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1 Objective
We propose sparse and locally constant Gaussian graphical models as well as structural equation models for
learning the functional connectivity in the whole-brain.

fMRI datasets are typically under-sampled and high-dimensional, they often need to be represented with
low-complexity statistical models, which are comprised of only the important probabilistic dependencies.
Most methods attempt to reduce model complexity by enforcing structure sparseness. However, sparseness
cannot describe inherent regularities in the structure. Locality information is one aspect of fMRI datasets
that has not been modeled in the past. In this paper, we propose adding sparseness and local constancy
priors in two classes of models: Gaussian graphical models (GGM) and structural equation models (SEM).

Different methods have been proposed for finding functionally connected networks. Most of these methods
do not allow a fully exploratory analysis, i.e. without a priori set of regions of interest. Methods which focus
on linear dependencies or correlations include seed-region [1], structural equation models [2, 3] and Granger
causality maps [4]. Dynamic Bayesian networks was proposed in [5, 6] for finding non-linear interactions
among brain regions.

2 Method
The problem of learning functional connectivity can be modeled as a maximum likelihood estimation of the
inverse covariance matrix given a dataset [7]. We encourage finding probabilistic connectivities between two
close or distant clusters of voxels, instead of between isolated voxels. This is done by adding sparseness and
local constancy priors on the estimation process. It was shown that this method leads to better generalization
performance in a cross-validation setting.

In this paper, we propose regularized regression as a method for learning the structure of a structural
equation model. We impose constraints on the difference of entries in the coefficient matrix Θ ∈ RN×N

for N variables, which correspond to spatially neighboring variables. Let X ∈ RN×S be the dataset for
S subjects and D ∈ RM×N be the discrete derivative operator on the manifold, where M ∈ O(N) is the
number of spatial neighborhood relationships. For instance, in a 3D image, M is the number of voxel pairs
that are spatial neighbors on the manifold. More specifically, if voxel n1 and voxel n2 are spatial neighbors,
we include a row m in D such that dmn1 = 1, dmn2 = −1 and dmn3 = 0 for n3 /∈ {n1, n2}. The following
penalized regression is proposed:
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for some ρ, τ > 0. The first term measures the quality of the regression, the second term ρ‖Θ‖1 encourages
sparseness, and the third term τ‖DΘ‖1 encourages local constancy in the coefficient matrix by penalizing
the differences of spatially neighboring variables. For optimizing eq.(1), we followed the coordinate-direction
descent algorithm described in [7].

3 Results
An experiment was performed in order to discover differences in processing monetary rewards between cocaine
addicted subjects versus healthy control subjects. The time series consists of 87 frames taken every 3.5 sec-
onds. The dataset collected by [8] contains 28 subjects: 16 drug-addicted and 12 healthy non-drug-using con-
trol individuals. Preprocessing of the dataset was performed in SPM2 (http://www.fil.ion.ucl.ac.uk/spm/),
and it included deforming all time series to the same spatial reference template, spatial smoothing, cropping
and regular sampling. Each subject has a sequence of 87 images of 53× 63× 46 voxels. After preprocessing,
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Figure 1: (a) GGM and (b) SEM for cocaine addicted subjects, (c) GGM and (d) SEM for control subjects.
(a),(c): drug addicted subjects have more connections in the cerebellum (in yellow), control subjects have
more connections in the prefrontal cortex (in green); (b),(d): blue lines correspond to positive interactions
while red lines correspond to negative interactions. In order to represent the directionality, the cause is in
darker colors while the effect is in lighter colors

the number of voxels was reduced to 869. We applied our algorithm with sparseness parameter ρ = 0.15,
local constancy parameter τ = 0.01 and K = 10 iterations.

Figure 1(a,c) shows different clusters of connections for each group. These results are consistent with
the fact the prefrontal cortex has more control of other regions and behavior in the control subjects. In the
cocaine addicted subjects, the cerebellum has been shown compensatory responses to the reduced prefrontal
cortex control.

The directionality of the interactions between brain regions is shown in Figure 1(b,d). While GGMs are
unable to show the directionality of the interactions, SEMs provide us such information.

Note that both models (GGMs and SEMs) share the same structure. This suggests that assuming
Gaussianity of fMRI datasets is a reasonable assumption, since for Gaussian datasets this is the expected
behavior. Eventhough more research has to be performed in order to conclude on this topic. Finally, the
GGM structure is a way to validate the SEM structure, since the GGM structure has been shown to have
good generalization performance in a cross-validation setting [7].

4 Conclusions
Our initial experiments show that by adding sparseness and local constancy priors to both Gaussian graphical
models and structural equation models allow for finding functional interactions in the whole brain. Both
models are suitable for fully exploratory research without using a priori set of brain regions.

In our experiments, the results have been neuropsychologically validated. Further experiments on larger
datasets are necessary. We plan to test the ability of both methods to perform classification between drug-
addicted and controls subjects.
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