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Abstract

In this paper, we propose a new technique to perform figure-ground segmentation in image sequences of moving objects under varying

illumination conditions. Unlike most of the algorithms that adapt color, there is not the assumption of smooth change of the viewing conditions. To

cope with this, we propose the use of a new colorspace that maximizes the foreground/background class separability based on the ‘Linear

Discriminant Analysis’ method. Moreover, we introduce a technique that formulates multiple hypotheses about the next state of the color

distribution (some of these hypotheses take into account small and gradual changes in the color model and others consider more abrupt and

unexpected variations) and the hypothesis that generates the best object segmentation is used to remove noisy edges from the image. This

simplifies considerably the final step of fitting a deformable contour to the object boundary, thus allowing a standard snake formulation to

successfully track non-rigid contours. In the same manner, the contour estimate is used to correct the color model. The integration of color and

shape is done in a stage called ‘sample concentration’, introduced as a final step to the well-known CONDENSATION algorithm

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Color and deformable contours have been extensively used

in computer vision applications, such as object detection and

tracking tasks [1,2]. Usually, these methods are based on a

first step where the object is roughly (but robustly) located by

the color module. This simplifies the subsequent step of

accurately fitting the contour model to the rigidly or non-

rigidly deformed object boundary. In environments with

controlled lighting conditions and uncluttered background,

color can be considered a reliable and invariant cue, which

can be robustly used for tracking. However, when dealing

with real scenes with changing illumination and confusing

backgrounds, the apparent color of the objects might

considerably vary over time, and in these circumstances, an

important challenge for any figure-ground segmentation

system, is the ability to accommodate color and appearance

changes (Fig. 1).
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In the literature, the techniques that cope with change in color

appearance can be divided in two groups. On the one side, there is

a group of approaches that search for color constancy (e.g. [3]);

but in practice, thesemethodsworkmostly in artificial and highly

constrained environments. On the other hand, there are the

techniques that generate a stochastic model of the color

distribution, and adapt this model over time. In this sense, in

[4], color is represented by a histogram that is adapted online, as

the weighted function of previous histograms and a predicted

histogram. Yang and Lu [5], parameterize object color by a

uniqueGaussian, themean and covariance ofwhich are estimated

using a linear combination of the parameters in previous

Gaussians. Raja and McKenna [6] approximate color with a

mixture ofGaussians, and dynamically update it using aweighted

sum of previous estimates with estimates based on new data.

The drawback in all these approaches is that they assume

that color varies slowly and that it can be predicted by a

dynamic model based in only one hypothesis. However, this

assumption does not suffice to cope with general scenes, where

the dynamics of the color distribution might follow an

unknown or unpredictable path.

The main contributions of this paper are summarized below.

They are the building blocks of a system, which does not

impose constraints on the illuminant color of the scene:
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Fig. 1. Abrupt change of illumination. Left: two consecutive frames from a sequence. Light conditions have changed abruptly (from natural to red illuminant). Center

and right: corresponding color distributions of the foreground (the can). F1 and F2 are the coordinates in a 2D colorspace.

Fig. 2. Flow diagram of the proposed algorithm. It is the input RGB image at

time t. IFISHERt represents the input image in the Fisher colorspace. ~St and St are

the set of color distributions of the foreground and background, before and after

the ‘concentration’ stage, respectively. Ct is the resulting contour at time t.
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† Fisher colorspace: instead of using the classical RGB, rgb,

XYZ or HSV colorspaces, we propose the use of a colorspace

efficient for the discrimination between foreground and

background classes. This colorspace will be the 2D

projection of the R, G and B components on the plane

obtained from a non-parametric linear discriminant

analysis (LDA) [7].

† Multihypotheses framework: the use of a particle filter

formulation to predict the color distribution in subsequent

iterations, offers robustness to abrupt and. unexpected

changes in the color appearance of the object. In previous

work [8], we have suggested a similar multihypotheses

framework to track objects in which color could be

approximated by a unimodal distribution, represented by a

histogram. In the present work, we deal with multicolored

objects, approximated by a mixture of Gaussians (MoG).

Note the difference between our work and all previous

tracking approaches using a particle filter formulation (e.g.

[2,9,10]). While in these approaches the multihypotheses

are formulated about the object position, in our method we

formulate the multihypotheses about the color distribution

of the object.

† Integration of color and deformable contours in a particle

filter framework: the color estimation is used to generate a

rough estimation about the object position and remove

noisy edges from the image. This simplifies the stage of

fitting a deformable contour to the object boundary, and

even with a standard snake formulation [11], non-rigid

objects can be accurately tracked in cluttered backgrounds

with abrupt changes of illumination. The fusion of the

multihypotheses color model and the deformable contour is

done in a final stage that we have introduced to the well-

known CONDENSATION algorithm [2].

The basic steps of the algorithm are depicted in the flow

diagram of Fig. 2, and in the following sections, a detailed

description of each one of the modules will be given. Fisher

colorspace is described in Section 2. In Section 3, the object
color model and initialization step are presented. The dynamic

model for generating multiple hypotheses of the (object and

background) color distributions is depicted in Section 4.

Section 5 deals with the global and local deformable model

fitting process. In Section 6, the complete tracking algorithm

and model adaptation is explained in detail, and results and

conclusions are presented in Sections 7 and 8, respectively.
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2. Fisher colorspace

The selection of the colorspace is an important initial issue

for any color-based figure-ground segmentation system. The

typical selection criterion is based on the invariance of the

color representation to illumination changes, and according to

this idea, color is usually represented by two components of the

rgb, HSV or xyz1 colorspaces. However, these representations

are not robust enough to cope with abrupt illumination

changes. In this paper, we propose a different criterion and

select a 2D colorspace that maximizes the separability of the

object and background classes.

Let x be a 3D vector with the color value of image pixels in

RGB space, which must be classified as foreground ðOÞ or

background ðBÞ. When we are dealing with multicolored

objects, the parameterization of color distributions in 3D

colorspace becomes very complex. To simplify, we reduce the

dimensionality to 2D by projecting the data on a plane

FZ ½f1;f2�2M3!2, that is, yZFx, where y are the linearly

transformed 2D coordinates used for classification. The most

popular way to find the best linear features is the parametric

version of the linear discriminant analysis method [12], where

training data is used to construct the within-class Sw and

between-class Sb scatter matrices, in the Nc-class problem

defined as

Sw Z
XNc

iZ1

PðCiÞE ðxjCi
KmiÞðxjCi

KmiÞ
T

� �
Z

XNc

iZ1

PðCiÞSi (1)
Sb Z
XNc

iZ1

PðCiÞE ðxKmoÞðxKmoÞ
T

� �

where PðCiÞ is the prior of the ith class, mi and Si are its

expected value vector and covariance matrix, mo is the overall

mean and xjCi
indicates that sample x belongs to Ci class.

A typical criterion for class separability is formulated by the

maximization of JZtrace ((FTSwF)K1(FTSbF)), and

searches for the separation of the class means in the

transformed Y-space (high Sb), while at the same time the

classes remain compact (small Sw). The classic LDA method

maximizes J by constructing the columns of F with the

eigenvectors of SK1
w Sb having the highest eigenvalues.

One of the limitations associated with this approach is that it

produces at most NcK1 feature projections, i.e. since Sb is

computed from only Nc class means, SK1
w Sb will have at most

NcK1 non-zero eigenvalues, and the maximum dimension of

the projected Y-space will be NcK1. This can be solved by the

non-parametric LDA [7], that computes Sb using local

information and the k nearest neighbors (KNN) rule. In the

2-class problem discussed here, this matrix (denoted Sb) is
1 When the colorspace is represented by lowercase letters, the sum of the

three color components has been normalized to one.
defined as

Sb Z
1

N

XNf

iZ1

wiðxijOKMk
bðxijOÞÞðxijOKMk

bðxijOÞÞ
T C

1

N

!
XNb

iZ1

wiðxijBKMk
f ðxijBÞÞðxijBKMk

f ðxijBÞÞ
T (2)

where Nf and Nb are the number of samples of O and B, NZ
NfCNb, Mk

j ðxiÞ is the mean of the k nearest neighbors in class

Cj to a point xi, and wi is a weighting function for

deemphasizing samples far from the classification boundary

(see [7]).

Given two sets fx1jO;.;xNf jO
g; fx1jB;.;xNbjB

g of RGB pixel

values used as training data, the optimum linear mapping is

obtained with the following steps:

† Calculate Sw with Eq. (1) and whiten the data with respect to

it. That is, transform x to zZLK1/2UTx, where L and U are

the eigenvalue and eigenvector matrices of Sw.

† Select k and (in the Z-space) compute Sb using Eq. (2).

† Select the two eigenvectors J1, J2 of Sb with the two

largest eigenvalues.

† The optimum linear mapping from the original RGB space

to the discriminant subspace (we call it Fisher colorspace)

is given by yZJTLK1/2UTx.

In Fig. 3, we how the concept of Fisher colorspace. In the

Section 7 it will be shown that we obtain better rates of class

classification using the Fisher colorspace than using other 2D

colorspaces.

For the rest of the paper we will represent the pixel values in

the Fisher colorspace with the 2D vector y.

3. Color model

After having selected the colorspace, the next step is to

choose a model for representing the color distribution of the

object and background. For a monochrome object, color

histograms have been demonstrated to be an effective

technique (e.g. [8]). However, when the object to be modeled

contains regions with different colors, the number of pixels

representing each color can be relatively low and a histogram

representation may not suffice. In this case, a better approach is

to use the MoG model, that expresses the conditional

probability for a pixel y belonging to a multicolored object O

as a sum of Mo Gaussian components:

pðyjOÞZ
PMo

jZ1 pðyjjÞPðjÞ. Similarly, the background color

will be represented by a mixture of Mb Gaussians.

Given the foreground ðOÞ and background ðBÞ classes, the a

posteriori probability that a pixel y belongs to object O is

computed using the Bayes rule

pðOjyÞZ
pðyjOÞPðOÞ

pðyjOÞPðOÞCpðyjBÞPðBÞ
(3)

where PðOÞ; PðBÞ represent the a priori probabilities of O and

B, respectively. These prior values are approximated to the



Fig. 3. Fisher Colorspace. (a) Training image. (b) Foreground. (c) Background. (d) Representation of image points in the RGB colorspace. (e) Hand-made

classification of image points in foreground ðOÞ and background ðBÞ classes. (f) Normalization of colorpoints, equivalent to a projection on the plane RCGCBZ1.

The projected classes are not properly separated. (g) The projection of colorpoints on the Fisher plane gives a better discrimination between the O and B classes.
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expected area ratios of the foreground and background classes

in the image (see Fig. 4).

As in the problem of selecting the number of bins in

histogram models, using MoG conceals the challenge of

choosing the number of Gaussian components that better adjust

the data. We initialize this, with the modified EM algorithm

proposed in [13], that is based on a minimum message length

criterion and iteratively fits and annihilates an initially large

number of components (introduced by the user).

The initial configurations of the MoG for O and B, after

learning, are parameterized by

G3 Z ½p3;m3;l3;q3� (4)

where 3Z fO;Bg, p3 contain the priors for each Gaussian

component, m3 the centroids, l3 the eigenvalues of the principal

directions and q3 the angles between the principal directions
with the horizontal. GZ fGO; GBg will be the state vector

representing the color model.
4. Dynamic color model

Let Y3;tK1Z ½y1;tK1;.;yN3;tK1�
T , be the vectors containing

the set of points (in Fisher colorspace coordinates) belonging to

the classes O and B, at time tK1. The third stage of the

tracking algorithm (see Section 6), consists of propagating the

components G3;tK1 of the state vector to ~G3;t, given a specific

dynamical model and the image at time t, denoted as Zt. Instead

of applying the dynamic model directly to G3;tK1, we apply it to

the distributionY3;tK1, to obtain the estimation ~Y3;t, that will be

used later to reestimate ~G3;t. With this aim we define the

following affine random dynamic model:

Y3;t ZA3Y3;tK1 Cv3



Fig. 4. Gaussian mixture components ofO (the can) and B. Left mage: solid dots and lines areO data points (in Fisher colorspace) and the variances of the Gaussian

components, respectively. Hollow dots and dashed lines areB data and Gaussians. Lower right image: pðOjyÞwhere brighter points correspond to more likely pixels.
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In the case of representing color distributions in a 2D

colorspace, matrix A3 and translation vector v3 are written as:

A3 Z
1Ca3;11 a3;12

a3;21 1Ca3;22

" #
v3 Z

v3;1

v3;2

� �
Variables a3,ij and v3,i are approximated by normal random

distributions, a3;ijwNð0;sa3;ij
Þ;v3;iwNðmv3;i

;sv3;i
Þ. The par-

ameters sa3;ij
and sv3;i

are learned a priori by a least-squares

procedure, from a training hand segmented sequence of the

object when still, under an illumination change. It is interesting

to point out that even if the testing sequences were not

available, the variances sa3;ij
and sv3;i

could be empirically set to

values sufficiently high in order to cope with abrupt changes of

illumination. In that case, however, the number of particles

should be increased, since they should sample a wider area of

the state space. With respect to the rest of parameters, mv3;i

accounts for the expected displacement between the class

distributions in tK1 and t, and is approximated by the

translation vector between the centroids of the sets Y3;tK1 and

Yt. Note that the vector YtZ ½YO;t;YB;t�
T representing the

color distribution of the whole image Zt is known, but the

subsets YO;t and YB;t are unknown.

Using the EM algorithm initialized on G3;tK1, a new mixture

of Gaussians ~G3;t, is fitted to each predicted distribution ~Y3;t,

and used to compute the a posteriori probability maps for the

foreground class, following Eq. (3). In Fig. 5 we show several

hypotheses (with the corresponding pðOjyÞ maps) used to

estimate the abrupt change of illumination that exists in the pair

of images of Fig. 5. Observe that some of the hypotheses are

able to provide a ‘good’ foreground/background

discrimination.
5. Global and local deformable model fitting

As color segmentation usually only gives a rough estimation

about the object location, we use a deformable model [10,14] to

fit its boundary and obtain more precise information about its
position. This process is highly simplified by using the data that

is estimated by the color model (Section 4) in order to

preprocess the contour image and to remove those noisy edges

that might disturb the deformable model fitting process. This

simplification allows us to obtain good tracking results in rigid

and non-rigid objects, even when using the simple well-known

snake algorithm [11]. During the boundary adjustment process,

first a global fit of an affine contour is performed, which deals

with object translation and orientation (rigid motion), followed

by local deformations that apply to non-rigid motions. The

following are some details of these processes:

Let the contour of the object be parameterized by a curve

r(s)Z[u(s), v(s)], s2[0,1], that moves through the image. In

the traditional snake formulation [11], the problem of snake

fitting can be viewed as a force balance equation

FintðrðsÞÞCFextðrðsÞÞZ 0 (5)

where FintðrðsÞÞZaðv2rðsÞ=vs2ÞCbðv4rðsÞ=vs4Þ are the internal

forces that control the bending and stretching of the snake (a

and b are the elasticity and rigidity parameters, respectively).

Fext(r(s)) are the external forces that pull the curve towards the

edge image features. In the literature, there exist several

definitions for this external function. In particular, we use the

gradient vector flow (GVM) external force proposed in [15],

because it has a larger capture range and better convergence

performance in boundary concavities than other methods.

Eq. (5) is solved by making the snake a function of both

space and time, i.e. r(s, t) (we will write rt) and iterating over

the following expression:

rtKrtK1

Dt
Za

v2rtK1

vs2
Cb

v4rtK1

vs4
CFextðrtK1Þ

When the solution stabilizes (rtK1Zrt), Eq. (5) is satisfied.

For the numerical implementation we approximate the

derivatives with finite differences, and discretize the curve

r(s, t) with NP points, so that the previous gradient descent



Fig. 5. Several hypotheses and their respective pðOjyÞ map, corresponding to the abrupt illumination transition presented in Fig. 1.
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method can be rewritten as

Rt Z ðIKDtQÞK1 RtK1 CDtFextðRtK1Þ
� �

(6)

where RZ ½ðu1;v1;1Þ;.;ðuNP
;vNP

;1Þ�T contains the homo-

geneous coordinates of the NP discretized points of the

snake, Q is a NP!NP pentadiagonal matrix including the a

and b parameters, and I is the NP-identity matrix.
Iterating over Eq. (6) the snake is locally fitted to the image

edges, governed only by its internal and external forces.

However, previous to local fitting stage we perform a global

deformation in order to find the suitable translation and

orientation of the snake. For this fitting, the following

additional constraint of affine deformation is introduced to

Eq. (6):



Fig. 6. Global and local fitting procedures: (a) Original image and contour from previous iteration. (b) Edge features image. The process of contour fitting in such an

image is quite difficult because of noisy edges. (c) Foreground a posteriori probability map obtained using the color module. (d) Refined edge image (foreground

detail). (e) Contour fitted after global deformations. (f) Contour fitted after local deformations.
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Rt ZRtK1HA ZRtK1

a11 a12 v1

a21 a22 v2

0 0 1

264
375 (7)

Combining Eqs. (6) and (7), we obtain the following

iterative procedure for the affine snake deformation:

(1) HAZ ðJTJÞK1JT ðRtK1CFextðRtK1ÞÞ where JZRtK1KD
tSRtK1

(2) Normalize HA using the component HAð3;3Þ Set HAð3;1Þ

ZHAð3;2ÞZ0

(3) RtZRtK1HA

Steps 1–3 are iterated until the convergence of Rt and RtK1.

In Fig. 6, we show the results of the global and local fitting in a

non-rigid movement.
6. Tracking algorithm

In this Section, we will use the tools described

previously to explain in detail the whole method for

tracking rigid and non-rigid objects in a cluttered

environment and under changing illumination. The basic

steps of the tracking algorithm follow the particle

filter procedure, but we introduce a modification to the

classic CONDENSATION algorithm (analogous to the

ICONDENSATION technique [2]), and in order to ‘direct’

the search for the next iteration we add a final stage that

concentrates the future hypotheses on those areas of the

state-space containing more information about pðOjyÞ

(see Fig. 7). Moreover, in this final stage we fuse object

color and shape information to obtain precise results

about object pose. Next, we present the steps of our

algorithm:
(1) Probability density function of the color point set: at

time t, a set of N samples S
ðnÞ
tK1 (nZ1, ., N) with the

same structure as G (Eq. (4)), is available from previous

iteration. This set, parameterizes N color distributions.

Each sample has an associated weight pðnÞ
tK1 and a

classification Y
ðnÞ
tK1Z ½Y

ðnÞ
O;tK1;Y

ðnÞ
B;tK1�

T of the image

colorpoints in the foreground and background

sets. The whole set represents an approximation to pð

GtK1jZtK1Þ where ZtK1Z fZ0;.;ZtK1g is the history of

the images. The algorithm aims to construct a new

sample set fSðnÞ
t ;pðnÞ

t g to estimate pðGtjZtÞ.

(2) Sampling from pðGtK1jZtK1Þ: A sampling with replace-

ment is performed N times on the set fS
ðnÞ
tK1g, where

each element has probability pðnÞ
tK1 of being chosen. This

will give us a set fS0ðnÞ
tK1g.

(3) Probabilistic propagation of the samples: each sample

S
0ðnÞ
tK1 is propagated to ~S

ðnÞ
t , using the dynamic model

explained in Section 4. Note that, as it was pointed out,

the dynamic model is not directly applied to the MoG’s

parameters of the color distributions, but rather, to the

associated color distribution points. Subsequently, the

predicted color distribution points are used to compute

the corresponding MoG’s parameters.

(4) Measure and weight: each element ~S
ðnÞ
t , has to be

weighted according to some measured features. Based

on the propagated MoG samples ~S
ðnÞ
t we compute pðO

jyÞ for the whole image using the Bayes rule (Eq. (3)).

With this probability map, we assign the following

weight to each sample:

pðnÞ
t Z

P
y2WpðOjyÞ

Nw

K

P
y;WpðOjyÞ

Nw

where W is the interest region around the previous object

position (where we predict the object will be), and Nw, �Nw



Fig. 7. Left: steps of the classic CONDENSATION algorithm (Figure adapted from [10]). Right: in our implementation, we have included a final stage called ‘sample

concentration’.
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are the number of image pixels in and out of this interest

region, respectively.

(5) Sample concentration: in the last stage of our algorithm,

we concentrate the samples around the local maxima, so

that in the subsequent iteration the hypotheses are

formulated around these more likely regions of the state

space. In our case, this is absolutely necessary because the

state vector G has high dimensionality, and if we let the

samples move freely, uniquely governed by the dynamic

model, the number of hypotheses needed to find the

samples representing a correct color configuration, is

extremely high.

The concentration is performed by taking the sample with

maximum weight, p�
t Zmaxfp1

t ;.;pðnÞ
t g and based on the a

posteriori map generated by this sample, the object of interest

is accurately segmented from the image using the deformable
Fig. 8. Classification results of image pixels into classes O and B using different c

experiments, and the vertical axis represents the percentage of pixels correctly classifi

best result obtained when we pick two of the three components of these colorspace
model fitting procedure explained in Section 5. The various

substeps of this stage, can be summarized as follows:

(a) Using morphologic operations on the probability map

image, a coarse approximation of object shape is obtained

that allows us to eliminate noisy edges from the original

image (Fig. 6b,c,d).

(b) The contour of the object in the previous iteration, is used

as initialization of an affine snake, that is adjusted (only by

affine deformations) to the image of refined edges

(Fig. 6e) in order to solve the global deformation. Next,

to cope with non-rigid deformations the process is

repeated with a non-affine snake (Fig. 6f).

(c) Once the boundary of the object has been accurately

detected, the color estimates are refined. Inner image

pixels are separated from outer pixels and the vectorY�
t Z

Y�
O;t;Y

�
B;t

� �T
is generated. Mixtures of Gaussians are fitted
olorspaces. The horizontal axis represents the image index for each one of the

ed. Note that the results for the HSV, rgb and xyz colorspaces, correspond to the

s.
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to these color distributions (using the EM algorithm),

giving a state vector S�
t , around which samples ~S

ðnÞ
t

n o
are

‘concentrated’ with the equation SðnÞ
t Z ð1KaÞ ~S

ðnÞ
t CaS�

t ,

where the parameter a governs the level of concentration.

Similarly, weights pet ðnÞ
n o

and distributions ~Y
ðnÞ
t

n o
associated to these samples, are concentrated around p�

t

and Y�
t .
7. Experimental results

We initially compare the class discrimination power of

the Fisher colorspace to that of other colorspaces (two

components of the rgb, HSV or xyz). To quantify the notion

of class separability, a constant number of Gaussians are

fitted to foreground and background distributions of hand

segmented images, for each one of the colorspaces. Next,

according to Eq. (3) we segment the same images, assigning

each pixel y to the class with maximal pðOjyÞ The hand

segmented image is used as ground truth to evaluate the

rate of correctly classified points. We have performed this

test on three different video sequences, undergoing a change

of illumination. In Fig. 8, we plot the results of these

experiments, where the vertical axis represents the percen-

tage of pixels well classified. Taking into account the mean

of all the sequences, the best results are obtained with the

Fisher colorspace with a 68.1% of pixels correctly

classified, followed by the HV components of HSV

colorspace with a 67.1% rate. Although the difference is

not significant, the main advantage of the Fisher colorspace

is that it directly provides the best linear transformation of

the data. If we used some other color space (rgb, HSV or

xyz), we would not know a priori which combination of 2D

coordinates are the best for a specific problem of fore/back-

ground segmentation. In Table 1, we show the results of the

complete experiment.

Next, two different experimental results are presented in

order to illustrate the robustness of our system to several

changing conditions of the environment. Since the algorithm

has been implemented in an interpretative language

(MATLAB), we cannot discuss time performance issues,
Table 1

Details of the results presented in Fig. 8

Colorspace Seq. 1 Seq. 2

m s m s

Fisher 0.770 0.033 0.630 0.035

HV 0.748 0.025 0.609 0.035

HS 0.706 0.033 0.587 0.017

Rg 0.709 0.031 0.589 0.018

Xy 0.701 0.030 0.587 0.019

Rb 0.705 0.033 0.589 0.017

Gb 0.707 0.032 0.588 0.019

Yz 0.694 0.032 0.583 0.020

Xz 0.694 0.029 0.582 0.020

Sv 0.628 0.045 0.571 0.022

Each column represents the average over all images in a single experiment, and the la

pixels correctly classified (mean and variance), using a particular colorspace.
instead we focus on the effectiveness of the method. Time

performance depends linearly on the number of hypotheses

used to estimate the color distributions.

In the first experiment, we track the boundary of a

bending book (non-rigid motion) in a video sequence where

the lighting conditions change smoothly from natural

lighting to yellow lighting. In this case, as the displacement

of the color distribution in color space was relatively small,

we have used ‘only’ 5 hypotheses. Fig. 9 shows some

frames of the sequence with the obtained results, the

corresponding edge images and the a posteriori probability

maps of the foreground (the book). The sequence of edge

images contains a lot of noisy boundaries that pose

difficulties for the tracking process and for the adjustment

of a deformable model to the edges of the object. However,

the integration with color information gives a first estimate

of the object position, that allows us to eliminate many

false edges and reduce the complexity of the deformable

model fitting procedure.

Whereas in the first experiment, we demonstrate the need

for integration of the different vision modules, in the second

experiment, we demonstrate the need for a multihypotheses

model to face abrupt changes in the illuminant. For this

experiment, we have computed the prediction of the color

distribution using 20.hypotheses. In Fig. 10, we compare the

results obtained using a smooth color dynamic model and our

multihypotheses model, for a rigid object moving in an

environment in which the lighting changes abruptly. The

MoG for frame t predicted by the smooth model, is based on

a weighting function GtZ ð1KaÞGtK2CaGtK1, where G is

the parameterization of the color distribution and a is the

mixing factor. Results prove the inability of the smooth color

model to predict the change (the a posteriori probability map

of the foreground region does not discriminate between fore

and background, Fig. 10e) whereas a good result is obtained

with the method proposed in the paper (where simple

morphologic operations over the a posteriori probability map,

allow obtain a good estimation of the object position,

Fig. 10f). In Fig. 11, we show similar results for the contour

tracking of a non-rigid object under an abrupt change of

illumination.
Seq. 3 Mean

m s m s

0.602 0.016 0.681 0.082

0.624 0.016 0.671 0.071

0.554 0.012 0.628 0.072

0.545 0.014 0.627 0.076

0.557 0.013 0.627 0.069

0.546 0.009 0.626 0.074

0.543 0.009 0.626 0.076

0.557 0.013 0.622 0.067

0.557 0.013 0.622 0.060

0.561 0.013 0.592 0.045

st column is the mean of the three experiments. Every value, is the percentage of



Fig. 10. Performance comparison of a smooth prediction color dynamic model and the multihypotheses one, for an abrupt change in illumination and rigid object

motion. (a), (b), (c) Frames tK2, tK1 and t are three consecutive images of the sequence. Note the abrupt change in illuminant between frames tK1 and t. (d)

Ellipses correspond to the foreground and background MoG predicted with a smooth color dynamic model. The real distributions of points in colorspace are also

shown. (e) pðOjyÞ map obtained with the smooth model. There is no good discrimination between fore and background. (f) MoG of the best sample using the

multihypotheses color dynamic model. (g) pðOjyÞ map obtained with this color model. There is good fore/background discrimination. (h) Tracking results obtained

after using pðOjyÞ to eliminate false edges from image and fitting a deformable contour.

Fig. 9. Tracking results of a non-rigid object in a sequence with smooth lighting changes. First row: tracking results. The tracked contour is superimposed on the

original images. Second row: edge map. The task of fitting a deformable model to the contour of the object is extremely difficult because of the presence of noisy

edges. Third row: foreground a posteriori map obtained using the proposed multihypotheses color model. This map provides a rough estimate of the object position

and removes most of the noisy edges, so that the deformable contour fitting procedure is highly simplified.
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Fig. 11. Performance comparison of a smooth prediction color the multihypotheses one, for an abrupt change in illumination motion. See Fig. 10 for interpretation of

results.

F. Moreno-Noguer et al. / Image and Vision Computing 25 (2007) 285–296 295
8. Conclusions

Most of the methods that adapt color are based on the

assumption of smooth change on the color model, so that the

predicted color of the target is computed based on a weighting

function of previous color distributions. In this paper, we have

presented a method where this constraint is no longer needed,

and the dynamic model is based on the formulation of multiple

hypotheses about the next state of the target color distribution.

The best of these hypotheses is used to obtain a rough estimate

of the object position, and eliminate false and noisy edges, so

that the task of fitting a deformable contour to the object

boundary is considerably simplified. Reciprocally, this bound-

ary is used to refine the color estimation. Moreover, we propose

the use of the Fisher colorspace, that has a better object/back-

ground discrimination performance than typical colorspaces.

The algorithm has been used to obtain a precise figure-ground

segmentation in rigid and non-rigid objects, moving in an

environment with abrupt light changes (where smooth dynamic

color models fail). In future work, we plan to integrate the

parameters of the Fisher plane into the particle filter

formulation, and also adapt the Fisher plane to abrupt changes

of illumination. Furthermore, we plan to continue this work by

integrating other cues such as texture and optical flow

techniques to improve the robustness of the method and
apply our multihypotheses framework into tracking of objects

in 3D.
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