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Abstract

Understanding and modifying the effects of arbitrary il-
lumination on human faces in a realistic manner is a chal-
lenging problem both for face synthesis and recognition.
Recent research demonstrates that the set of images of a
convex Lambertian object obtained under a wide variety
of lighting conditions can be approximated accurately by a
low-dimensional linear subspace using spherical harmon-
ics representation. Morphable models are statistical ensem-
bles of facial properties such as shape and texture. In this
paper, we integrate spherical harmonics into the morphable
model framework, by proposing a 3D Spherical Harmonic
Basis Morphable Model(SHBMM) and demonstrate that
any face under arbitrary unknown lighting can be simply
represented by three low-dimensional vectors: shape pa-
rameters, spherical harmonic basis parameters and illumi-
nation coefficients. We show that, with our SHBMM, given
one single image under arbitrary unknown lighting, we can
remove the illumination effects from the image (face “de-
lighting”’) and synthesize new images under different illu-
mination conditions (face “re-lighting”). Furthermore, we
demonstrate that cast shadows can be detected and subse-
quently removed by using the image error between the in-
put image and the corresponding rendered image. We also
propose two illumination invariant face recognition meth-
ods based on the recovered SHBMM parameters and the
de-lit images respectively. Experimental results show that
using only a single image of a face under unknown lighting,
we can achieve high recognition rates and generate photo-
realistic images of the face under a wide range of illumina-
tion conditions, including multiple sources of illumination.

1. Introduction

Understanding arbitrary illumination effects on human
faces has been a fascinating yet challenging problem both
for face synthesis and for recognition. Great progress has
been made in generating photo-realistic images of objects

including human faces [7][8][10][22] and face recognition
under different lighting conditions [1][17][25][11][13][20].
However, when only one single image under unknown light-
ing is available, both face synthesis and recognition become
particularly challenging. In this paper, we propose a new
3D spherical harmonic morphable model (SHBMM). We
demonstrate that with our model, we can generate images
under new lighting conditions with remarkable quality even
if only one single image under unknown lighting is avail-
able. We also provide two illumination invariant face recog-
nition methods which achieve high recognition rates for im-
ages under a wide range of illumination conditions. !
Previous research suggested that illumination variability
in face images is low-dimensional e.g. [12][3][1][18]. The
illumination cone method [11] requires at least three im-
ages per subject to build the illumination cone. Recently,
using spherical harmonics, it has been shown [2][16] that
the set of images of a convex Lambertian object obtained
under a wide variety of lighting conditions can be approxi-
mated accurately by a 9 dimensional linear subspace. This
led to face recognition with excellent results [2] using ba-
sis images that span the illumination space. These images
can be rendered from a 3D scan of the face or can be ap-
proximated by acquiring a number of images of the same
subject under different illuminations [15][13]. This require-
ment for a number of training images and/or 3D scans of
the subjects in the database necessitates specialized equip-
ment and procedures for the capture of the training set. In
a single image based approach [23] for face recognition un-
der arbitrary illumination conditions, a statistical model of
spherical harmonics is based on a bootstrap collection of
2D basis images. To recover a new set of basis images,
the input image should be accurately aligned with the boot-
strap images. Furthermore, this method[23] cannot perform
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recognition for images obtained under different viewpoints
efficiently. Zhou et al. [26] extend photometric stereo al-
gorithms to handle the appearance of the class of human
faces and propose a method of recovering albedos and sur-
face normals from one image under unknown illumination
conditions. This method assumes that the human face is lit
by a distant illumination, thus, it is bound to images taken
under a single directional illuminant.

Inverse rendering methods [14][7][8] suggest that one
can generate photo-realistic renderings of objects under new
lighting conditions by capturing the lighting environment
and recovering surface reflectance properties, requiring a
number of images to model the environment map and face
reflectance. In the Quotient image method[21], the set of
images generated by varying lighting conditions on a col-
lection of Lambertian objects (same shape, different tex-
ture) can be characterized using images of a prototype ob-
ject and a illumination invariant “signature” image per ob-
ject of the class. In our work, instead of assuming that all
faces have the same shape, we use a set of shape parame-
ters to represent shape information for each face and we use
the spherical harmonic basis which has been proven to be
illumination invariant[2][15] as our “signature” basis. Sim-
ilar to our work in [22], spherical harmonics approximate
the radiance environment map for any given image. The
lighting conditions of one person’s face can be modified so
that it matches the lighting conditions of a different person’s
face image by assuming two faces have similar skin albedos
and using a generic face model. In this work, given an im-
age of a face, we explicitly recover the shape information
and estimate the spherical harmonic basis of the face (con-
taining the albedo information of that face). Thus the input
image and target image can have different skin albedos and
poses. Another benefit of our model is that by detecting the
shadow errors from the image difference between the in-
put image and the rendered image, we can remove the cast
shadows from the input image and add cast shadows to the
re-lit image to generate more photo-realistic images.

In 3D face Morphable Models [5], each face can be rep-
resented by linear combinations of a set of 3D face exem-
plars. Fitting the Morphable model to the input image was
used succefully in face recognition [6] and generated im-
pressive face synthesis results [5][4]. In this work, we in-
tegrate a more general illumination representation into the
Morphable Model approach. The method in [6] is bound to
images taken under directional illuminants and requires the
knowledge of light direction which is difficult to know in
most cases. In our method, the illumination variations are
captured by the spherical harmonic basis, thus, there is no
illumination limitation on the input images. Another impor-
tant difference lies in the process of face synthesis. In the
face synthesis applications [5][4] of the Morphable Model,
new faces were synthesized by setting different shape and

texture parameters, i.e. a new face was represented by a lin-
ear combination of a set of 3D face exemplars resulting to
the possible loss of detail for the specific face.

The major contribution of this paper is a 3D Spherical
Harmonic Basis Morphable Model, an integration of spher-
ical harmonics into the morphable model framework. We
demonstrate that any face under arbitrary illumination con-
ditions can be represented simply by three low dimensional
vectors: shape parameters, spherical harmonic basis param-
eters and illumination coefficients. We call these three vec-
tors the SHBMM parameters. We show that, given one sin-
gle image under unknown lighting, we can recover the set of
SHBMM parameters, thus removing the illumination from
the image (face “de-lighting”) and generate images under
new illumination conditions (face “re-lighting”). In our
method, we combine our Spherical Harmonic Basis Mor-
phable Model and a concept similar to Ratio images [21] to
generate photo-realistic face images. Given an input image
for one subject and a target image of another subject, we
relight the input image according to the illumination con-
dition in the target images. Since our model is constructed
in 3D, the input and target images can be taken under dif-
ferent poses. Furthermore, by detecting the shadow errors
from the image difference between the input image and the
rendered image, we can remove or add cast shadows. We
also provide two illumination invariant recognition meth-
ods based on the recovered SHBMM parameters and the
de-lit images respectively. Experimental results show that
we achieve high recognition rates for images under a wide
range of illumination conditions; including multiple sources
of illumination which are not easily handled by previous
methods.

2. Spherical Harmonic Basis Morphable
Model

Here, we will explain the spherical harmonic illumina-
tion representation [2][16] and introduce the Spherical Har-
monic Basis Morphable Model.

2.1. Spherical Harmonic Illumination Representa-
tion

Spherical harmonics are a set of functions that form an
orthonormal basis for the set of all square-integrable func-
tions defined on the unit sphere. They are the sphere ana-
log of the Fourier basis on the line or circles. Let p; de-
note the ith object point. Let A denote the vector of the
object’s albedos, that is, A; is the albedo of p;. Similarly,
let nz, ny,n. denote three vectors of the same length that
contain the z,y and z components of the surface normals.
Further, let n,2 denote a vector such that ng2 ; = ng ;ng ;.
We define ny2,n,2, Ny, Ny, Nay similarly. We use A x v
to denote the component-wise product of A with any vector



v. Using this notation, the first nine harmonic images of the

objects are:
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where the superscripts e and o denote the even and the odd
components of the harmonics respectively. With this set of
basis images, any image under arbitrary illumination condi-
tions can be approximately represented by the linear com-
bination of the basis as Eq. 2.

o _ 5 e _ 3
52 = 3/ 1ox A ¥ Ny, b3 =3

I~bl 2

Eq. 2 states that any image I under arbitrary illumination
conditions can be represented by the weighted combination
of the basis images.

2.2. Morphing the Spherical Harmonic Basis

Face morphable models [5] were successfully applied
in both face recognition and face synthesis applications
[6][24] where a face was represented by a shape vector
and texture vector. Inspired by the idea of morphing, we
propose a new 3D Spherical Harmonic Basis Morphable
Model (SHBMM) which integrates Morphable Models and
the Spherical Harmonic illumination representation. Thus
any face under arbitrary illumination conditions can be rep-
resented simply by three low dimensional vectors. This
low dimensional representation greatly facilitates both face
recognition and synthesis especially when only one input
image under unknown lighting is provided.

A Spherical Harmonic Basis Morphable Model is a 3D
model of faces with separate shape and spherical harmonic
basis models that are learnt from a set of exemplar faces.
Morphing between faces requires complete sets of corre-
spondences between the faces. Similarly to [5], when build-
ing such a model, we transform the shape and spherical har-
monic basis spaces into vector spaces. We used a collection
of 3D faces supplied by USF [5] to construct our model.
For each 3D face, we computed a set of 9 spherical har-
monic bases. We present a face of with a shape-vector S' =
(X1,Y1,21, X0, ......; Yn, Z,)T € 13" and a Spherical Har-
monic basis vector B = (Bi,....BY, ..., B. ... B))B ¢
R, where n is the voxel numbers of the face. The Spher-
ical Harmonic basis morphable model can be constructed
using a data set of m exemplar faces; exemplar ¢ is rep-
resented by the shape-vector .S; and SHB-vector B;. New
shapes s and spherical harmonic bases b can be generated

by convex combinations of the shapes and textures of the m
exemplar faces as Eq. 3 shows:

s=35+ Sa;b=b+ B (3)

Combining Eq. 2 and 3, we see that, any face under ar-
bitrary illumination conditions can be represented by three
low dimensional vectors (SHBMM parameters): {c, 3, ¢}
with « representing the geometry parameters, 3 the spher-
ical harmonic basis parameters and ¢ representing the illu-
mination coefficients.

3. Fitting SHBMM to Images under Arbitrary
Unknown Lighting

Here, we will explain the recovery of those parameters
from a single image under arbitrary unknown lighting.

3.1. Shape Parameters Recovery

As shown in [6], a realistic face shape can be generated
by:
Soq = fPR(§ + Sa + tgd) + tog 4)

where f is a scale parameter, P an orthographic projection
matrix and R a rotation matrix with ¢, v and 6 the three
rotation angles for the three axes. t34 and to4 are trans-
lation vectors in 3D and 2D respectively. Eq. 4 relates
the vector of 2D image coordinates so4 and the shape pa-
rameters «v. The shape parameters of the Morphable Model
can be estimated from single or multiple input images au-
tomatically as described in [6][9]. In our implementation,
we do not focus on automatic recovery of shape parameters
and so we choose to use a simple semi-automatical feature
correspondence selection method [23]. This simple feature
based method performed sufficiently well to demonstrate
the strength of our approach for face synthesis and recog-
nition.

Given an input image of a face, we first initialize all the
parameters in Eq. 4: the shape parameter « is set to 0 and
pose parameters f,p,v,0 and toq4 are initialized manually.
For the set of hand-picked feature points in the SHBMM,
we find the correspondence ;"7 in the training image semi-
automatically. The set of feature points contains major and
secondary features, see Figure 1. After the correspondences
of major features are manually set, the secondary feature
correspondences are updated automatically. Thus, the pose
parameters f, ¢, v and 6 can be recovered by minimizing

the error between s;mg and the model feature points:

argming g .0,t,157" — (fPR(55 +Spa+tza) +t2q) ||?
where 57 and S is the corresponding shape information of
the feature points in the SHBMM in Equation 3.

The shape error of the feature points, 5sfcd, is defined as

the difference between sicmg and the new shape information



Figure 1. Fitting SHBMM to images: In each row, the first image is the input image followed by initial fitting and recovered spherical
harmonic basis. The last image is the rendered image using the recovered parameters. In the first row, red points are hand-picked major
features, green points are the corresponding features and the points lying in the white line are secondary features.

of feature points in the model that was rendered by recov-
ered parameters f, ¢, v and 6. Thus, the vector of shape
parameters « can be updated by solving a linear system of
equations:

5s3* = fPRSc (5)

Please refer to [6][23] for the details of forward and inverse
face shape rendering and shape parameters recovery.

3.2. Estimating Spherical Harmonic Basis Param-
eters and Illumination Coefficients

According to Eq. 2 and 3, a realistic face image can be
generated by:

I=(b+ BB 6)

where b+ B3 is the spherical harmonic basis component of
the SHBMM and / is the vector of illumination coefficients.
Given an input image I;;,,; of a face, the spherical har-
monic basis parameters § and the illumination coefficients
¢ can be estimated by minimizing the difference between
the input image and the rendered image from SHBMM:

ming’gH(B—i—Bﬂ)Z - Iinput||2 (7

We solve Eq. 7 iteratively as follows:

1) Step O: initialize the spherical harmonic basis param-
eter 3 as 0 and define by = b + BBy = b. Set step index
1=1.

2) For each step i, estimate the illumination coefficients
£; by solving a linear equation: b;_1¢; = Ijnpus.

3) The image error §I; of step 4 is the difference between
input image I;,,;,,,+ and the rendered image I; in step ¢ where
I; = b;_14;. The spherical harmonic basis parameters can
be updated: 5; = B;_1 + 68 where 6 is computed by
solving the linear equation: 1; = BJSY;

4) Update the new spherical harmonic basis b; = b+ Bf3;
and increase step index ¢ by 1.

5) Perform steps 2) to 4) iteratively until ||§7]| < & or
106]] < &3 where £ and {3 are pre-selected constants.

The core of the above described process is the minimiza-
tion of the image error as shown in Eq. 7 where two vari-
ables (3, ¢ need to be recovered iteratively. Thus, there are
two methods to start the iteration: initialize § as 0 and com-
pute ¢ afterwards as we described above, or start with a
random ¢ to achieve the global minimum. We chose the
first method since our experiments on synthetic data showed
that, the illumination coefficients ¢ computed by using the
mean spherical harmonic basis b were close to the actual
values, which made the whole recovery fast and accurate.
Another important point is that, the spherical harmonic ba-
sis cannot capture specularities and cast shadows. Thus,
for better recovery results, we employed two thresholds to
avoid using the image errors caused by specularities and
cast shadows. Figure 1 shows the fitting process and results.

4. SHBMM for Synthesis and Recognition

In this section, we will demonstrate how to apply our
Spherical Harmonic Basis Morphable Model to face synthe-
sis and recognition. Section 4.1 will explain how to com-
bine our SHBMM and Ratio image technique for photo-
realistic face synthesis. In Section 4.2, we will propose two
face recognition methods based on the recovered SHBMM
parameters and de-lit images respectively.

4.1. Face Synthesis

The face synthesis problem we will discuss can be stated
as following: given one single image under unknown light-
ing, can we remove the effects of illumination from the im-
age (face “de-lighting”) and generate images of the object



consistent with the illumination conditions of the target im-
ages(face “re-lighting”)? The input image and target im-
ages can be acquired under different unknown lighting con-
ditions and poses. In the following, I represents the input
image, I; represents a target image, I represents the de-lit
image from I;,,; and I, represents the re-lit image.

In the previous section, we demonstrated how to recover
the set of SHBMM parameters {«s, 35, s} from an input
face I,. Inversely, we can render a face I ; using the recov-
ered parameters to approximate [: [ ; = (b+Bfs){,. Thus,
the face texture (de-lit face) can be directly computed from
the estimated spherical harmonic basis according to Eq. 1.
Hence, face re-lighting can be performed by setting differ-
ent values to the illumination parameters ¢ similar to [2].
However, in this method, a face was represented by a linear
combination of a set of 3D face exemplars which results to
possible loss of detail for the specific face. Alternatively,
ignoring cast shadows and specularities, we notice that:

I, Hm) Ml  Hm)Al I ®
. N A

where H (n){ is the spherical harmonic basis, n; and n, are
the actual and estimated surface normals and \; and )\, are
the actual and estimated face textures.

Eq. 8 states that the intensity ratio of the input image to
the de-lit image should be approximately equal to that of the
rendered face and the corresponding face texture (albedo).
The face texture (albedo) of the rendered face can be easily
computed from Eq. 1 as: A = v/47by.

Rewriting Eq. 8, an input image can be de-lit as:

I, x \/4mbh
I, = Ls X V70 )
(b+ BBs)Ls
Given the two images I, I; with recovered parameters
Qs, Bs, s and oy, By, £y respectively, we have:

I, (b+ BBs)ts
s 1 PSS 10
I, = Vanby, (10

Iq Vanb,
Combining Equation 10 and 11, the re-lit image can be

computed:

b+ BB % 1,
b= BAL (12

4.1.1 Cast Shadows

In the above described face de-lighting and re-lighting
steps, we initially ignored cast shadows and specularities.
Previous work [2] has shown that a human face can be ap-
proximately treated as a Lambertian surface. However, if

Figure 2. The images in the left column are input images and those
in the middle are the error images where the cast shadow errors
are significant thus easy to be removed. The right column shows
the images after shadow removal. In error images, green and red
represent negative and positive errors respectively.

Figure 3. The images in the first row are the input images under
different illumination conditions. Second row shows the corre-
sponding de-lit images. The rightmost column shows a failure ex-
ample where the input image is saturated.

the input image has any cast shadows, the de-lit and re-lit
images will be unrealistic, see Figure 4. The image differ-
ence (image error I) between the input image I;y,p,: and
the re-rendered image by the SHBMM provides a simple
solution to the cast shadow problem.

According to Eq. 7, by mapping the input image to
our SHBMM, an error image F can be computed: £ =
I, — (b + Bps){,. As described in Section 3.2, to achieve
better parameter recovery, the errors caused by cast shad-
ows were filtered out and thus not being minimized. Hence,
such errors should contribute significantly in the error im-
age F and could be easily identified and removed. As
shown in Figure 2, our experiments verify this hypothesis.
With E,; representing the error caused by cast shadows,
the input face I can be de-lit as:

(Is - Ecast) X \/EbOO
(b+ BBs)Ls

Iq = (13)



Target Images [::)

Input Images

Figure 5. Face re-lighting results: the images in the first row are the target images and those in the first column are input images. Images
with remarkable quality are synthesized even if only one input image is available.

The error image is computed in 3D space, thus in the re-
lighting step, the shadow errors will be added to the appro-
priate voxels. By assuming human faces have similar cast
shadows under the same illumination conditions, we can re-
lighting a face by:

(l_) + Bﬂs)gt X (IS — Egast) t
(E—FBﬂs)es + F (14)

I, =

cast
where E3 ., E!, ., represent the shadow errors of face
I, I, respectively,

The third column of Figure 5 exhibits an example of Eq.
14 where the cast shadows in the target image are added to
the re-lit images.

Given an input image, a set of SHBMM parameters
{a, 8, £} can be recovered and a de-lit image can be com-
puted. Based on this, two illumination invariant methods for
face recognition from a single training image are proposed
in the following section.

4.2. Face Recognition

Recognition based on SHBMM parameters: For each
image [; in the training set and a testing image I;, we
recover SHBMM parameters {«;, 8;,4;} and {ay, B, 44}
Since the identity of a face is represented by {«, 5}, we
recognize the face of subject ¢ whose recovered parame-
ters {cv;, 3; } are the closest to {a, 8¢ }. In this method, the
training image and the testing image can be acquired un-
der different arbitrary illumination conditions and poses. In

our implementation, the shape recovery was performed in a
semi-automatic way, thus for images of one face under the
same pose, the shape parameters recovered were almost the
same. To avoid using this subject identity information cap-
tured from human interaction and to examine our recogni-
tion method unbiasedly, we performed experiments by just
using the spherical harmonic basis parameters 3. In a com-
plete application, shape would be recovered automatically
[6][9], so both shape and texture parameters would be used
for recognition.

Recognition based on de-lit images: For each image I;
in the training set and a testing image [;, we compute de-
lit images I and I. We recognize the face whose de-lit
image is closest to that of the testing image. In this method,
images should be aligned and taken under same view-point.

5. Experiments and Results

We used the CMU-PIE data set [19] which provides
images of both pose and illumination variations for face
synthesis and recognition experiments. The CMU-PIE
database contains 68 individuals, none of which is also in
the USF set used to compute the Spherical Harmonic Basis
Morphable Model.

5.1. Face Synthesis Experiments
The results of the first face synthesis experiment are

shown in Fig. 3. where the four images in the first row are
the input images under different unknown illuminations and



Frontal Side Profile
Frontal  Side  Profile | Frontal Side  Profile | Frontal Side Profile
based on SHB parameters | 96.5% 94.58% 78.75% | 93.91% 96.75% 78.58% |81.83% 81.5% 90.58%
based on De-lit image | 99.25% - - - 99.08% - - - 98.75%

Table 1. Recognition results of our methods: the first row reports the recognition results based on the Spherical Harmonic Basis parameters

[ and the second row reports the results of using de-lit images.

Figure 4. The first two images in the top row are the input images
to be de-lit and re-lit as the illumination condition of the third im-
age in the top row (frontal lighting). The left two columns are de-
lit images and the right two columns are re-lit images. The images
shown in the middle row are computed without any cast shadows
processing while the images shown in the last row are computed
with cast shadows processing.

the images in the second row shows the corresponding de-lit
images. We found that the de-lit images we computed ex-
hibit much greater invariance to illumination effects. Quan-
titatively, for one subject, we computed the de-lit images
of 40 images under different illumination conditions. The
variance of the 40 de-lit images was 6.34 intensity levels per
pixel while the variance of the original images was 24.55. In
the rightmost column of the Fig. 3., we show a de-lighting
example where the input image is taken under extreme illu-
mination condition and part of the face is saturated.

Fig. 4 shows examples of face de-lighting and re-lighting
when the input images have cast shadows. In the first row,
the first two images are input images to be de-lit and re-
lit while the third image in the first row is the target image
of re-lighting (used as groundtruth). By removing the cast
shadow E.,s:, we generate more photo-realistic images.

Fig. 5 shows a series of face re-lighting experiments
where the input images in the first column are re-lit “driven”
by the target images in the first row. Images with remark-
able quality can be synthesized even if only one single input
image under arbitrary unknown lighting is available (Please
refer to the accompanying video for higher resolution im-

Target Images |:>

Input Image

Figure 6. Comparison of re-lit images from the same input image
“driven” by target images of different subjects under similar illu-
mination conditions. The illumination information is preserved to
a large extent, across different subjects.

ages). Fig. 6 shows re-lit images of the same input im-
age“driven” by target images of different subjects under
similar illumination conditions. We see that those re-lit im-
ages are rather similar given that the target images only have
approximately same lighting condition. This suggests that
our method extracts illumination information consistently
across different subjects.

5.2. Recognition Experiments

In our face recognition experiments, we used an image
set of 3600 images which contains 30 subjects, 3 poses for
each subject and 40 different illuminations for each pose. In
the CMU-PIE database [19], for each subject, there are 22
images under single directional illuminant with an ambient
light. To study the performance of our method on images
taken under multiple directional illumination sources, we
synthesized images by combining face images under differ-
ent illumination conditions. For each subject, we randomly
selected 2-4 images from the training data set and combined
them together with random weights to simulate face images
under multiple directional illumination sources(18 images
per subject). Thus, for each subject, we have a total 40 im-
ages under different illuminations per pose. We didn’t do
the experiments on all 68 subjects in CMU-PIE data set due
to time limitations yet the experimental results on our data
set demonstrate the performance of our recognition meth-
ods sufficiently well.

Recognition methods proposed in Section 4.2 were



tested on the set of 3600 images and the recognition results
are reported in Table 1. From the experimental results, we
found that we achieved high recognition rates for images
under a wide range of illumination conditions, including
multiple sources of illumination. As described in Section
4.2, in this paper, we used only the Spherical Harmonic Ba-
sis parameters for recognition. We expect to achieve better
recognition results by combining our SHBMM with an au-
tomatic shape recovery method[6][9] and using both SHB
parameters 3 and shape parameters « for recognition.

6. Conclusions and Future Work

We have shown that by using a Spherical Harmonic Basis
Morphable Model, any image can be represented by three
low dimensional vectors (SHBMM parameters). We also
demonstrated that we can recover the set of SHBMM pa-
rameters given a single image of the subject under arbi-
trary unknown lighting. We provided a face synthesis tech-
nique by combining our SHBMM and the Ratio image tech-
nique. We showed that, with our model, given an input im-
age, we could remove the illumination effects from the im-
age (de-lighting) and synthesize new images (re-lighting)
“driven” by a second image. Furthermore, by detecting the
shadow errors from the image difference between the input
image and the rendered image, we remove the cast shad-
ows from the input image and add cast shadows to the re-
lit image to generate more photo-realistic images. We also
proposed two illumination invariant face recognition meth-
ods which achieve high recognition rates for images under
a wide range of illumination conditions.

To add cast shadows to the re-lit face, we made an as-
sumption that the input face and target face had similar cast
shadows under the same illumination which in some cases
may not be true. Thus, one of our future research directions
is to relate the cast shadows with spherical harmonic basis
parameters for better synthesis results. In our recognition
experiments, we tested both images under single- and syn-
thesized multiple- directional illuminations. At this time,
there exist relatively few publicly available sets of images
of faces under arbitrary illumination conditions, so we plan
to continue validation of our method with databases with
more types of light sources, e.g. area sources, when they
become available.
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