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Abstract

In this paper, we propose a high-order graph matching
formulation to address non-rigid surface matching. The sin-
gleton terms capture the geometric and appearance similar-
ities (e.g., curvature and texture) while the high-order terms
model the intrinsic embedding energy. The novelty of this
paper includes: 1) casting 3D surface registration into a
graph matching problem that combines both geometric and
appearance similarities and intrinsic embedding informa-
tion, 2) the first implementation of high-order graph match-
ing algorithm that solves a non-convex optimization prob-
lem, and 3) an efficient two-stage optimization approach to
constrain the search space for dense surface registration.
Our method is validated through a series of experiments
demonstrating its accuracy and efficiency, notably in chal-
lenging cases of large and/or non-isometric deformations,
or meshes that are partially occluded.

1. Introduction
3D surface registration is an important problem in com-

puter vision with broad applications, such as 3D shape re-
trieval, face morphing, and object recognition [9]. It is par-
ticularly challenging when surfaces undergo large non-rigid
deformations. In applications such as recognition of sub-
tle facial expressions, there are localized, high-degree of
freedom deformations. To tackle this problem, several ap-
proaches have been developed to obtain dense point corre-
spondences by embedding the surfaces to a canonical do-
main which preserves the geodesics or angles [5, 6, 29, 32,
33]. Such embedding requires an initial set of feature cor-
respondences or boundary conditions. Given noisy 3D scan
data with varying scale, boundaries and resolutions, the per-
formance of the above methods might suffer as it is difficult
to find reliable feature point correspondences and consis-

(a) (b)

Figure 1. A dense matching result between two surfaces undergo-
ing a large non-rigid deformation. Our approach can establish both
the sparse (a) and dense (b) correspondences efficiently.

tent boundary conditions. To address this issue, in [34] a
priority-driven strategy was considered to search for sparse
feature correspondences based on the isometric assumption.
In [22] a Möbius voting scheme was introduced to find cor-
respondences between two sparse feature sets. However,
both methods do not scale well to solve the dense regis-
tration problem. Furthermore, since most surface deforma-
tions are not perfectly isometric, solely considering intrinsic
embedding information may introduce approximation er-
rors to the matching result. Therefore, it is important to
consider extrinsic similarity information as well to achieve
accurate surface matching.

Recently it has been shown that graph matching is a pow-
erful framework to establish feature correspondences, com-
bining both appearance similarity and geometric compati-
bility [13, 28]. Previous work has applied graph matching to
image features (e.g., [21]). Considering only single match-
ing scores, the matching problem becomes the well-known
assignment problem [1]. For the pairwise matching prob-
lem, [28] proposed to use the dual-decomposition method
which works well for a non-convex energy function. For the
high-order matching problem, recent work, including prob-
abilistic hypergraphs [31] and tensor matching [13], demon-
strate good optimization results when the energy function is
convex but the performance is unknown for non-convex en-
ergy functions.



Although graph matching has been successfully applied
in 2D image features, limited prior art refers 3D surfaces.
The obstacle lies in the fact that a 3D surface is not repre-
sented in the Euclidean 2D domain, and therefore distances
between two points on the surface can not be computed in a
closed form. For example, in [2, 26], only around 100 cor-
respondences are found using geodesic information. The
conformal mapping approach ([33, 29, 32]) is more flexi-
ble. According to the uniformization theory [14], any 3D
surface can be conformally mapped to a 2D domain. How-
ever, such conformal mapping is not unique. The group of
conformal mapping can be captured by the Möbius trans-
form. In the case of mapping a surface that is topologically
equivalent to a sphere, at least three correspondences are
required to determine a unique conformal mapping. This
transform can be computed in a closed form, which makes
it possible for us to efficiently apply graph matching to sur-
face registration. This motivates our new formulation of the
3D surface matching problem with the use of high-order
graph matching that considers the cost of matching three
correspondences. The main intuition is that the flexibility
of this conformal mapping is represented by a Möbius trans-
form. Since the Möbius transform is uniquely determined
by fixing any three points on the surface, we can model the
embedding energy effectively through the high-order graph
interaction. Our paper is the first one applying high-order
graph matching to surface registration.

In this paper, we propose a new approach to achieve ro-
bust dense surface registration via high-order graph match-
ing in the embedding manifold. In particular, we use mul-
tiple measurements (e.g., curvature, texture) to capture the
appearance and geometric similarity between deformed sur-
faces and high-order graph interaction to model the implicit
embedding energy. These measurements are used within a
higher-order graph matching framework that is solved in an
efficient manner by using a pseudo-boolean formulation [3].
Such an approach reduces the high-order term to quadratic
terms [15] and obtains a near optimal solution based on the
dual-decomposition technique [19]. Last, but not least a
hierarchical algorithm is proposed to constrain the search
space through candidate selection and local graph match-
ing, which allows to achieve dense surface registration with
a sub-vertex accuracy. As a result, our proposed method
can establish dense registration between non-rigid surfaces
with large (potentially non-isometric) deformations, partial
matching and inconsistent boundaries and scales.

This paper is organized as follows. In Sec. 2, we for-
mulate surface registration as a high-order graph matching
problem. Sec. 3 presents our two-stage hierarchical surface
matching framework. The implementation details and ex-
perimental results are presented in Sec. 4. Finally, we con-
clude our work in Sec. 5.

2. Mathematical formulation
As discussed in Sec. 1, a main challenge of dense sur-

face matching is to capture large, high-degree-of-freedom
deformations accurately. Instead of assuming the deforma-
tions near-rigid or near-isometric, we formulate surface reg-
istration as a high-order graph matching problem combin-
ing both extrinsic similarity and intrinsic embedding infor-
mation. The dense surface matching is achieved by glob-
ally optimizing a functional which includes the cost of the
deformation as well as the cost of correspondences accord-
ing to multiple cues. Compared to existing approaches, our
method can handle non-isometric surface deformations with
partial overlapping. We formulate surface registration as a
high-order graph matching problem combining both extrin-
sic similarity and intrinsic embedding information. Since
this high-order graph matching has a non-convex energy
function, it is in general difficult to solve directly using ex-
isting techniques such as [13]. In our proposed algorithm,
a pseudo-boolean formulation is used to reduce the high-
order term to quadratic terms [3]. Thus a globally optimal
or near optimal solution can be obtained based on the dual-
decomposition technique [19].

2.1. A pseudo-boolean formulation of the high-
order graph matching problem

Let us denote by P1 and P2 the set of points from two
surfaces S1 and S2 respectively. P , P1 × P2 denotes
the set of possible correspondences. We define the boolean
indicator variable

xa =

{
1 if a = (i, j) ∈ P is a correspondence,
0 otherwise.

(1)

A basic constraint is that each point in P1 is mapped to at
most one point in P2, while for each point in P2 there is at
most one point in P1 mapping to it. Therefore, we have the
set of feasible solutions defined as,

C = {x ∈ {0, 1}P1×P2 |
∑

i∈P1

xi,j ≤ 1,
∑

j∈P2

xi,j ≤ 1,

∀i ∈ P1 and ∀j ∈ P2}. (2)

Moreover as shown in [13], in order for matching to be
scale invariant a high-order (degree 3) graph matching is
required as follows

min
x∈C

{E(x|θ) =
∑

a∈P

θaxa +
∑

(a,b)∈P×P

θabxaxb+

∑

(a,b,c)∈P×P×P

θabcxaxbxc}, (3)

where θa is the matching cost for each correspondence a ∈
P , θab for a pair of correspondences (a, b) ∈ P × P , and
θabc for a triplet of correspondences (a, b, c) ∈ P ×P ×P .



Because the matching constraint 2 makes the optimiza-
tion problem 3 difficult to solve, most existing works at-
tempted to relax it (e.g., [13]). In fact, the matching con-
straint can be reduced to pairwise terms in the energy func-
tion. We observe the following equivalence:

∀i ∈ P1,
∑

j∈P2

xi,j ≤ 1

iff min
xi,j

∑

j′,j′′∈P2,j′ 6=j′′
θ∞xi,j′xi,j′′ = 0 (4)

where θ∞ is a sufficiently large number. We use P C to
denote the set of pairs that encodes the matching con-
straints for all the correspondences. Thus, the general high-
order matching problem can be formulated as the following
pseudo-boolean optimization problem [3]

min
x∈{0,1}P1×P2

{E(x|θ) =
∑

a∈P

θaxa +
∑

(a,b)∈P×P

θabxaxb+

∑

(a,b)∈PC
θ∞xaxb +

∑

(a,b,c)∈P×P×P

θabcxaxbxc}. (5)

The above formulation is general and therefore is able to
capture almost all matching scenarios (e.g., partial match-
ing) by properly defining the potentials.

Because of the positive weight θ∞ that encodes the
matching constraint, the energy function 5 is nonconvex [4],
and in general this is an NP-hard problem [3]. The advan-
tage of the pseudo-boolean formulation is that theoretically
any high-order terms can be reduced into a quadratic term
[3] which can be done efficiently [15]. In this paper we em-
ploy the flexible dual-decomposition technique [19] which
often obtains a near optimal solution. The details of the op-
timization algorithm is given in Sec. 2.3.

2.2. Potential functions

To consider multiple sources of similarity measure-
ments, the potential functions in Eq. 3 are defined using
both appearance and geometric information. For simplic-
ity, we only consider the first and third order terms in our
algorithm. Please note that the pairwise potential can also
help improve the matching accuracy. For example, in the
case of matching two surfaces with the same scale, we can
consider geodesics on the surface. Furthermore, the poten-
tial functions can also be learned from a training set [8].

2.2.1 The singleton potential

For each correspondence (i, j) we consider both the geo-
metric and texture (if available) information to define its
potential as in [27]. For simplicity, we use the Gaussian
curvature curv(i) at point i, which is invariant under an iso-
metric transformation [12], and the texture value tex(i) at

point i. The singleton potential for a correspondence (i, j)
is defined as

θi,j = (curv(i)− curv(j))2 + λ0(tex(i)− tex(j))2 (6)

where λ0 balances the weight between the curvature and
the texture information. Similarly, other features can also
be considered such as spin-image [16].

2.2.2 The high-order potential

According to the uniformization theorem [14], any 3D sur-
face can be flattened conformally to a canonical 2D domain.
Within such a mapping each feature point p has a paramet-
ric coordinate in the complex plane zp ∈ Ĉ. The flexibil-
ity of this conformal mapping is represented by a Möbius
transform, which can be uniquely determined by fixing any
three points on the surface. Inspired by Lipman et al. [22],
we compute the matching score between two triplets as the
deformation error based on the Möbius transform.

Given two surfaces, S1 and S2, for any two triplets,
(p1

i , p
1
j , p

1
k) ∈ S1 and (p2

i , p
2
j , p

2
k) ∈ S2, we first recover the

associated Möbius transforms m1(z) and m2(z) that map
each triplet to a constant configuration (ei 2π

3 , ei 4π
3 , ei2π).

On this new 2D domain, we find the mutually closest point
correspondences set, denoted as

Mijk = {zp → c(zp)|p ∈ S1, zp, c(zp) ∈ Ĉ}, (7)

and define the deformation error as

E(Mijk) =
∑

l∈Mijk

|zl − c(zl)|2. (8)

Then we define the Möbius matching potential as follows,

θMöbius
ijk =

{
E(Mijk)
|Mijk|2 − 1. if E(Mijk)

|Mijk| < δ

1/|Mijk| otherwise
(9)

Here δ is lower bound value to single out unlikely corre-
spondences (in our experiment δ = 0.1). Without it the
minimization problem of Eq. 3 would encourage as many as
possible correspondences even when some of them do not
match. Intuitively, if there were more matching pairs and
the distances between those matching pairs were smaller,
the potential would be lower.

However, considering the Möbius energy alone can in-
troduce certain ambiguity since it encodes only isometric
information (an example is shown in Fig. 2). To resolve
such ambiguity, we consider the Gaussian map of the sur-
face. The Gaussian map is defined as the mapping of the
normal at each point on the surface to the unit sphere [12].
The Gaussian map captures the extrinsic geometric infor-
mation of the surface. In order to avoid ambiguities in ori-
entation, the orientation of the Gaussian maps is considered
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Figure 3. The outline of our algorithmic framework for surface matching as described in Sec. 3.

(a) (b)

Figure 2. An example shows the ambiguity by considering only
the intrinsic embedding information. The matching scores in (a)
and (b) are the same from Eq. 8 based on the Möbius transform,
since the distances between the matching features are identical.
However, such ambiguity can be avoided by adding the extrinsic
similarity information (e.g., normal and curvature).

for each of the triplets. Two triplets have the same orienta-
tion if and only if the determinant of their normals have the
same sign. Therefore, we have

θGaussian
ijk =

{
0 if det(n1

i ,n
1
j ,n

1
k) det(n2

i ,n
2
j ,n

2
k) ≥ 0

1/|Mijk| otherwise
(10)

Here ni ∈ R3 denotes the normal at point i, and
det(ni,nj ,nk) denotes the determinant of the 3× 3 matrix
[ni,nj ,nk]. This is introduced as a soft constraint in our
framework, because in the extreme case, the normal can re-
verse its orientations when the surface undergoes very large
deformations. Finally, the triple potential for each possible
triple matching (p1

i , p
1
j , p

1
k) → (p2

i , p
2
j , p

2
k) can be defined

as
θijk = λ1θ

Möbius
ijk + λ2θ

Gaussian
ijk (11)

2.3. Optimization and computational complexity

The idea of dual-decomposition is to re-formulate the
original problem as the union of several sub-problems that
are easier to solve [19, 18]. For the graph matching prob-
lem in Eq. 3, let θ denote the vector of the weights of
the singleton, pairwise and triplet terms, and I denote the
set of subproblems. The decomposition is represented by
E(x|θ) =

∑
σ∈I ρσEσ(x|θσ), where ρσ is the weight for

each subproblem. Then the original problem is solved by

updating the parameter θσ of each subproblem σ that in-
creases the energy of the dual problem. Moreover, we have
the following decomposition constraint:∑

σ∈I

ρσθσ = θ. (12)

If we can find a lower bound Φσ(θσ) for each subproblem,
i.e., Φσ(θσ) ≤ minx Eσ(x|θσ), then we can obtain a lower
bound for the original problem, i.e.,

Φ(θ) =
∑

σ∈I

ρσΦσ(θσ) ≤
∑

σ∈I

ρσEσ(x|θσ) = E(x|θ). (13)

In particular, we decompose the original problem into
the following three subproblems:

1. a linear subproblem which considers only the single-
ton term

∑
a∈P θaxa. This linear subproblem is also

known as the linear assignment problem [1].

2. a higher-order pseudo-boolean subproblem by re-
ducing the high-order terms in 3 to quadratic terms [3]
which can be solved by the QPBO algorithm [17].
Here we employ [15] for the reduction.

3. a local subproblem which divides the original surface
into small regions and uses an exhaustive search to find
the optimal solution in each small surface region.

Opposite to [28], a high-order pseudo-boolean subproblem
is introduced because of the high-order terms in Eq. 3. Af-
ter solving the subproblems, the dual variables {θσ} are
updated by projecting to the space that satisfies Eq. 12 as
in [19].

For the dual-decomposition algorithm above, the most
expensive step in each iteration is the max-flow compu-
tation. In our paper, we use the popular implementation
in [20], whose worst case complexity is O(mn2|C|), where
m is the number of edges, n is the number of vertices,
and |C| is the cost of minimum cut. Assuming we select
|P1| and |P2| feature points from two surfaces, there are
O(|P1|3|P2|3) possible triplets, each represented by a high-
order term in Eq. 3. After the reduction from the high-order
terms to quadratic terms, we can significantly reduce the
complexity without searching for all possible matching cor-
respondences.



3. Dense surface matching

The number of vertices n considered in this high-order
formulation is the main computational bottleneck of our ap-
proach. In particular, when n becomes large, as in the case
of dense surface registration, it is computationally expen-
sive to solve the high-order graph matching problem. Fur-
thermore, the optimality properties of the obtained solution
degrade since the assumption of isometry is only an approx-
imation and applies only when the features are far apart.
The graph structure of the above matching problem would
also be very complex if we consider all possible triplets.
Several heuristic ways were considered to prune off some
triplets, such as restricting the number of triangles per ver-
tex [13]. However, because of the complexity of the prob-
lem, such pruning schemes often lead to erroneous match-
ing results when the number of feature points is large. To
reduce the computational complexity, we propose a two-
stage optimization pipeline including sparse feature match-
ing and dense point matching, as illustrated in Fig. 3.

In the sparse feature matching stage, an initial set of
sparse feature points are selected among the local maxima
of Gaussian curvature [22] on the input surfaces S1 and S2.
Using our high-order graph matching algorithm in Sec. 2
we can compute the ns correspondences between the two
feature sets {p1

1, p
1
2 . . . , p1

ns
} → {p2

1, p
2
2, . . . p

2
ns
}. Extrin-

sic similarity and intrinsic embedding information are con-
sidered. p1

i and p2
i (i = 1 . . . ns) are the matched feature

points on S1 and Ss, respectively. In this stage we only se-
lect a small set of feature points (typically 8 − 15 in our
experiments), so the computational cost is low on finding
the sparse correspondences and computing the associated
conformal maps.

Since the initial feature points are selected among the
vertices and the middle points of the edges of the meshes,
the matching results could be unreliable if the mesh reso-
lution is low. To address the above issue, we consider all
conformal maps induced by different Möbius transforms,
which are determined by every three correspondences be-
tween two surfaces, for the dense point matching.

3.1. Candidate voting and clustering

Candidate voting From the sparse feature match-
ing stage, we have a set of sparse correspondences
{p1

1, p
1
2 . . . , p1

ns
} → {p2

1, p
2
2, . . . p

2
ns
} between S1 and S2.

Because the surface deformation might not be isometric,
we propose a voting scheme based on Möbius transforms
to compensate for the approximation error. Given any three
correspondence pairs, {p1

i , p
1
j , p

1
k} → {p2

i , p
2
j , p

2
k}, the

Möbius transform can be computed efficiently in a closed
form [22]. Under such a Möbius transform, any point
p1 ∈ S1 will be mapped to a different candidate location
c(p1) ∈ S2. Thus, for each point in the source surface, we

can compute the candidate locations in the target surface by
considering all possible Möbius transforms from the fea-
ture correspondences. Please note that our candidate vot-
ing approach differs from the Möbius voting method [22]
in two ways: 1) our method computes voting positions for
each dense point rather than finding sparse feature corre-
spondences and 2) multiple clusters are computed from the
voting positions of each point and used to obtain a dense
matching result.

One advantage of our voting approach is robustness. If
any part of the sparse matching result from Sec. 3.1 is accu-
rate, the matching candidates given by the Möbius groups
will distribute closely around the true location. Another ad-
vantage is that this voting scheme provides a fast and effec-
tive way of constraining the search space for any point on
the surface.

Candidate clustering Based on the above candidate lo-
cations, we want to use the underlying distribution to re-
duce our search space for the dense matching. It is also im-
portant that the dense matching should optimize the same
objective as in the sparse matching stage. For any voting
point c(p1) ∈ S2 of a source point p1 ∈ S1 that is ob-
tained by aligning three correspondences {p1

i , p
1
j , p

1
k} →

{p2
i , p

2
j , p

2
k}(i, j, k = 1 . . . n), there is a cost θMöbius

ijk in the
matching energy of Eq. 3. Intuitively, the lower the value of
θMöbius

ijk and the closer the curvature and texture is, the more
likely p1 and c(p1) match. Therefore, we define the like-
lihood of each candidate matching p1 → c(p1) under the
alignment of {p1

i , p
1
j , p

1
k} → {p2

i , p
2
j , p

2
k} as follows

fijk(p1, c(p1)) = e−θMöbius
ijk (14)

where θMöbius
ijk is the Möbius matching potential in Eq. 9. To

obtain the candidate distribution for each point p1 ∈ S1,
we use a kernel density estimate (KDE) with the density
function defined as

ρ(p1, c(p1)) =
∑

c

fijk(p1, c(p1))K(
‖c(p1)− c(p1

c)‖
h

)

(15)
where c(p1

c) is the center location of each kernel K in S2

and h is the kernel bandwidth. The mean shift cluster-
ing [10] is employed to find the modes of this density. Com-
pared to parametric representations, KDE has does not re-
quire nonlinear optimization to learn the distribution param-
eters.

Since we search for the modes in Eq. 15 on the 2D man-
ifold instead of the 3D Euclidean embedding space, the dis-
tance function should be defined as the geodesic distance
on the surface. However, as illustrated in Fig. 4 most of
the candidate locations are close to the center, so the Eu-
clidean distance is used in our method to simplify the mode
search. To handle partial surface matching, we only select
the modes with density higher than 0.1 and the closest point
on the surface as the candidate matching point. If no such
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Figure 4. Example showing voting points from different Möbius
transforms and clustering. For any point p from the source surface,
the clustering of its voting points on the target surface gives us a
matching candidate p′.

mode exists, we report that there is no reliable matching
point. The average number of resulting candidate points
in our experiments is 1 − 6. So our voting and clustering
method can significantly reduce the search space.

3.2. Local high-order graph matching

Based on the matching candidates obtained for each ver-
tex, our goal now is to find a good matching position lo-
cally for each dense point. This problem can be formulated
similarly to the high-order graph matching problem defined
in Sec. 2.1. Since the candidate voting scheme in Sec. 3.1
has removed the ambiguities caused by the Möbius trans-
forms, we only need to consider the matching cost based
on texture and geometric similarities defined in Eq. 6, as
well as the orientation consistency defined in Eq. 10. Fur-
thermore, the orientation consistency term can be defined
locally, i.e., each triangle 4p1p2p3 and its matched trian-
gle 4p′1p′2p′3 should have the same orientation in the uni-
formization domain, which is known as having no flip in
[24]. More specifically, for the three vertices of each tri-
angle 4123, we define the potential of matching (p1, p

′
1),

(p2, p
′
2) and (p3, p

′
3) as follows

θ123,1′2′3′ =

{
θ∞ sign(4123) 6= sign(41′2′3′)
0 otherwise.

(16)

Here θ∞ is a sufficiently large number and sign(4123) and
sign(41′2′3′) denote the orientation of the triangle p1p2p3

and p′1p
′
2p
′
3, respectively, in the uniformization domain.

From the candidate voting it is not guaranteed that every
point has at least one matching candidate. Therefore, we re-
move the points without any matching candidate and obtain
a triangulation for the remaining points on S1 through the
Delaunay triangulation algorithm [11] in the uniformization
domain.

Suppose for each point p ∈ S1, its matching candidates
are given by Cp = {pi|pi ∈ S2, i = 1, 2, . . . , np}. We
define the boolean indicator variable:

xi
p =

{
1 if p, pi ∈ Cp are correspondences
0 otherwise.

(17)

Assuming that each p ∈ S1 is matched to at most one of its
candidates, we have the matching constraint:

∑

pi∈Cp

xi
p ≤ 1 (18)

Therefore, the same optimization technique as described in
Sec. 2.3 can be applied to solve the above problem.

Compared to the graph matching problem in Sec. 2.3,
one major advantage of our local graph matching algorithm
is that the number of matching candidates of each point is
typically less than 6 and, therefore, the number of variables
is very small. In particular, to match n points locally, there
are only O(n) variables and O(n) triplet terms since the
dense points are triangulated in the planar parametric do-
main.

4. Implementation and results

Our algorithm is implemented on an Intelr Xeon(TM)
3.4G PC with 4G RAM and an NVIDIAr Geforce
9800GTX+ graphics card. We developed a matching plu-
gin for the open source software Meshlab1. For the mean
shift algorithm, we used the source code available online2.
For the potential functions of the graph matching algorithm
defined in Sec. 2.2, the weights of Eq. 6 and 11 are defined
as λ0 = 1, λ1 = 0.1 and λ2 = 1, and the kernel bandwidth
of Eq. 15 is set to be 0.01 times the diameter of the target
surface.

The mid-edge uniformization algorithm was used for the
conformal mapping [22, 23]. The computation of mid-edge
uniformization involves solving a symmetric linear equa-
tion, which can be efficiently computed by GPU [7]. For a
mesh with 104 faces the computation takes less than 1 sec-
ond.

Since we consider almost all the triplets, the graph com-
plexity scales cubically without pruning. Therefore, rather
than searching for more sparse feature correspondences in
the first stage, we try to find more accurate matching results
for a few features. For example, 10 sparse feature corre-
spondences will give us 120 voting positions for each point
which are enough for finding candidate points. To match
10 feature points, the graph encoding step takes around
5 minutes and the graph matching step takes less than 1
minute. The voting and local high-order graph matching
of 103 points based on the 10 sparse features takes around
1 minutes. Compared to previous work [22, 26] which only
computes around 100 correspondences, our algorithm not
only runs faster but also achieves more correspondences.

For the high-order graph matching algorithm in Sec. 2.3,
the convergence of the dual-decomposition optimization de-
pends on the input features. In our experiments, we observe
that the more outliers (un-matched points), the more itera-
tions it takes to converge.

1http://meshlab.sourceforge.net/
2http://www.caip.rutgers.edu/riul/research/code.html



4.1. Results

In this section we evaluate our new algorithmic frame-
work for dense surface matching. In our experiments, we
match surfaces with large deformations and inconsistent
boundaries (partial overlapping). The number of vertices
for each mesh is in the range of 1, 500 − 4, 000. With our
high-order graph matching algorithm, we can find the dense
matching for 60 − 90 percent of all vertices, which is il-
lustrated as matched/total (no. of matched vertices/no. of
total vertices of the source surface) for each example. The
lion data of Fig. 1 comes from [25] and the face and hand
data are captured with texture by the 3D scanner introduced
in [30]. To measure the quality of dense registration, from
the Delaunay triangulation of the points on the source sur-
face, we consider the ratio of the area of each local triangle
to the area of its matched triangle. For the natural defor-
mations (e.g., expression change, stretched arms or bend-
ing figures) we experimented with, the local area is not ex-
pected to undergo abrupt change. Therefore the area ratio is
expected to be close to one for every local triangle.

Matching with largely inconsistent boundaries and par-
tial overlapping: The mid-edge uniformization algorithm
allows to map the boundaries of the surface to slits and
preserve the conformal structure of the surface in an ex-
act sense. Hence it is suitable for matching partially over-
lapping surfaces. This property can be combined with our
candidate voting scheme to determine the outliers near the
boundary where the mean shift clustering returns a low
score. Examples are shown in Fig. 5, 6, and 7. An ex-
ample of significant non-overlap between the two meshes is
shown in Fig. 3.

Matching with large deformations: Fig. 7 and 8 show
results that match two surfaces undergoing a large defor-
mation. Even when the sparse features can not all be se-
lected consistently (as shown in Fig. 8), our high-order
graph matching algorithm in Sec. 2.3 is able to find reli-
able sparse correspondences (Fig. 8(a)) and obtain a dense
surface matching result through the two-stage optimization
scheme in Sec. 3(Fig. 8(b)).

Comparison experiments: Fig. 6 shows a comparison be-
tween our algorithm and the least square conformal map-
ping (LSCM) approach [29]. Although LSCM can handle
free boundaries, there is no theoretical guarantee that the
conformal structure is preserved near the boundary and it
might include self-intersections in the mapping [24]. In our
comparison, we use the feature correspondences computed
from the sparse matching stage to initialize the LSCM ex-
periments. The inaccuracy of the LSCM approach can be
observed in Fig. 6(c). In this example, although all vertices
on the left mesh are matched to the right mesh, there are
approximately 42 percent flipped triangles. Note that here
we cannot compare directly with the results in [29] where
the initial feature points were manually selected.

(a) Sparse matching (b) Dense matching
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Figure 5. Example face matching result: (matched/total =
2098/2644)(best viewed in color)

(a) Sparse matching (b) Dense matching

(c) Closeup of the dense matching.
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(d) Matching area ration histogram

Figure 7. Dense matching under large non-rigid deformations.
(matched/total = 2378/3633)(best viewed in color)

5. Conclusion

We proposed an algorithmic framework for non-rigid
surface matching. In particular, a high-order graph match-
ing formulation is used to combine the appearance and ge-
ometry similarity as well as the implicit embedding en-
ergy between deformed surfaces. Therefore, our proposed
method can establish robust sparse registration between
non-rigid surfaces with large deformations, partial match-
ing and inconsistent boundaries and scales. Furthermore,
a two-stage algorithm is proposed to constrain the search
space through candidate selection and local graph match-
ing, which allows to achieve dense surface registration with
a sub-vertex accuracy. The method is modular both with re-
spect to the density of points as well as the potentials used
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(a) Sparse matching (b) Dense matching (c) LSCM matching (d) LSCM error (e) Our approach

Figure 6. Comparison with LSCM approach [29] for dense surface matching. (matched/total = 1455/1635) (best viewed in color). Notice
the high number of flipped triangles in (c)
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Figure 8. Dense matching under multiple articulated deformations.
(matched/total = 1224/1786)(best viewed in color)

to determine optimal partial correspondences.
References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] D. Anguelov, P. Srinivasan, H.-C. Pang, D. Koller, S. Thrun, and
J. Davis. The correlated correspondence algorithm for unsupervised
registration of nonrigid surfaces. In NIPS, 2004.

[3] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete
Applied Mathematics, 123(1-3):155–225, 2002.

[4] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[5] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized
multidimensional scaling: a framework for isometry-invariant partial
surface matching. Proc. National Academy of Sciences, 103:1168–
1172, 2006.

[6] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Expression-
invariant representations of faces. IEEE TPAMI, 2004:1042–1053,
2007.

[7] L. Buatois, G. Caumon, and B. Levy. Concurrent number cruncher: a
GPU implementation of a general sparse linear solver. Int. J. Parallel
Emerg. Distrib. Syst., 24(3):205–223, 2009.

[8] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola.
Learning graph matching. IEEE TPAMI, 31(6):1048–1058, 2009.

[9] R. J. Campbell and P. J. Flynn. A survey of free-form object repre-
sentation and recognition techniques. Comput. Vis. Image Underst.,
81(2), 2001.

[10] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE TPAMI, 24(5):603–619, 2002.

[11] M. de Berg, M. van Krefeld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer, 2
edition, 2000.

[12] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Pren-
tice Hall, 1976.

[13] O. Duchenne, F. Bach, I. Kweon, and J. Ponce. A tensor-based algo-
rithm for high-order graph matching. In CVPR, 2009.

[14] H. M. Farkas and I. Kra. Riemann Surfaces. Springer, 2004.
[15] H. Ishikawa. Higher-order clique reduction in binary graph cut. In

CVPR, 2009.
[16] A. Johnson. Spin-Images: A Representation for 3-D Surface Match-

ing. PhD thesis, CMU, 1997.
[17] V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions

with graph cuts-a review. IEEE TPAMI, 29(7):1274–1279, 2007.
[18] N. Komodakis and N. Paragios. Beyond pairwise energies: Efficient

optimization for higher-order MRFs. In CVPR, 2009.
[19] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via

dual decomposition: Message-passing revisited. In ICCV, 2007.
[20] N. Komodakis, G. Tziritas, and N. Paragios. Performance vs compu-

tational efficiency for optimizing single and dynamic MRFs: Setting
the state of the art with primal-dual strategies. Comput. Vis. Image
Underst., 112(1):14–29, 2008.

[21] M. Leordeanu and M. Hebert. A spectral technique for correspon-
dence problems using pairwise constraints. In ICCV, pages 1482–
1489, 2005.

[22] Y. Lipman and T. Funkhouser. Möbius voting for surface correspon-
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