guarantees that each subject
appears once in testing set and 9 times in training set and
any subject used for testing does not appear in the training
set because the partition is based on the subjects rather than
the individual expression.

TABLE 11
AVERAGE RECOGNITION RATES FOR 7 ACTION UNITS USING DIFFERENT
FEATURE SET

M__[T(@D) [ G | M¥T | M#G | T+G__| M+T+G
RR || 74.60% | 87.01% | 91.92% | 88.74% | 90.19% | 93.36% | 94.23%

Table II shows the overall average recognition rates for 7
AUs using the different feature sets. The first three columns
show the recognition rates from each modality, (landmark
M), texture (T), geometry (G)) respectively, the following
three columns are the results combining features from any
two modalities, and the last column shows the result for
features from all modalities. We can observe that by adopting
more features, our approach is able to enhance the overall
recognition rate from 87.01% achieved on 2D facial textures
to 94.23% using features from all three facial modalities.

Table III shows the confusion matrix on recognizing 7
AUs. It is notable that the identification of AU27 (Mouth
Stretch) archieves 100% recognition rate using our method.
AU27 , AU4 (Brow Lowerer) and AU28 (Lip Suck) has an
average recognition rate over 95%, while the relative lower
recognition rates are still around 90% which are of AU2
(Outer Brow Raiser), AU34 (Puff) and AU9 (Nose Wrinkler).

TABLE III
CONFUSION MATRIX OF THE PERSON-INDEPENDENT AU RECOGNITION.

Input \ ‘ AUI2 ‘ AU27 ‘ AU28 ‘ AU34 ‘ AU9 ‘ AU2 ‘ AU4
Output

AUI12 94,95%| 0,00% 0,00% | 0,00% | 0,00% | 1,01% | 4,04%
AU27 0,00% | 100,009 0,00% | 0,00% | 0,00% | 0,00% | 0,00%
AU28 0,00% | 0,00% 95,96%| 0,00% | 0,00% | 1,01% | 3,03%
AU34 0,00% | 0,00% 1,01% | 89,90%| 0,00% | 0,00% | 9,09%
AU9 1,01% | 0,00% 0,00% | 0,00% | 89,90%| 0,00% | 9,09%
AU2 3,03% | 0,00% 1,01% | 1,01% | 0,00% | 9091%| 4,04%
AU4 0,00% | 0,00% 1,01% | 0,00% | 1,01% | 0,00% | 97,98%

AU4 is often confused with other AUs because its appearance
is close to neutral faces.

In the second test, we use face scans displaying 16 AUs
(table I) from the 60 subjects who have performed all of
these AUs. Note that the reduction in subject numbers is
because other subjects were not scanned with all of these
AUs. Totally 960 face scans are involved in this test. The
test also follows a 10-fold cross-validation process.

Table IV shows the average positive rates and average
false-alarm rates of all AUs. Recognizing each AU; can be
considered as a two-class classification of the AU; and the
non-AU;. The positive rate is defined as PR = TPZ% and the
false-alarm rate is FAR = 7 PF+P +p- Note that the recognition
rate mentioned in the previous test is equal to positive rate
here.

TABLE IV
AVERAGE POSITIVE RATES (PR) AND AVERAGE FALSE-ALARM RATES
(FAR) OF AUSs.

AU10 AU12 AU14 AU17 AUI8 AU22 AU24 AU26
PR 95.0 % 85.0 % 75.0 % 80.0% 91.7% 90.0% 76.7% 91.7%
FAR 10.9% 19.0% 23.7% 7.7% 14.1% 3.6% 40.3% 12.7%
AU27 AU28 AU34 AU9 AU2 AU43 AU7 AU4
PR 91.7% 81.7% 88.3% 81.7% 90.0% 98.3% 78.3% 75.0%
FAR 3.5% 7.5% 20.9% 5.8% 3.6% 4.8% 13.0% 26.2%

Among 16 AUs, 7 of them (AU10 , AU1S8, AU22, AU26,
AU27, AU2, AU43) have average positive rates over 90%,
while 4 of them (AU14, AU24, AU7, AU4) have average
positive rates below 80%. Meanwhile, AU24 has the highest
false alarm rate, which implies that it is easier to be confused
with other AUs. AU34 and AU4 also have false alarm rate
above 20%. AU43, AU27, AU22 can not be easily confused
with other AUs, since they have the FAR below 5%. Our
method achieves an overall average positive rate for all
16 AUs of 85.6% with the overall average FAR 13.6%.
Compared with the previous test, the overall average positive
rate deceases 9% due to the increase of AU classes and the
confusion between the former 7 AUs and the added 9 AUs.
Specifically, the positive rates of AU4 and AU28 decrease
more than 14%. Those of AU12, AU27 and AU9 decrease
around 9% while the positive rates of AU34 and AU2 do not
have obvious variance.

To our best knowledge, there is no similar work on AU
recognition using the Bosphorus dataset. Thus, it is difficult
to compare our work directly with existing studies on AU
recognition. We provide here the results from two studies
on AU recognition for reference. In [15], seven AUs and an



TABLE V
EXPLANATION OF TP AND FAR DEFINITION.
| AU;

AU; True Positive (TP)
non-AU; False Positive (FP)

non-AU;
False Negative (FN)
True Negative (TN)

AU combination are recognized on their own database with
a recognition rate of 89.1%. In [18], a Dynamic Bayesian
Net is used to learn the relationship between AUs on 2D
Cohn-Kanade database in order to enhance the recognition
performance using gabor features and ababoost classifier.
They achieve an 85.8% positive rates on 14 AUs. Compared
with them, our approach achieves recognition rates of 94.2%
for 7 AUs and 85.6% for 16 AUs respectively.

IV. CONCLUSION

In this paper we propose an AU recognition method
based on an extended statistical facial feature model. The
SFAM is suitable for extracting local characteristics of facial
deformations in facial landmark configurations, local texture
and local geometry. In order to combine the contribution
from all extracted features, we build statistical feature models
and weight the similarity scores computed between feature
instance sets and facial features of investigated faces. 15
features are extracted from three facial modalities, including
multi-scale LBP, shape index, distances between landmarks
and landmark displacement. Experiments on recognizing 7
AUs and 16 AUs have achieved 94.2% and 85.6% recog-
nition rates respectively. Although this work is among the
first attempts to recognize AUs on 3D faces, it achieves a
consistent result with the highly optimized 2D method [18].
In the future, we will build a probabilistic latent semantic
space of AUs and recognize spontaneous expressions based
on this space.
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