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Abstract. We present a new method for the detection and estimation of
multiple illuminants, using one image of any object with known geometry
and Lambertian reflectance. Our method obviates the need to modify the
imaged scene by inserting calibration objects of any particular geometry,
relying instead on partial knowledge of the geometry of the scene. Thus,
the recovered multiple illuminants can be used both for image-based
rendering and for shape reconstruction. We first develop our method for
the case of a sphere with known size, illuminated by a set of directional
light sources. In general, each point of such a sphere will be illuminated
by a subset of these sources. We propose a novel, robust way to segment
the surface into regions, with each region illuminated by a different set
of sources. The regions are separated by boundaries consisting of critical
points (points where one illuminant is perpendicular to the normal). Our
region-based recursive least-squares method is impervious to noise and
missing data and significantly outperforms a previous boundary-based
method using spheres[21]. This robustness to missing data is crucial to
extending the method to surfaces of arbitrary smooth geometry, other
than spheres. We map the normals of the arbitrary shape onto a sphere,
which we can then segment, even when only a subset of the normals
is available on the scene. We demonstrate experimentally the accuracy
of our method, both in detecting the number of light sources and in
estimating their directions, by testing on images of a variety of synthetic
and real objects.

1. Introduction

In this paper we consider the problem of multiple illuminant direction detection
from a single image, i.e. using an image of an object or scene to recover all real
light sources in that environment. Knowledge of illuminant directions is necessary
both in computer vision for shape reconstruction, and in image based computer
graphics, in order to realistically manipulate existing images. This problem is
particularly hard for diffuse (Lambertian) surfaces and directional light sources
and cannot be solved using local information only. Lambertian reflectance is the
most common type of reflectance. Previous methods that estimate multiple light
sources require images of a calibration object of given shape (typically spheres)
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which needs to be removed from the scene and might cause artifacts. Instead,
our method relies instead on partial knowledge of the geometry of the scene and
can be used on objects of arbitrary shape. This allows us to possibly use any
diffuse object of the scene for illumination calibration.

The interest in computing illuminant directions first arose from shape from
shading applications, and was initially focused on recovering a single light source,
[5,12,9,22,17]. However, illumination in most real scenes is more complex and
it is very likely to have a number of co-existing light sources in a scene. In
the context of shape estimation, the ability to automatically detect the light
sources allows for more practical methods. For example, there exist methods
that use stereo images to compute a partially correct geometry, and then refine
it by Shape from Shading under a single light source [18]. These methods can
now be extended to multiple light sources, using the partial geometry obtained
by stereo to compute the parameters of the light sources with the methods
proposed in this paper. More recently, with the advent of image based rendering
methods, it is crucial to have knowledge of the light. An early attempt to recover
a more general illumination description [6], modeled multiple light sources as a
polynomial distribution. A discussion of the various types of light sources can be
found in [8]. More recently, with the advent of image based methods in computer
graphics, estimation of illumination parameters from images is necessary, in order
to compensate for illumination artifacts, and also to allow super-imposition of
synthetic images of new objects into real scenes. Most such methods need to use
a calibration object of fixed shape, typically a sphere. In [3] a specular sphere
is used as a light probe to measure the incident illumination at the location
where synthetic objects will be placed in the scene. Such a sphere though might
have strong inter-reflections with other objects of the scene, especially if they
are close to the it. Using the Lambertian shading model, Yang and Yuille [20]
observed that multiple light sources can be deduced from boundary conditions,
i.e., the image intensity along the occluding boundaries and at singular points.
Based on this idea, Zhang and Yang [21] show that the illuminant directions
have a close relationship to critical points on a Lambertian sphere and that, by
identifying most of those critical points, illuminant directions may be recovered
if certain conditions are satisfied. Conceptually, a critical point is a point on
the surface such that all its neighbors are not illuminated by the same light
sources. However, because the detection of critical points is sensitive to noise,
the direction of extracted real lights in not very robust to noisy data. In [13] a
calibration object that comprises of diffuse and specular parts is proposed.

Inserting calibration objects in the scene complicates the acquisition process,
as they either need to be physically removed before re-capturing the image,
which is not always possible, or they need to be electronically removed as a post
processing step, which might introduce artifacts in the image. Our proposed
method can be applied to objects of known arbitrary geometry, as long as that
shape contains a fairly complete set of normals for a least-squares evaluation of
the light sources. Thus, it would be possible to estimate the illuminants from the
image of a scene, using geometry that is part of the scene. Although estimating
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the object geometry from the image would be more convenient, current single
image computer vision methods do not provide the necessary accuracy for precise
illuminant estimation. Such accuracy can be achieved only by more complex
multi-image methods [10] that require precise calibration. The idea of using
arbitrary known shape, can also be found in the approach of Sato et al. [19],
which exploits information of a radiance distribution inside shadows cast by an
object of known shape in the scene. Recently, under a signal processing approach
[15,1] a comprehensive mathematical framework for evaluation of illumination
parameters through convolution is described. Unfortunately, this framework does
not provide a method to estimate high-frequency illumination such as directional
light sources when the BRDF is smooth as in the Lambertian case. Convolution
is a local operation and the problem is ill-posed when only local information is
considered [2]. Our method uses global information to overcome this problem,
and in this sense, it is complementary to the methods of [15], [1], [11].

In this paper, we propose an illuminant direction detection process that min-
imizes global error (by a recursive least-squares algorithm [4]). In general, each
point of a surface is illuminated by a subset of all the directional light sources
in the scene. We propose a novel, robust way to segment the surface into re-
gions (virtual “light patches”), with each region illuminated by a different set
of sources. The regions are separated by boundaries consisting of critical points
(where one illuminant is perpendicular to the normal of the surface [21]). We
extract real lights based on the segmented virtual “light patches” instead of
critical points that are relatively sensitive to noise. Since there are more points
in a region than on the boundary, the method’s accuracy does not depend on
the exact extraction of the boundary and can tolerate noisy and missing data
better. Furthermore, we can further adjust and merge light patches to minimize
the least-squares errors. The number of critical boundaries detected is sensitive
to the threshold used in the Hough transform, especially when there are noisy or
incomplete data. Fewer boundaries will cause lights to be missed, more bound-
aries will result in spurious lights to be detected. This is not a problem for our
method since the spurious lights will be eliminated during the merging stage that
follows the Hough transform. The ability of our method to perform well when
the data is not perfect is crucial for the extension of the method from spheres
(for which we initially develop it) to arbitrary shapes. When the observed shape
is not spherical we map its normals to a sphere, although a lot of normals will
be missing. However our method works well even for incomplete spheres, as long
as there are enough points inside each light patch for the least-squares method
to work correctly. Our method to detect multiple illuminant directions consists
of the following five steps:

1. We identify critical points (defined in the same manner as [21]) in the im-
age, using two consecutive windows using a standard recursive least-squares
algorithm[4].

2. We group critical points into different critical boundaries by the Hough
Transform.
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3. These critical boundaries segment the image into different separate light
patches and we calculate a virtual light for each light patch.

4. We adjust and merge critical boundaries by minimizing the average least-
squares error of all light patches. If two critical boundaries are too close to
each other, i.e. the angle between them is less than a threshold angle, then
we merge these two critical boundaries.

5. We extract real lights based on these segmented virtual light patches instead
of critical points that are relatively sensitive to noise. The absolute intensities
of real lights can be determined only if the albedo is known.

We performed a series of experiments which demonstrate the superior accuracy
of our method. Experiments with synthetic data from a sphere and a vase model
allow us to recover accurately up to fifteen light sources from a sphere image,
with a 0.5 degree average error. We also show that our method performs well even
with added noise (error less than 1 degree for five lights). We successfully detect
five lights from the image of a real ball made of rubber, even though the surface
is rather rough and at various parts deviates from the Lambertian reflectance
assumption. Our results compare favorably with the boundary-based method in
[21] for the sphere experiments. We perform experiments on two different non-
spherical objects, the synthetic images of a vase and the real images of a toy duck
under four illuminants. The algorithm performs accurately, despite the increased
levels of noise, both in the reflectance and in the acquisition of the normals.

The rest of this paper is structured as follows: Section 2 describes the notion
of critical points and their properties as they pertain to our problem. Section 3
describes our basic algorithm and extensions that make it robust to noise and
missing data. These properties of our algorithm allow us to introduce a mapping
of normals from arbitrary geometry to the shape of a sphere. This is the key to
applying our algorithm to objects of arbitrary shape in Section 4. We present
our experiments on synthetic and real data in Section 5 and conclude with future
working Section 6.

2. Critical Points

Definition 1. Given an image, let Li, i = 1, 2, . . ., be the light sources of the
image. A point in the image is called a critical point if the surface normal at the
corresponding point on the surface of the object is perpendicular to some light
source Li.

2.1. Observation Model
We assume that images are formed by perspective or orthographic projection
and the object in the image has a Lambertian surface with constant albedo,
that is each surface point appears equally bright from all viewing directions:

L = ρI · n (1)

where L is the scene radiance of an ideal Lambertian surface, ρ is the albedo,
I represents the direction and amount of incident light, and n is the normal to
the surface.
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2.2. Sphere Model

Initially, we develop our algorithm using a sphere model. We will show later in
this paper how to extend this to objects of arbitrary shape.

– We assume the observed object is a sphere with Lambertian reflectance prop-
erties whose physical size is already known.

– For light sources whose direction is co-linear with the lens axis of the camera
and the angle with OS is less than ω (Fig. 1(a)) depending on the resolution,
the best possible result is their equivalent frontal light source Lfrontal.
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Fig. 1. (a) minimum detectable angle ω. (b) L and its projection LP onto plane P.

It has been proven in [21] that it is not possible to recover the exact value
of the intensity of any individual light source among four (or more) pairs of
antipodal light sources. However, this kind of situation, i.e. an object illuminated
by antipodal light sources, happens rarely, so for simplicity in the rest of this
paper, we will make an additional assumption that there are no antipodal light
sources.

2.3. Sphere Cross Section with a Plane P

Let P be an arbitrary plane such that S, the center of the sphere, lies on it
(Fig. 1(b)), Li, i = 1, 2, . . ., be the light sources of the image and (L)iP their
projections on P. A point on the arc τ can be specified by its corresponding
angle parameter in [α, β] using the following proposition [21]:

Proposition 1. Consider an angle interval [α, β] of a sphere cross section (Fig.
1(b)). We can always find a partition θ0 = α < θ1 < . . . < θn = β of the interval
[α, β] such that in each [θi−1, θi] we have E(θ) = bi sin θ + ci cos θ for some
constants bi and ci, 1 ≤ i ≤ n (Fig. 2(a)), where E(θ) is the intensity function
along the arc τ .

Intuitively, (bi−1, ci−1) represents the virtual light source of the [θi−2, θi−1]
part, and (bi, ci) of the neighboring [θi−1, θi] part. These two light sources will
be different, if each of these two parts is lit by a different illuminant configura-
tion. More formally, Proposition 2 (from [21]) describes the difference between
(bi−1, ci−1) and (bi, ci):
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Fig. 2. (a) the xy-space and the θR-space for the case with two sources. (b) Illustration
of real light pre-direction. Lr is the real light direction.

Proposition 2. In the configuration of Proposition 1, for any 1 ≤ i ≤ n, we
define Λi as the index set of real light sources contributed to the [θi−1, θi] part of
the arc τ . Then the Euclidean distance between two (bi, ci) pairs is

√
(bi − bi−1)2 + (ci − ci−1)2 =

∑
j∈Λ′∪Λ′′

‖(Lj)P ‖ (2)

where ‖(Lj)P ‖ is the Euclidean norm, Λ′ = Λi−1 \Λi (the index set of elements
in Λi−1 but not in Λi), Λ′′ = Λi \ Λi−1, and

∑
j∈Λi

Lj is the virtual light source
corresponding to [θi−1, θi].

Propositions 1 and 2 show that the difference between (bi−1, ci−1) and (bi, ci)
will be maximized at a critical point for these two virtual light sources. So,
possible critical points can be detected by thresholding ‖(Lj)P ‖.

2.4. Properties of Critical Points

Let Σ be the set of all critical points and Ω be the space of the sphere image.
Then intuitively Σ will cut Ω into a decomposition, i.e.

Ω = (
⋃
i∈I

ui)
⋃

Σ (3)

where each ui ⊂ Ω is a subset of R2 which does not contain any critical points
and I is an index set.

Proposition 3. Given a decomposition (3), for any ui there exists an equivalent
light source L such that the image formed by the corresponding surface part of
ui illuminated by L is exactly the same as the image on ui.

Proposition 2 already provides us with a criterion to detect critical points
on the sphere based on the distance between (bi, ci) pairs. Unfortunately,
this criterion greatly depends on the intensities of virtual light sources,∑

j∈Λ′∪Λ′′ ‖(Lj)P ‖, which are projected on the plane with respect to each dif-
ferent cross section. To locate the critical points more accurately, we provide
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another way to detect critical points on each cross section. Instead of using the
distance between (bi, ci) pairs, we can use the tangent angles defined on the
intensity curve (Fig. 3(a)).

Proposition 4. Along a sine curve, at a critical point θc, the inner angle γ
between two tangent lines of each side (T1,T2) will be larger than 180 degrees:
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Fig. 3. (a) inner angle γ. (b) Angles between two tangent lines. (c) a part of arc τ ,
AB, is covered by two consecutive windows AW and WB.

Proof. We define the sine curve contributing to this critical point θc is x(θ) =
κ sin(ξ(θ − θc)), (κ, ξ > 0) (Fig. 3(b)).Then the combined curve function will be

f(θ) =
{
sin(θ) (θ ≤ θc)
sin(θ) + κ sin(ξ(θ − θc)) (θ > θc)

(4)

We therefore get the tangent lines:

T ′
1 : f

′
θ−

c
= cos θc (5)

T2 : f ′
θ+

c
= cos θc + κ cos(ξ(θc − θc)) · ξ = cos θc + κξ

So the angle between T ′
1 and T2 is γ′ = arctan(cos θc + κξ)− arctan(cos θc).

Since κξ > 0,

arctan(cos θc + κξ) > arctan(cos θc) ⇒ γ′ > 0, (6)

that is, γ = 180◦ + γ′ > 180◦.

3. Real Light Detection
3.1. Critical Point Detection

From Proposition 1 we know that, for every cross section of the sphere with a
plane P such that S, the center of the sphere, lies on P (illustrated in figures
2(a),3(c)), there is a partition θ0 = a < θ1 < . . . < θn = β of the angle interval
[α, β] such that in each [θi−1, θi], we have E(θ) = bi sin θ + ci cos θ for some
constants bi and ci, 1 ≤ i ≤ n. By applying a standard recursive least-squares
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algorithm [4], we can use two consecutive windows to detect the local maximum
points of inner angles γ and distance defined by Eqn. (2). Starting from an initial
point A, any point B on the same arc can be determined uniquely by the angle
θ between SA and SB. Then we cover this part AB by two consecutive windows
AW and WB (Fig. 3(c)).

With points B and W moving from the beginning point A of the visible part
of the circle to its ending point C along the arc τ , we could estimate bi and ci

from the data in the two consecutive windows AW and WB respectively. Once a
local maximum point of Eqn. (2) is detected, it signifies that we have included
at least a ‘critical point’ in the second window WB. Because the inner angle γ
defined in Proposition 4 is very sensitive to noise, we use two different criteria
simultaneously to detect critical points. First we examine the distance defined
in Proposition 2, then if the distance is above a threshold Tdistance, we try to
locate the critical point by searching for the maximum inner angle γ along the
curve. In practice, for the distance criterion threshold Tdistance, we use a ratio
Tratio instead of the direct Euclidean norm to normalize for the varying light
intensities. Tratio is calculated from Proposition 2:

Tratio =

√
(bi − bi−1)2 + (ci − ci−1)2

max{
√

b2
i−1 + c2

i−1,
√

b2
i + c2

i }
(7)

where (bi−1, ci−1) and (bi, ci) are calculated from the two consecutive windows
AW and WB. Therefore, we can keep growing the first window AW to find
critical point pc using the recursive least-squares algorithm again. Then we fix
the initial point A at pc and keep searching for the next ‘critical point’ until we
exhaust the whole arc τ .

3.2. Segmenting the Surface

Definition 2. All critical points corresponding to one real light will be grouped
into a cut-off curve which is called a critical boundary.

Intuitively, each critical boundary of the sphere in our model is on a cross
section plane through the center of the sphere. Therefore, critical points can be
grouped into critical boundaries using the Hough transform in a (ζ, θ) angle-
pair parameter Hough space, i.e. we apply the cross-section plane equation in
the following form:

{
x · nx + y · ny + z · nz = 0
nx = r cos θ, ny = r sin θ cos ζ, nz = r sin θ sin ζ (8)

where (x, y, z) is the position of each critical point, (nx, ny, nz) is the normal
of the cross-section plane, r is the radius of the sphere and ζ, θ ∈ [0, 180]. Typ-
ically, we use one-third of the highest vote count in the Hough transform as
the threshold above which we detect a (ζ, θ) angle pair as a possible critical
boundary.
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Although critical points provide information to determine the light source
directions [21], they are relatively sensitive to noisy data. Since most real images
are not noise free, if we only use the Hough transform to extract critical bound-
aries, we will very likely find more boundaries than the real critical boundaries,
as can be seen from the data in Fig. 4. Noise can either introduce many spurious
critical points or move the detected critical points away from their true positions.
However, except from the critical points, the non-critical points can also provide
important information to determine the light source directions which are much
more robust than using critical points only. In this section, we will explore this
information in detail.

Light X Y Z
1 0.03 0.87 0.49
2 0.71 0.66 0.23
3 0.72 0.12 0.68
4 0.30 0.72 0.63
5 0.40 0.61 0.68

Boundary Vote # X Y Z
1 162 0.72 0.65 0.24
2 107 0.37 0.62 0.69
3 86 0.72 0.12 0.68
4 71 0.37 0.71 0.60
5 60 0.31 0.53 0.79
6 56 0.28 0.45 0.85
7 46 0.07 0.88 0.47

(a) (b)

Fig. 4. For an image of a synthetic Lambertian sphere with 5 lights listed in Table
(a): We extracted the potential boundaries in (b) by the Hough transform. The critical
boundary closest to light 1, is only the seventh boundary to be detected

Definition 3. Critical boundaries will segment the whole sphere image into sev-
eral regions, and intuitively, each segmented region is corresponding to one vir-
tual light. Each region is called a virtual light patch.

Once we get the patches corresponding to each virtual light, the directions
of virtual light sources can be calculated.

Let A, B, C and D be four points in a patch corresponding to one virtual
light source and nA, nB , nC and nD be their normals respectively. From the
Lambertian Eqn. (1), augmented by an ambient light term, we have



nAx nAy nAz 1
nBx nBy nBz 1
nCx nCy nCz 1
nDx nDy nDz 1


 ·



Lx

Ly

Lz

α


 =



IA

IB

IC

ID


 (9)

where IA, IB , IC and ID are brightness of each pixel in the source image corre-
sponding to four points A, B ,C and D respectively.

If nA, nB , nC and nD are non-coplanar, we can obtain the direction of the
corresponding virtual light source L, [Lx, Ly, Lz]T , and the ambient light inten-
sity α by solving the system of equations in (9). Ideally, we would solve for the
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directions of virtual light sources by using four non-coplanar points from corre-
sponding patches. Due to computation and rounding errors, four non-coplanar
points are not always enough for us to get a numerically robust estimate of
the direction of a virtual light source. Furthermore, it is not necessary that we
can always find several non-coplanar points in an interval of an arc in some
plane P as described above. To solve these problems we apply our method in
two dimensions instead of one dimension. Thus, we scan the image in both x
and y directions, and recover the two dimensional patches that are separated by
critical boundaries. Then from each two dimensional patch, we use the internal
non-critical points of each virtual light patch to solve for the direction of the
virtual light source1.

Proposition 5. If a critical boundary separates a region into two virtual light
patches with one virtual light each, e.g. L1, L2, then the difference vector between
L1 and L2, Lpre = L1 − L2, is the real light pre-direction with respect to this
critical boundary. Since we have already assumed that there are no antipodal
light sources, the real light direction will be either the pre-direction L1 − L2, or
its opposite L2 − L1 (Fig. 2(b)).

To find out the true directions, we pick a number of points on the surface,
e.g. P1, P2, ..., Pk and their normals, e.g. N1,N2, ...,Nk, then the true directions
will be the solution of:

E(Pj) =
∑
i∈Λ

max(eiLi · Nj , 0) + Lv · Nj , 1 ≤ j ≤ k. (10)

where Lv is the virtual light source of a possible frontal illuminant whose critical
boundaries could not be detected and will be checked as a special case.

Selecting points in the area inside the critical boundaries is a robust way to
detect real lights. This can be done using standard least-squares methods [4],
[14].

3.3. Finding the Real Lights

After we find all the potential critical boundaries, Proposition 5 provides a way
to extract real lights by calculating the light difference vector of two virtual light
patches of two sides along the critical boundary. However, one real light might
be calculated many times by different virtual light patch pairs, and since our
data will not be perfect, they will not be necessary exactly the same vector. We
introduce an angle threshold to cluster the resulting light difference vectors into
real light groups, that can be approximated by one vector.

By minimizing the least-squares errors of virtual light patches, we are able
to merge the spurious critical boundaries detected by the Hough transform, by
the following steps:
1 We only use points that are at least 2 pixels away from the critical boundary for
increased robustness to noise.
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1. Find initial critical boundaries by Hough transform based on all detected
critical points.

2. Adjust critical boundaries. We adjust every critical boundary by moving it
by a small step, and a reduction in the least-squares error indicates a better
solution. We keep updating boundaries using a “greedy” algorithm in order
to minimize the total error.

3. Merge spurious critical boundaries. If two critical boundaries are closer than
a threshold angle Tmergeangle (e.g. 5 degrees), they can be replaced by their
average, resulting into one critical boundary instead of two.

4. Remove spurious critical boundaries. We test every critical boundary, by
removing it temporarily and if the least-squares error does not increase,
we can consider it a spurious boundary and remove it completely. We test
boundaries in increasing order of Hough transform votes (intuitively we test
first boundaries that are not as trustworthy)

5. Calculate the real lights along a boundary by subtracting neighboring virtual
lights as described in Proposition 5.

4. Arbitrary Shape

So far, our method requires photographs of a sphere. In this section we extend
our method to work with any object of known shape. Obviously, there should
exist enough non-coplanar points on the object illuminated by each light to
allow for a robust least-squares solution. We assume no inter-reflections and no
shadows. These issues will be addressed in future work.

In order to extend our method, we need to address the following issues: unlike
the sphere model, we can not uniquely determine a point B on the same arc by
the angle θ, which is defined as the angle between two projected normals on plane
P, NAP and NBP , in which A is an initial point. Furthermore, it is possible that
in an arbitrary shape model several separated two dimensional patches share a
same virtual light which is illustrated in Fig. 5(a).

To avoid such problems, we map the normals from the surface of the arbitrary
shape back to a sphere. We detect all potential critical points based on the points
mapped on the sphere.

As expected, not every point on the surface of the sphere will be correspond-
ing to a normal on the surface of the arbitrary shape, so there will be many
holes on the mapped sphere, e.g. the black area in Fig. 5(b). Thus, many critical
points’ locations will be erroneously calculated even for noise-free data. Con-
sequently, the critical boundaries calculated by the Hough transform based on
these critical points might not be correct or even far away from their correct
positions in some cases. Since we can not recover these missing data from the
original image, it is impossible to adjust the critical boundaries detected by the
Hough transform itself. On the other hand, as long as the critical boundaries are
not too far from the truth, the majority of the points in a virtual patch will still
correspond to the correct virtual light (especially after the adjustments steps
described in Sec. 3.3. Thus it is still possible, using sparse points on the sphere,
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Fig. 5. (a) two dimensional patches containing points A and C respectively share a
same virtual light, i.e. LpA = LpC . (b) Vase and its sphere mapping. Both image sizes
are 400 by 400 and the black color represents points which are not mapped by the
normals on the shape’s surface.

to calculate the true light for each virtual light patch based on Proposition 5.
If two points have the same normal but different intensities, we use the brighter
one (assuming that the other is in shadow).

5. Experiments
5.1. Synthetic Sphere
We performed a number of experiments with synthetic sphere images to better
understand our method. In order to successfully detect the virtual light patch
there should exist enough points to obtain a least-squares solution for the system
of equations in (9), using at least 10 points in practice. Obviously, the larger the
input image, the more lights can be detected from one image. For comparison
purposes, we did experiments on images of five random light sources with up to
0.02 percent maximum noise level and the resulting angle estimation errors are
even less than the best reported result in [21] for four light sources (Fig. 6(a))
The following parameter values were chosen for the algorithm: sliding window
width w = 14 pixels (approximately 8 degrees), distance ratio Tratio = 0.2 and
angle threshold for boundary merging (described in Sec. 3.3) Tmergeangle = 5.0
degrees. We have also successfully detected 15 lights on 320 by 320 images with
a 0.45 degree average error and 1.64 degree maximum error. Results are shown
in Fig. 7. In all the segmented light patch images in this report, detected critical
points are denoted with green dots. Typical running times for moderate noise
levels and seven light sources are in the order of 5 minutes, on a Pentium4
1.8 Ghz processor. The more merging and adjustment steps the algorithm goes
through the slower it becomes. Methods to speed up the computation of the
least-squares solution, would improve the performance of the algorithm for noisy
environments.

5.2. Real Sphere
We used a blue rubber ball illuminated with five light sources. The original photo,
taken by an Olympus C3030 digital camera was cropped to 456 by 456 pixels
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Fig. 6. Error estimation for different noise levels with five random light sources: (a)
Synthetic sphere (b) Synthetic vase

(a)original image (b)generated image (c)critical boundaries

Fig. 7. Synthetic sphere image: a synthetic Lambertian ball illuminated by fifteen light
sources. Image size: 320x320. Green dots on (c) represent the detected critical points.

with the ball at the center of the image. Sampling the blue channel as bright-
ness, the color image is converted to gray-scale with 256 levels. The following
parameter values were used: sliding window width w = 30 pixels (approximately
12 degrees), distance ratio Tratio = 0.5 and angle threshold for boundary merg-
ing (described in Sec. 3.3) Tmergeangle = 5.0 degrees. Although the surface did
not conform very closely to the Lambertian model, the correct number of light
sources was detected and the estimated lights appear to be reasonably close to
the truth (no ground data was available).

5.3. Synthetic Arbitrary Shape

We used a vase mess with 14995 vertices and 5004 triangles 2. The rendered image
size is 320 by 320 and the mapped sphere is of the same size. For the vase images
we did the same experiments as for the synthetic Lambertian sphere image. The
following parameter values were chosen for the algorithm: sliding window width
w = 14 pixels (approximately 8 degrees), distance ratio Tratio = 0.2 and angle
threshold for boundary merging (described in Sec. 3.3) Tmergeangle = 5.0 degrees.
We have also successfully detected 15 lights on 320 by 320 images with an 0.56
2 We used a VRML file downloaded from
http://www.vit.iit.nrc.ca/3D/Pages HTML/3D Models.html
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(a)original image (b)generated image (c)error image

(d)initial (e)resulting critical boundaries

Fig. 8. Real sphere image: an almost Lambertian rubber ball with five light sources.
Image size: 456x456. (a) the original image, (b) the generated image of a Lambertian
ball with the five light sources extracted from (a), (c) the error image: darker color
means higher error, (d) the initial eight boundaries and virtual light patches extracted
by the Hough transform, and (e) the resulting critical boundaries and virtual light
patches calculated by our algorithm, three out of the initial eight boundaries were
automatically merged and the locations of the other five boundaries were automatically
adjusted.

degree average error and 2.09 degree maximum error. Experiments on images
of five random light sources with up to 0.02 percent maximum noise level are
reported in Fig. 6(b).

5.4. Real Arbitrary Shape

We used a rubber duck illuminated by four light sources. The original image
and 3D geometry was captured by the range scanner system described in [7]. In
Fig.10(a) we can see that there are some inaccuracies and noise on the recovered
3D shape. The cropped image is 531 by 594 pixels with the duck at the center
of the image. Based on the size of the duck, the mapping sphere is a 400 by 400
Lambertian ball. The following parameter values were chosen for the algorithm:
sliding window width w = 30 pixels (approximately 13.5 degrees), distance ratio
Tratio = 0.5 and angle threshold for boundary merging (described in Sec. 3.3)
Tmergeangle = 5.0 degrees.

In Fig. 10(e) we can see that in the rightmost region of the mapping sphere
one light critical boundary is lost due to data sparseness (as the light is nearly
frontal) and cannot be recovered by other critical points or the Hough transform
itself. But if we examine the two outmost regions, it is still possible to recover
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(a) original image (b) generated image (c) critical boundaries

Fig. 9. Synthetic vase image: a synthetic Lambertian vase with fifteen light sources.
Image size: 320x320. (a) the original image, (b) the generated image of a Lamber-
tian vase with the fifteen light sources extracted from (a), (c) the resulting critical
boundaries and virtual light patches calculated by our algorithm.

(a)3D shape (b)original image (c)generated image (d)error image

(e)mapping sphere (f)initial (g)resulting critical boundaries

Fig. 10. Real arbitrary shape image experiment: a rubber duck illuminated by four
light sources. Image Size: 531x594(duck), 400x400(mapping sphere). (a) the 3D shape
of the duck frontal surface, R,G,B color values represent the x,y,z components of the
normal. Notice that the recovered 3D shape has a high level of noise, (b) the origi-
nal image, (c) the generated image of a Lambertian duck with the four light sources
extracted from (b), where for completeness purposes the eyes and beak were copied
from the original image manually as they have different albedo and non-Lambertian
reflectance characteristics. The noise in the generated image is due to the inaccuracies
in shape estimation. Nonetheless illuminant estimation is still possible, (d) the error
image: darker color means higher error, (e) the initial mapping sphere, where blue
color represents points which are not mapped by the normals on the shape’s surface,
(f) the initial six boundaries extracted by the Hough transform, and (g) the resulting
critical boundaries calculated by our algorithm, three of the initial six boundaries were
automatically removed and the locations of the other three boundaries automatically
adjusted. The two outmost regions A and B are a special case where missing lights are
calculated based on virtual light patches.
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the missing light(s). For example, in this experiment, after calculating all the
real lights: L1 = 77.59 × (0.81, 0.49, 0.32), L2 = 66.81 × (−0.72, 0.27, 0.64) and
L3 = 78.06 × (−0.95, 0.10, 0.30) along three critical boundaries, we calculate
the virtual light LvA and LvB and then calculate for the two outmost virtual
light patches A and B: L4 = LvB − L1 = 61.90 × (−0.11,−0.33, 0.94) and
L5 = LvA −L2 −L3 −L4 = 0.00× (0.00, 0.00, 0.00). L4 is clearly a missing light
whereas L5 is not.

Notice that the recovered 3D shape in Fig. 10(a) has a high level of noise.
The noise in the generated image in Fig. 10(c) is due to the inaccuracies in shape
estimation. Nonetheless illuminant estimation is still possible.

High resolution versions of the experiment images in this paper can be found
at http://www.cs.sunysb.edu/ samaras/res/multilight.html

6. Conclusions and Future Work

In this paper we presented a method for the estimation of multiple illuminant
directions from a single image. We do not require the imaged scene to be of
any particular geometry (e.g. a sphere). This allows our method to be used with
the existing scene geometry, without the need for special light probes when the
illumination of the scene consists of directional light sources. In our experiments
with real images, the proposed algorithm performs well when the known geom-
etry is imaged by 300 by 300 pixels at least. Experiments on synthetic and real
data show that the method is robust to noise, even when the surface is not com-
pletely Lambertian. Future work includes study of the properties of arbitrary
surfaces, so that we can avoid the intermediate sphere mapping, speeding up of
the least-squares method and extending the method to non-Lambertian diffuse
reflectance for rough surfaces. Furthermore, we intend to explore combinations
of our method with shadow based light estimation methods and with specularity
detection methods.
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