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Abstract

We present a new method for the detection and estima-
tion of multiple directional illuminants, using only one sin-
gle image of an object of arbitrary known geometry. The
surface is not assumed to be pure Lambertian, instead, it
can have both Lambertian and specular properties. We
propose a novel methodology that integrates information
from shadows, shading and specularities in the presence of
strong directional sources of illumination, even when sig-
nificant non-directional sources exist in the scene. Since the
specular spots have much sharper intensity changes than
the Lambertian part, we can locate them in the image of the
sphere by first down-sampling the image and then applying
a region growing algorithm. Once the specularities have
been roughly segmented, the remaining regions of the image
are mostly Lambertian, and can be segmented into regions,
with each region illuminated by a different set of sources,
in a robust way. The regions are separated by boundaries
consisting of critical points (points where one illuminant
is perpendicular to the normal). Our region-based recur-
sive least-squares method is impervious to noise and miss-
ing data. The illuminant estimation can be further refined
by making use of shadow information when available, in a
novel, integrated single-pass estimation. The method is gen-
eralized to objects of arbitrary known geometry, by map-
ping their normals to a sphere. Furthermore, we introduce
a hybrid approach that combines our method with spherical
harmonic representations of non-directional light sources,
when such sources are present in the scene. We demon-
strate experimentally the accuracy of our method, both in
detecting the number of light sources and in estimating their
directions, by testing on synthetic and real images.

1. Introduction

In order to integrate seamlessly a virtual object in a real
scene, we need to simulate accurately the interactions of the
virtual object with the illumination of the scene. Further-
more, to manipulate existing images realistically, knowl-

edge of illuminant directions is necessary both in image
based computer graphics, and in computer vision for shape
reconstruction. This problem is particularly hard for diffuse
(Lambertian) surfaces and directional light sources and can-
not be solved using local information only. In this work we
concentrate on directional light sources because they have
the most pronounced effects in the appearance of a scene.
Previous methods that estimate multiple light sources re-
quire images of a calibration object of given shape (typ-
ically spheres) which needs to be removed from the scene
and might cause artifacts. Instead, our method relies on par-
tial knowledge of the geometry of the scene and can be used
on objects of arbitrary shape. This allows us to possibly
use any diffuse object of the scene for illumination calibra-
tion. In this paper we present a novel methodology that inte-
grates information from shadows, shading and specularities
in the presence of strong directional sources of illumina-
tion, even when significant non-directional sources exist in
the scene. Specularities are detected based on sharp inten-
sity changes. The shadow-based method utilizes brightness
variations inside the shadows cast by the object, whereas
the shading-based method utilizes brightness variations on
the directly illuminated portions of the object. Here, we
demonstrate that they can be cast in an one-pass estimation
framework. The proposed integrated method is both more
accurate and more general in its applicability, than any of
the three methods applied separately. Furthermore, we in-
troduce a hybrid approach that combines our method, with
spherical harmonic representations of non-directional light
sources (e.g. area sources).

In the last few years, there has been an increased inter-
est in estimating the reflectance properties and the illumi-
nation conditions of a scene based on its images, initially
recovering a single light source [6, 12, 34, 22]. However,
illumination in most real scenes is more complex and it is
very likely to have a number of co-existing light sources
in a scene. Various types of light sources are discussed
in [11]. Accuracy, photorealism and generality of many
Image Based Modelling and Rendering (IMBR) applica-
tions depends on the knowledge of illumination. A number



of methods were proposed to recover illumination param-
eters or reflectance properties of the scene in the form of
BRDFs (Bidirectional Reflectance Distribution Functions)
[3, 32, 31, 23, 21, 16, 8, 25, 4, 17]. Most of these methods
require extensive data collection [3, 4, 32, 31] and off-line
processing [8, 17], or have particularly restrictive assump-
tions, e.g. a single light source [22]. Such methods would
not be of use if only one or a few images are available.

Most illumination estimation methods need to use a cal-
ibration object of fixed shape, often a sphere with a spec-
ular component [18, 3]. However, such a specular sphere
might have strong inter-reflections with other objects of the
scene, especially if they are close to it. Using the Lam-
bertian shading model, in [30] it was observed that mul-
tiple light sources can be deduced from boundary condi-
tions, i.e., the image intensity along the occluding bound-
aries and at singular points. Based on this idea, in [33] it
was shown that the illuminant directions have a close rela-
tionship to critical points on a Lambertian sphere and that,
by identifying most of those critical points, illuminant di-
rections may be recovered if certain conditions are satisfied.
Conceptually, a critical point is a point on the surface such
that all its neighbors are not illuminated by the same light
sources. Recently, an illuminant direction detection method
minimizing global error was proposed in [28]. It uses criti-
cal boundaries to segment the surface robustly into regions
(“virtual light patches”), with each illuminated by a differ-
ent set of sources. By using points inside a region instead of
the boundary, the method’s accuracy does not depend on the
exact extraction of the boundary and can tolerate noise bet-
ter. When the observed shape is not spherical, its normals
are mapped to a sphere.

The idea of using arbitrary known shape, is also found
in the approach of Sato et al. [23], which exploits in-
formation of a radiance distribution inside shadows cast
by an object of known shape in the scene. Recently, un-
der a signal processing approach [1, 21] a comprehen-
sive mathematical framework for evaluation of illumina-
tion parameters through convolution is described. Unfor-
tunately, this framework does not provide a method to esti-
mate high-frequency illumination such as directional light
sources when the BRDF is smooth as in the Lambertian
case. Convolution is a local operation and the problem
is ill-posed when only local information is considered [2].
Our method uses global information to overcome this prob-
lem, and in this sense, it is complementary to the methods
of [1, 21], which are suitable for non-directional sources.
When both types of illuminants are present, we propose a
hybrid method that first estimates the directional sources,
subtracts their effects from the image and then calculates
the spherical harmonic coefficients approximating the non-
directional illumination.

Most objects are neither exactly diffuse nor perfectly

specular. Instead, for many materials, the surface re-
flectance can be approximated by a parameterized BRDF
with a diffuse and a specular component, such as [26, 29,
10, 5] etc. A number of authors have addressed estima-
tion of illumination from specularities, usually in a multi-
ple view context, [18, 14, 15, 35]. In this work, we are
not interested in estimating the illuminant directions from
specularities themselves, but only in removing their most
pronounced effects from the image, so that we can utilize
the diffuse part. This allows us to use an approximation for
their segmentation, using only a single image.

In this paper, we propose a new method for multiple di-
rectional illuminant estimation, that integrates illumination
information from shading [28], shadows [23] and specular-
ities. These methods have different strengths and weak-
nesses. We demonstrate how the sources of information
complement each other in a number of occasions. Combin-
ing the methods reduces error and speeds up computation.
We demonstrate the effectiveness of our method with syn-
thetic and real image experiments.

2. Shading-Based Illuminant Detection

2.1. Critical Points

Definition 1 Given an image, letLi, i = 1, 2, . . ., be the
light sources of the image. A point in the image is called
a critical point if the surface normal at the corresponding
point on the surface of the object is perpendicular to some
light sourceLi.

We assume that images are formed by perspective or
orthographic projection and the object in the image has a
Lambertian surface with constant albedo, that is the BRDF
is known to be a constant and each surface point appears
equally bright from all viewing directions:E = ρLiL·N =
ρLicosθi, whereE is the scene radiance of an ideal Lam-
bertian surface,ρ is the albedo,L represents the direction
andLi the amount of incident light, andN is the unit nor-
mal to the surface. Initially, the algorithm is developed
using a sphere model of known size and subsequently ex-
tended to objects of arbitrary shape.

As shown in [33], it is impossible to recover the exact
value of the intensity of any individual light source among
four (or more) pairs of antipodal light sources (i.e. opposite
direction light sources). However, this happens rarely, so
we assume that there are no antipodal light sources.

Let P be an arbitrary plane such thatS, the center of the
sphere, lies on it (Fig. 1(a)),Li be the light sources of the
image and(Li)P their projections onP. A point on the arc
τ can be specified by its corresponding angle parameter in
[α, β] using the following proposition [33]:

Proposition 1 Consider an angle interval[α, β] of a sphere
cross section (Fig. 1(a)). We can always find a partition
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Figure 1. (a) L and its projectionLP onto planeP. (b)
inner angleγ between two tangent lines.

θ0 = α < θ1 < . . . < θn = β of the interval[α, β] such
that in each[θi−1, θi] we haveE(θ) = bi sin θ + ci cos θ
for some constantsbi andci, 1 ≤ i ≤ n, whereE(θ) is the
intensity function along the arcτ .

Intuitively, (bi−1, ci−1) represents the virtual light
source of the[θi−2, θi−1] part, and(bi, ci) of the neighbor-
ing [θi−1, θi] part. The virtual light source of an interval
[θi−2, θi−1] in the Lambertian case is the sum of all light
sources illuminating[θi−2, θi−1]. As shown in [33] the dis-
tance between(bi−1, ci−1) and(bi, ci),√

(bi − bi−1)2 + (ci − ci−1)2 =
∑

j∈Λ′∪Λ′′

‖(Lj)P ‖ (1)

will be maximized at a critical point for these two virtual
light sources. Unfortunately, this criterion greatly depends
on the intensities of virtual light sources. Together with the
distance between (bi, ci) pairs, we can use the tangent an-
gles defined on the intensity curve (Fig. 1(b)). By applying
a standard recursive least-squares algorithm, we can use two
consecutive windows to detect the local maximum points of
inner anglesγ and distance defined by Eqn.(1) [28].

2.2. Segmenting the Surface

Definition 2 All critical points corresponding to one real
light will be grouped into a cut-off curve which is called a
critical boundary.

Intuitively, each critical boundary of the sphere in our
model is on a cross section plane through the center of the
sphere. Therefore, critical points can be grouped into criti-
cal boundaries using the Hough transform. Although criti-
cal points provide information to determine the light source
directions [33], they are relatively sensitive to noise. How-
ever, non-critical point areas are less sensitive to noise and
provide important information to determine the light source
directions.

Definition 3 Critical boundaries will segment the whole
sphere image into several regions, and intuitively, each seg-
mented region is corresponding to one virtual light. Each
region is called a virtual light patch.

Once we get the patches corresponding to each virtual
light, the directions of virtual light sources can be calcu-
lated, via a least-squares method, using the internal non-
critical points of each patch.

2.3. Recovering the True Lights

Proposition 2 If a critical boundary separates a region
into two virtual light patches with one virtual light each,
e.g.L1, L2, then the difference vector betweenL1 andL2,
Lpre = L1 − L2, is called the real light pre-direction with
respect to this critical boundary. Since we have already
assumed that there are no antipodal light sources (i.e. op-
posite direction light sources), the real light direction will
be either the pre-directionL1−L2, or its oppositeL2−L1.

To find out the true directions, we pick a number of
points on the surface, e.g.P1, ..., Pk and their normals, e.g.
N1, ...,Nk, then the true directions will be the solution of:
E(Pj) =

∑
i∈Λ max(eiLi ·Nj , 0) + Lv ·Nj , 1 ≤ j ≤ k,

whereLv is the virtual light source of a possible frontal il-
luminant whose critical boundary can not be detected and
will be checked as a special case. Selecting points in the
area inside the critical boundaries is a robust way to detect
real lights. This can be done using standard least-squares
methods [19]. An angle threshold is introduced to cluster
the light difference vectors into real light groups, each is ap-
proximated by one vector. By minimizing the least-squares
errors of virtual light patches, we are able to merge the spu-
rious critical boundaries detected by the Hough transform.

2.4. Arbitrary Shape

In this section we extend our method to work with
any object of known shape. Obviously, there should ex-
ist enough non-coplanar points on the object illuminated by
each light to allow for a robust least-squares solution. We
assume no inter-reflections. We map the image intensity
of each pointPi of the arbitrary shape to a pointSi of a
sphere, so that the normal atPi is the same as the normal
at Si. We detect all potential critical points based on the
points mapped on the sphere. As expected, not every point
on the surface of the sphere will be corresponding to a nor-
mal on the surface of the arbitrary shape, so there will be
many holes on the mapped sphere, e.g. the black area in
Fig. 2. Thus, many critical points’ locations will be erro-
neously calculated even for noise-free data. Consequently,
the critical boundaries calculated by the Hough transform
based on these critical points might not be correct. Since we
can not recover these missing data from the original image,
it is impossible to adjust the critical boundaries detected by
the Hough transform itself. On the other hand, as long as
the critical boundaries are not too far from the truth, the
majority of the points in a virtual patch will still correspond
to the correct virtual light (especially after the adjustments
steps described in Sec. 2.3). Thus it is still possible, us-
ing sparse points on the sphere, to calculate the true light
for each virtual light patch based on Proposition 2. If two
points have the same normal but different intensities, we use
the brighter one (assuming that the other is in shadow).



Figure 2. Vase and its sphere mapping. Both image sizes
are 400 by 400. Black points on the sphere represent nor-
mals that do not exist on the vase’s surface.

3. Generalized Shading-Based Method

The original algorithm of our method assumes direc-
tional light sources and perfect Lambertian surfaces, how-
ever, in most real world situations there are significant devi-
ations from these assumptions. Here we extend our method
to allow for specular surfaces and combinations of direc-
tional and area light sources.

3.1. Non-Lambertian Surfaces

Here we extend the applicability of our method to sur-
faces which have both Lambertian and specular proper-
ties. Instead of the Dichromatic Refection Model [9], we
use Ward’s parameterization in which the BRDF is mod-
eled as the sum of a diffuse termρd

π and a specular term
ρsK(L,V,Σ), whereρd andρs are the diffuse and specu-
lar reflectance of the surface respectively, andK(L,V,Σ)
is a function of light and viewing directions, parameterized
by Σ, the surface roughness vector. Assuming the surface
is isotropic, the detailed Ward model can be simplified as,

Li = (ρd

π + ρsK(L,V,Σ))Ii

= ρd

π Ii + ρs
1√

(L·N)(V·N)
· e

− tan2 6 (H,N)
σ2

4πσ2 Ii

(2)

whereLi andIi are the radiance and irradiance on the point
Pi respectively,H is the bisector of the light and viewing
directions andσ is the surface roughness measured as the
standard deviation of the surface slope. The treatment for
the Torrance-Sparrow model is similar.

From Eqn.(2), we notice thate
− tan2 6 (H,N)

σ2 plays a dom-
inant role in the specular component, which is plotted in the
0-255 gray scale range for different values ofσ (Fig. 3), and
depends heavily on the angleα betweenH andN.

As can be seen in Fig. 3, the specular component has
a much sharper intensity change than the diffuse part, and
for values of the angleα greater than a threshold around
10◦ − 15◦, it becomes less than 1 gray scale level. We refer
to this threshold asαspecular, pre-calculated based onσ.

Proposition 3 Let α be the angle betweenH and N,
6 (H,N), and kg be the gray scale coefficient, i.e.kg =

ρs
1√

(L·N)(V·N)
· 1

4πσ2 · Ii, Li = ρd

π Ii + kge
− tan2 6 (H,N)

σ2 .

Since intensities in the image less than 1 are not observable,

we havekge
− tan2 α

σ2 ≥ 1, that is,tanα ≤ σ
√

ln kg. Thus,
αspecular = arctan(σ

√
ln kg).
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Figure 3. The exponential part of the specular component
in the Ward BRDF (Eqn. 2).

Based on this observation, we can locate specularities
in the image of a sphere by first down-sampling the im-
age and then applying a region growing algorithm. Since
there are many more peaks on an image than specular spots,
down-sampling is used to locate the specular spots more ef-
ficiently by taking advantage of the approximately known
BRDF parameters. In the first stage, we down-sample the
original image to such a level that a region of the size of
αspecular (typically arctan(140σ) degrees), is within 1-
2 pixel resolution size. Then, we use a 3 by 3 convo-
lution kernel to detect the sharp intensity change above
thresholdsharp and then locate the local maximum within
each detected region as a potential specular spot. In the sec-
ond stage, we grow the potential specular spots in the orig-
inal image until they reach the size defined byαspecular.
These regions are treated as potential specular segments and
the remaining regions of the image are mostly Lambertian.
Because our region-based recursive least-squares method is
impervious to noise and missing data, we can apply it to the
segmented image and estimate the illuminants. We are in-
terested in a rough segmentation of the specular area, so our
method works even if the reflectance model or the specular
peak are not extremely accurate.

3.2. Non-Directional Illumination Sources

Unlike directional light sources, broad area illumina-
tion sources produce low-frequency shading which does not
generate clear critical boundaries on diffuse surfaces. Re-
cently, under a signal processing approach [1, 21], a com-
prehensive mathematical framework for evaluation of illu-
mination parameters through convolution is described based
on the spherical harmonicsY m

n

Pm
n (z) = (1−z2)

m
2

2nn!
dn+m

dzn+m (z2 − 1)n

Y m
n (θ, φ) =

√
2n+1
4π

(n−m)!
(n+m)!P

m
n (cos θ)eImφ

(3)

wherePm
n are the associated Legendre functions.

As shown in [1, 20], the set of Lambertian reflectance
functions can be well approximated by a low dimensional
linear space, based on the fact that the Lambertian ker-
nel has most of its energy (more than99%) concentrated



in the first 9 terms and are given numerically in the carte-
sian coordinates(x, y, z) = (sin θ cos φ, sin θ sinφ, cos θ),

Y 0
0 =

√
1
4π , (Y 1

1 ;Y 0
1 ;Y −1

1 ) =
√

3
4π (x; z; y), Y 0

2 =

1
2

√
5
4π (3z2 − 1), (Y 1

2 ;Y −1
2 ;Y −2

2 ) = 3
√

5
12π (xz; yz;xy),

Y 2
2 = 3

2

√
5

12π (x2 − y2). Then the irradianceE and the
distant lighting distributionL will be approximated by a
linear combination of the spherical harmonics,E(θ, φ) =∑

n,m Em
n Y m

n (θ, φ), L(θ, φ) =
∑

n,m Lm
n Y m

n (θ, φ), and
the relationship betweenEm

n andLm
n is given byEm

n =√
4π

2n+1AnLm
n , where A1 =

√
π
3 , An>1,odd = 0 and

An>1,even = 2π
√

2n+1
4π

(−1)
n
2 −1

(n+2)(n−1)

[
n!

2n(n!/2)2

]
.

Unfortunately, this framework does not provide a
method to estimate high-frequency illumination such as di-
rectional light sources when the BRDF is smooth as in the
Lambertian case. Convolution is a local operation and the
problem is ill-posed when only local information is consid-
ered [2]. Here we propose a hybrid approach that combines
the signal processing approach for broad area illumination
sources with the method of Sec. 2. Assuming the directional
light sources play a non-negligible role in the lighting dis-
tribution, we use the following algorithm to estimate the
lighting distribution:

1. Estimate directional illuminants as described in Sec.2.
2. Subtract the effects of directional illuminants from the

image which will then contain mostly area source illumina-
tion information.

3. Calculate the spherical harmonic coefficients as a rep-
resentation of the area sources.

4. The unaccounted information in the residual image
is error from two sources, the spherical harmonic approxi-
mation and errors in the initial estimation of the directional
illuminants. We minimize this error by small adjustments
in the estimates of the directional illuminants.

4. Shadow-Based Illuminant Detection
Besides the shading information we explored above, a

picture of a real scene is very likely to contain some shadow
information. Hence the illumination distribution of the
scene might also be recovered from a radiance distribution
inside shadows cast by an object of known shape onto an-
other object surface of known shape and reflectance. In
[23], the illumination distribution of a scene is approxi-
mated by discrete sampling of an extended light source
and the whole distribution is represented as a set of point
sources equally distributed in the scene as shown in Fig. 4.
The total irradiance E at the shadow surface received from
the entire illumination distribution is computed byE =∑n

i=1 LiSi cos θi, whereLi(i = 1, 2, . . . , n) is the illumi-
nation radiance per solid angleδ = 2π/n coming from the
direction(θi, φi), andSi are occlusion coefficients.Si = 0
if Li is occluded by objects, andSi = 1 otherwise. Then

Figure 4. Illumination distribution is approximated by
discrete sampling over the entire surface of the extended
light source.

Figure 5. Each shadow pixel provides a linear equation
for estimating illumination distribution by shadows.

this approximation leads each image pixel inside shadow
regions to provide a linear equation where the radiance of
the point sources is unknown, as shown in Fig. 5 [24]. Fi-
nally, a set of linear equations is derived from the brightness
changes observed in the shadow image and solved for un-
knownLi’s.

The BRDFf(θi, φi; θe, φe) for a Lambertian surface is
known to be a constant. Then, in Fig. 5 the coefficients
ai(i = 1, 2, . . . , n) representKd cos θiSi whereKd is a
diffuse reflection parameter of the surface. Therefore, by
selecting a sufficiently large number of image pixels, it is
possible to solve for a solution set of unknownLi’s.

5. Integration of Information Sources

In this section, we are going to propose a framework that
combines the respective advantages of shading and shadow
information, allowing us to obtain improved results com-
pared to using each of them independently.

In the case of non-Lambertian reflectance, specularities
need to be removed first. As can be seen from Fig. 2, arbi-
trary shapes do not always provide enough normals on the
surface to make a complete sphere mapping, so many data
points on the sphere will be missing non-uniformly. Conse-
quently, there is a possibility that some critical boundaries
will be lost and the corresponding real lights will not be
estimated. However, shadow information can be used to es-
timate the intensity and direction of each light source.

While recovering the illumination distribution of the
scene from a radiance distribution inside shadows, com-
plete shadows cast by an object of known shape onto an-
other object surface of known shape and reflectance are re-
quired. However, this might not be possible in situations
where the light direction is nearly parallel to the surface.
Then the azimuth of the light source can still be estimated
reliably but not the elevation. Furthermore, in [23] a large
number of samples are needed to capture the rapid change
of radiance distribution around a direct light source. Radi-
ance distribution inside a direct light source has to be sam-
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Figure 6. (a) A synthetic vase illuminated by three directional light sources. (b) Estimated illumination distribution using the
shadow information only. (c) Error image generated by illumination distribution estimated in (b). (d) Detected critical boundaries
using the shading information only. (e) Error image generated by illumination distribution estimated in (d).

pled densely. Therefore, due to the discrete sampling of the
geodesic dome, it is very likely that the precision of estima-
tion will be limited. In Fig. 6, we can see that the illumina-
tion distribution estimated by shading information provides
higher accuracy than the one estimated by shadows.

A shadow is called a complete shadow when all the parts
of the scene the shadow falls on are visible. The outmost
edge of a complete shadow corresponding to a directional
light source is generated by the occluding boundary of the
object surface. As we can see, the occluding boundary of
a smooth surface will be a critical boundary in the context
of shading. Consequently, when there is information both
from shading and from shadows, we can use the shadow in-
formation to give us an initial estimation of the illumination
distribution, compute the corresponding critical points and
then use the shading information to refine this estimation
to compute the directions and intensities of the real light
sources.

Incorporating specularity and shadow information, the
complete proposed algorithm is:

1. Estimate specularities and remove them from the im-
age, as described in Sec. 3.1.

2. Detect critical points using the method in Sec. 2.1.
3. Calculate an initial illumination distribution using es-

timation from shadows [23].
4. For each light direction detected in Step 3, add the

corresponding critical points in the results from step 2.
5. Find initial critical boundaries by the Hough trans-

form based on all detected critical points.
6. Adjust critical boundaries. Adjust every critical

boundary by moving it by a small step, with a reduction
in the least-squares error indicating an improved solution.
Keep updating boundaries using a “greedy” algorithm in or-
der to minimize the total error.

7. Merge spurious critical boundaries. If two critical
boundaries are closer than a threshold angleTmergeangle

(e.g. 5◦), they can be replaced by their average, resulting
into one critical boundary instead of two.

8. Remove spurious critical boundaries. Test every crit-
ical boundary, by removing it temporarily and if the least-
squares error does not increase, we can consider it a spuri-
ous boundary and remove it completely. Test boundaries in
increasing order of Hough transform votes (intuitively we

(a)original image (b)generated image (c)critical boundaries

Figure 7. Synthetic sphere image: (a) a synthetic ball
illuminated by seven light sources using the Ward BRDF
model. Image size: 256x256. (b) the rerendered image with
the seven light sources extracted from (a). Green dots on (c)
represent the detected critical points.

test first boundaries that are not as trustworthy).
9. Calculate the real lights along a boundary by subtract-

ing neighboring virtual lights as described in Proposition 2.
Step 4 adds more votes close to the true direction for

the Hough transform, which will reduce the adjustment
time significantly, comparing to a previous implementation
where shading and shadows were estimated separately in a
two-pass approach [27].

6. Experiments

6.1. Specularity Detection

We performed a number of experiments with synthetic
sphere images to better understand our method. We did ex-
periments on images of seven random light sources. The
following parameter values were chosen for the algorithm:
image size is 256 by 256, sliding window widthw = 12 pix-
els (approximately8◦), distance ratioTratio = 0.5 and an-
gle threshold for boundary merging (described in Sec. 2.3)
Tmergeangle = 5◦. Results are shown in Fig. 7. In all the
segmented light patch images in this report, detected critical
points are denoted with green dots.

As an example of a real object with specularities, we
used a white clay vase illuminated by three light sources.
The original image and 3D geometry were captured by the
range scanner system described in [7]. The following pa-
rameter values were used: sliding window widthw = 32
pixels (approximately14◦), distance ratioTratio = 0.6 and
angle threshold for boundary mergingTmergeangle = 5◦.
Although the surface did not conform very closely to the
Ward model, the correct number of light sources was de-



(a)original image generated by (b) 9 spherical harmonics (c)our hybrid method

Figure 8. Real sphere image: a white plastic ball with
three light sources. Image size: 460x460. (a) the original
image, the generated image of a sphere using (b) only the
first 9 spherical harmonics and (c) our hybrid method to es-
timate the lighting distribution extracted from (a). Although
hard to discern critical boundary information is present in
image (a) and (c) but gets lost in image (b) due to its high
frequency.

tected and the estimated lights appear to be very close to
the truth (no ground data was available). Results are shown
in Fig. 9(e-g).

6.2. Non-Directional Illumination Estimation

We used a rubber ball illuminated with two directional
light sources and one broad area light source at the same
time. The original photo, taken by an SONY DFW-X700
digital camera, was cropped to 460 by 460 pixels with the
ball at the center of the image. The color image is con-
verted to gray-scale with 256 levels. The following pa-
rameter values were used: sliding window widthw = 12
pixels (approximately5◦), distance ratioTratio = 0.5
and angle threshold for boundary mergingTmergeangle =
5◦. Results are shown in Fig. 8. The recovered direc-
tional light sources areL1 = 64.94 × (−0.87, 0.04, 0.50),
L2 = 57.73 × (−0.34, 0.77, 0.54). Comparing to estima-
tion from single light images of the same illuminants which
were captured only for evaluation purposes,L1 = 64.71 ×
(−0.84, 0.07, 0.54), L2 = 60.75× (−0.29, 0.77, 0.57), an-
gle errors are3.2◦ and 3.7◦, and the intensity errors are
0.2 and 3.0 gray-scale levels. Although the surface did
not conform very closely to the Lambertian model, the cor-
rect number of light sources was detected and the estimated
lights appear to be reasonably close to the truth. The av-
erage intensity error is 1.14 gray-scale levels between the
original image and the image generated by the first 9 spher-
ical harmonics (Fig. 8(b)), and 0.87 by our hybrid method
(Fig. 8(c)).

6.3. Mixed Reality Image Synthesis

The combination of shading and shadow information can
provide better estimation of illumination distribution. These
estimates can be used to synthesize Mixed Reality images,
i.e. real images with superimposed virtual objects cor-
rectly lit. Furthermore, under the assumptions of Lamber-
tian BRDF and known geometry, we can re-render the real
images to generate new images by modifying the estimated
illumination configuration. Based on a scene containing

two rubber toys illuminated by three light sources, we gen-
erated a new image where one light has been switched off
in Fig. 9(b), which can be compared with a real image of
the scene with the same light truly switched off in Fig. 9(c).
The original image is 1534 x 1024 pixels with the two toys
at the center of the image. To demonstrate the ability of
our algorithm to use only partial scene information for ac-
curate estimation, only the duck toy was used to estimate
the illuminant directions. The second toy is used for visual
evaluation of the results. Based on the size of the duck, the
diameter of the mapping sphere is 400. The following pa-
rameter values were chosen for the algorithm: sliding win-
dow widthw = 30 pixels (approximately13.5◦), distance
ratio Tratio = 0.5 and angle threshold for boundary merg-
ing Tmergeangle = 5◦.

7. Conclusions and Future Work

In this paper we presented a method for the estimation
of multiple illuminant directions from a single image, in-
corporating specularity, shadow and shading information.
We demonstrated how information from each source en-
hances the information from the others. We do not require
the imaged scene to be of any particular geometry (e.g. a
sphere). This allows our method to be used with the existing
scene geometry, without the need for special light probes
when the illumination of the scene contains directional light
sources. The original algorithm of our method is extended
to allow for specular surfaces and combinations of direc-
tional and area light sources, assuming that the directional
light sources play a non-negligible role in the lighting dis-
tribution. Experiments on synthetic and real data show that
the method is robust to noise. We apply the results of our
method to generate Mixed Reality images, by successfully
modifying scene illumination and seamlessly re-rendering,
including superimposed synthetic objects. Future work in-
cludes study of the properties of arbitrary surfaces (so that
we can avoid the intermediate sphere mapping) and mod-
elling of inter-reflections.
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