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Abstract

We present a model based approach to the integration
of multiple cues for tracking high degree of freedom artic-
ulated motions. We then apply it to the problem of hand
tracking using a single camera sequence. Hand tracking
is particularly challenging because of occlusions, shading
variations, and the high dimensionality of the motion. The
novelty of our approach is in the combination of multi-
ple sources of information which come from edges, optical
flow and shading information. In particular we introduce
in deformable mode theory a generalized version of the
gradient-based optical flow constraint, that includes shad-
ing flow i.e, the variation of the shading of the object as it
rotates with respect to the light source. This constraint uni-
fies the shading and the optical flow constraints (it simpli-
fiesto each one of them, when the other isnot present). Our
use of cue information fromthe entirety of the hand enables
us to track its complex articulated motion in the presence
of shading changes. Given the model-based formulationwe
use shading when the optical flow constraint isviolated due
tosignificant shading changesinaregion. We use a forward
recursive dynamic model to track the motion in response to
3D data derived forces applied to the model. The hand is
modeled as a base link (palm) with five linked chains (fin-
gers) whilethe allowable motion of the fingersis controlled
by recursive dynamics constraints. Model driving forces
are generated from edges, optical flow and shading. The
effectiveness of our approach is demonstrated with experi-
ments on a number of different hand motions with shading
changes, rotationsand occlusions of significant parts of the
hand.

1. Introduction

In this paper we present amodel based approach to high
degree of freedom articulated motion tracking, based on the
integration of visua cues and apply it to the problem of
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hand tracking using a single camera sequence. Hand track-
ing has received significant attention in the last few years,
because of itscrucial rolein the design of new human com-
puter interaction methods, gesture anaysis and sign lan-
guage understanding. Glove based devices capture human
hand motion directly, but are expensive and hard to use.
Vision-based hand tracking is a cost-effective, non invasive
aternative. Serious challenges lie in the high number of
degrees of freedom and the problem of occlusions.

Two genera approaches have been suggested for this
problem. Model based approaches try to estimate the po-
sition of a hand by projecting a 3-D hand model to im-
age space and comparing it with image features (fingertips
[26, 25, 27], line segments [26]). A spline based hand shape
model was used in [24] to minimize differences between the
silhouettes. Others[30, 26] have used stereo to avoid occlu-
sions. Appearance based approaches estimate hand postures
directly from the images after learning the mapping from
image feature space to hand configuration space [29, 28].
Such systems are more useful for recognizing discrete hand
states than for genera purpose hand tracking.

Study of motion and shading together has been recently
formalized [21, 23] and extended to multiple views [22].
Our approach is model-based and hence can work with a
singleview. Our first contribution is in the combination of
cue forces from edges, optical flow and shading. In particu-
lar we introduce in deformable model theory a generalized
version of the gradient-based optical flow constraint, that in-
cludes shading flow i.e., the variation of the shading of the
object asit rotateswith respect to the light source. This con-
straint unifies the shading and the optica flow constraints
and degenerates to each one of them when the other is not
present. Although optica flow and edges in deformable
models have been used in the past [20], as well as shad-
ing [19], these two methods were applied to different prob-
lem domains (moving and static objects respectively). In
this paper we combine them to correct for the errors due to
the brightness constancy assumption. We use cue informa-
tion from the entirety of the hand and we are able to track



its complex articulated motion in the presence of shading
changes. Given the model-based formulation we augment
the optical flow constraint with shading information.

The hand can have as many as 26 degrees of freedom
when we model it as a multiple open chain structure. The
dynamic/kinematic problem of such alarge system, which
contains not only open chains but also closed chains, can be
modeled as a sub-problem of robotic mechanisms. There
are many forward and inverse dynamics simulation tech-
niques for human and robotic motion [14], [16], [18] [10],
[17], [13], [15]. The second contribution of our approach
is the use of a forward recursive dynamic model, to track
motion in response to 3D data derived forces applied to the
model. The hand ismodeled as a base link (palm) with five
linked chains (fingers). Using such a formulation we limit
the allowable motion of the fingers with the use of recur-
sive dynamics constraints. The model’s driving forces are
computed from image cues such as edges, optical flow and
shading.

In our formulation we compute from edge, optical flow
and shading cue constraints 2D data-based forces. The per-
spective camera model is used to convert these 2D forces
into 3D forces that drive the hand model. These 3D forces
are then used to calculate the acceleration of our dynamic
hand, its new velocity and new position. Sincethisis a sec-
ond order dynamic hand model we use it to predict finger
motion from one frame to the next so that we are closer
to the data in the next frame. To avoid unnecessary cal-
culations of the shading constraint we monitor the intensity
changesin several hand areas duringtracking and useit only
if these changes are significant.

The dynamic hand model is described in Sec. 2. Sec.
3 presents model initiaization and generation of image
forces. Sec. 4 introduces illumination information on the
optical flow constraint. Recursive dynamics of the hand
model and congtraints on the alowable motion are pre-
sented in Sec. 5. Tracking experiments are shown in section
6, ranging including complex palm-finger tracking with sig-
nificant rotation.

2. Hand M odd

In our forward dynamics formulation, the hand model
(Fig. 1(a)) consists of a base link (palm), and five link-
chains (fingers) connected to the base link through five two-
degree-of -freedom revolutejoints. Each finger isthreelinks
connected by two one-degree-of-freedom revolute joints.
The finger parts are modeled as cylinders and the pam is
model ed as a six-rectangle-side-solid.

A two-degree-of-freedom revolute joint can be sim-
plified as two one-degree-of-freedom revolute joints con-
nected by a zero length and zero mass link, (dummy
[ink)[4]. In the hand model there are 21 links including 5

dummy linksand 20 one-degree-of -freedom revolutejoints.
We number the palm (base link) as link 0. For each finger
thereare 4 linksincluding one dummy link and 4 joints. The
joint connecting the finger to the pamisjoint 1, and link 1
connectsjoint 1 andjoint 2 (Link 1 isthe dummy link).Joint
i connectslink (i —1) and link ; link 7 linksjoint ¢ and joint
(¢ +1). Each link has alocal coordinate frame fixed to its
starting end.

The above geometric model is based on the measure-
ments of an average mae. The user specifies the joint loca
tionsin the image to initialize modd finger lengths. When
the hand is illuminated by a directiona light, we recover
surface normal fields of parts of the hand by fitting this ba-
sic model (based on previous deformable model methodol -
ogy that uses shape from shading and edges [19]) to images
of the hand. These normals will be used to caculate the
generalized shading flow constraint.

3. Image Based Cues
3.1. Fitting the 3-D Modd to 2-D images

Thisapproach needs ageometric 3-D model to transform
2-D forces into 3-D ones which will be applied on the dy-
namic model. Initially the mode is fitted to a known pose
of the hand, as can be seen in Figure 1(b). At this stage of
the work, we assume knowledge of the camera parameters.

At each frame visibility checking is performed in order
to match correctly image and model points. The computa-
tion of the relative motion to the palm of occluded fingers,
is based on the rigid motion of the hand. When the rela
tive motion is not too large, we pick up the finger edges
when they reappear. Thismethod will fail when the fingers
undergo significant relative motions when occluded. In or-
der to track them successfully in that case, other methods
should be integrated in the framework, such as appearance
based methods, which is outside the scope of this paper.

3.2. Force Calculation for Dynamic M odel

The 3-D finger motion is recovered by fitting the model
to image-derived data. The external forces are applied on
the dynamic model, then the rotation and trandlation of fin-
ger joints are calculated. Figure 1(c) shows two kinds of
typical finger motion. We obtain the forces by calculating
displacements using the following procedure.

o Extract thefinger edges using the Canny edge operator.

¢ A curvature-finding operator [7] isused tofind the base
points of each finger such as B;, B; shown in Fig-
ure 1(d). The edges between B; and B; correspond to
the finger segment. The edge points of sub-segments
can be derived from the corresponding 3-D pointsin
the 3-D mode during tracking.
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Figure 1. (a) Dynamic Model of Hand. (b) Initial posture of hand model. (c)Finger motion and force
from edge displacement. (d)finger segmentation and base points. (e) Representing the projection of
the model’s articulated segments by their medial axis (thick white line)

¢ Because the hand motion will result to the change
of base-point position between the current- and after-
frame, a normalization process is necessary to match
the base-points in current- and after- frame according
to the distance of two base-pointsand the length of fin-
ger segment.

o Let py(¢) and pi+1(é) corresponding edge pointsin k-
thframe and & + 1-thframe. The 2-D force feq4. from
edge displacement can be calculated by the equation.

fedge(i) :Pk+1(i) _pk(l) (l)
Another force f,,,; can be directly derived from the opti-
ca flow of theimage. In the optica flow equation:

Ieu+ Iyv+ f; =0, (2

thetemporal differential e = (u, v) a position (x, y) will be
considered as the externa force. The optical flow of hand
motion is computed by the L ucas-Kanade method[9].

Optica flow near finger edges is not as reliable due to
possible mismatches of edge points, so we will only con-
sider the optical flow of theinside area of thefinger segment
(obtained from the projection of the 3-D model intheimage
plane). For optica flow computation, we select pointswith
significant gradient magnitude only. In Fig. 2 we see the
edge forces and the optical flow forces, applied to different
regions of the image.

3.3. Force transformation from 2-D to 3-D

We assume a perspective projection model. Therefore,
the point x = (z,y, z) in theworld coordinate system and
the point x. = (., y., z.)* in the camera coordinate sys-
tem ensure the following equation.

X = RCXC + Tc; (3)

where, T and R are trandation and rotation matrices.

Following previous work [8], by taking the time deriva-
tives of the perspective projection equation, with an image
point x, we get xp = Hxe = H(R; 'x) , with

| fle 0 —xc /2 f
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The focal length f is obtained by pre-caibration of the
camera. According to deformable modd theory these 3D
forces are converted to generaized forcesf, = J"f3, on
the model parameters q, with J = Jx(x,y, z)/dq the Ja
cobian of the model points, by q = f,. Consequently,
the generalized forces calculated from 2-D images will be
f, = (J,3) £y with J, = HR-! the Jacobian of the
model pointsunder perspective projection.

To apply the external forces on the dynamic model, we
transform the individua forces obtained from edges and
the optical flow within every hand segment into one total
force and torque to be used in the recursive dynamic frame-
work. The total force and torque for each hand segment are
F=>"fi,> " rixfrespectively. f; and r; are the
individual force vector and force position vectors.

4 A new constraint

In previous work [19] a methodology was devel oped
for the incorporation of illumination constraints (any type
that is differentiable w.r.t. the model parameters) in a de-
formable model formulation. In that work, the fitting of
the model was done based on a static image, i.e. that data
did not change during the fitting process. Hence, any par-
tial derivativeswith respect to timein theillumination con-
straint C were zero. Here we will generalize our constraint
formulation to include image motion. Instead of oneimage,
the fitting process will be guided by a sequence of moving
images.

We will start by taking the reflectance equation. Let us
assume that we have a reflectance function of the general
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Figure 2. Forces applied to the hand model, and the effects of shading. (a) Edge forces (b) optical
flow forces in the interior of the model. (d) is the change in average intensity in a small smooth area
of the hand (depicted in (c), when the illumination comes from the top (blue line) and from the side

(green dashed line) respectively.

form Iy = L(l,, q), where I isthe observed image inten-
sity and 1, are thelighting model parameters, which can be
differentiated with respect to the normal » of the surfaceand
q are the hand model parameters. This means that the re-
flectance of the surface islocally computable and that there
are no global illumination effects. We aso assume that the
illumination parameters do not change with time. The con-
straint equationisC' = Iy, — L(l,, q), and we differentiate
it w.r.t. time, and apply Baumgarte stabilization [3] in order
to obtain

C(q,t) + aC = Cqa + C; + aC = 0, (5)

In this case we cannot ignorethe partial derivativesC; w.r.t.
time. Therefore, using the above formulaswe expand Equa-
tion 5 to:

8IL . 8L(1p, q) . 8IL 8L(1p, q)
2qa T T 0q Yo T o
(6)

We noticethat if J isthe Jacobian of the model points, and
J, is the Jacobian of the model points under perspective
projection, as described in Sec. 3, then

%c’ﬁr%zvlﬂp Jc'1+%L (7
is the left hand side of the model based optical flow con-
straint equation [20]. In model based optical flow, motion
field vectors are vectors of velocities of mode points, and
hence x = Jq applies. Typicaly in the literature [11] this
optical flow term is set to 0. Thisis correct in the case of
ambient only illumination. For the case of light sources at
infinity it is aso correct for pure trandational motion. For
thesimplest case of aLambertian surfacewith alight source
at infinity it can be shown [12] that if w isthe angular veloc-
ity of the rotational motion and 1 the light source direction,
the magnitude of the error between thetrue motion field and
the apparent (and computable) optical flow is

[l(w x m)]|

|Dv|=p
IVE|

(8)

ta(ly — L(ly.q) = 0

Thiserror issmall when the change of gradientisbig, butin
the case of smooth surfaces this effect becomes much more
pronounced. Similarly % = 0 since normals change
based only on the model parameters q.

This means that when there is no motion the constraint

equation simplifies to the shading constraint. Therefore

8IL . 8L(1p, q) . 8IL

a1 Taq T
encompasses both constraints. In the case of asmooth mov-
ing object (9) alowsto deal with errorsdueto directed illu-
mination and offers the possibility of recovering the motion
of relatively smoothly shaded surfaces. Fig. 2(c), (d) shows
thechange in average intensity in asmall smooth area of the
hand, when the illumination comes from the top and from
the side respectively. In the second case, changes in thein-
tensity of the pointsare dramatic.

—a(L(lp,q)— 1) =0 (9)

5 Dynamic Tracking of Hand Motion

In our methodology we estimate the hand motion in re-
sponse to the applied 3D forces on the hand as a Forward
Dynamics problem where given the external forces we want
to compute the velocity and position of the palm.

Since we use a recursive dynamic formulation we will
use Featherstone'q2], [5] spatial notation to model our
kinematic and dynamic variables. We integrate the con-
straint of Eq. 9 in the above formulation to determine the
vector q of the model’s degrees of freedom which includes
thejoint variables, global rotation and trandation.

Furthermore, human fingers are not ideal dynamic links,
their joints have upper and lower bounds. Therefore, we
need to solve the above dynamic equations under joint limit
constraints. These joint limits which constrain the relative
motion of fingers together with our dynamic formulation
which does not allow the inter-penetration of fingers make
hand tracking significantly more robust. Our method has
the following steps:



1. Attimet, mark the jointsthat reach their joint limits.

2. Solvethe dynamic equationsof the hand at time ¢ + d¢
recursively.

3. For each finger, starting at joint 1 (the joint that con-
nects the palm and the finger), mark thefirst joint that
keeps at itsjoint limit during the time period from ¢ to
t + dt. If thereisno such joint, go to step 6.

4. Fix the joints marked at step 3, and merge two links
connected by afixed joint to one link. Update the dy-
namic hand model.

5. Go back to step 2.

6. Output the status of the dynamic model of the hand at
timet + dt. Increasetimet = ¢ + dt, and go to step 1.

6. Experiments

We performed a series of experiments to test our method
with a variety of hand motions. All our experiments
run on a PlIl 500MHz processor a approximately 4
frames per second. Two similar datasets were taken under
two different illumination conditions. The first dataset
(Fig. 3) was taken with the light coming from the top
of the hand, thus minimizing the variations in intensity
w.rt. theillumination. The second dataset (Fig. 4) was
taken with the light on the side (approx 50 degrees) so
illumination effects are pronounced. Each sequence was
approximately 100 frames. Due to space limitations we
include only a few frames in this paper. The full se-
guences and the tracking results are available as movie files
http://ww. cs. sunyshb. edu/ ~ samar as/ hand/ .
Files trk_top. mpg and trk_si de. npg respectively.
To show the accuracy of the tracking we project the
segments of the hand model back onto the image. We
represent the segments by their media axes (Fig. 1 (€)).
At the same web site, an additiona data sequence where
fingers flex to a closed position and unflex back to open
without losing track isin moviefilet r k_f | ex. npg and
the full model while tracking but rendered from a different
viewpoint in movie file mdl f| ex. npg. From such a
viewpoint, it can be seen that our dynamic model alows
for accurate tracking of segments that are almost occluded
from the camera.

In figure 3, we present a number of complex rotationa
motions for the fingers and for the whole hand. First the
fingers bend away from the camera, then the wholehand ro-
tates with significant occlusions. Neither edges nor optical
flow aone would have succeeded in tracking this sequence.
Finaly in figure 4 we demonstrate the increased power of
the shading flow constraint, since classic optica flow based
on the brightness constancy assumption fails dueto the sig-
nificant appearance changes from frame to frame duetoil-
lumination. We notice that tracking is quite successful in
these examples. There are some dlight inaccuracies track-
ing the thumb, here modeled as a 3 segment finger with one

segment of zero lebgth, whereas a better model would have
2 segments only

7. Conclusions

In this paper we have augmented traditional optical flow
and replaced it with a more general equation that includes
shading information. We have used this formulation within
a deformable model framework and we were able to track
difficult hand motions under a variety of illumination con-
ditions. To improve the efficiency of the approach we use
the augmented equations only in areas where the optical
flow constraint is significantly violated. Our dynamic hand
model formulation allows the integration of multiple cues
and for robustness we aso use edges in our tracking. We
have shown tracking results for simple and complex palm
and finger motions. Future work includes better occlusion
recovery handling using Kaman Filtering and the incorpo-
ration of other sources of visual information such as color,
in order to work on cluttered backgrounds.
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Hand Rotation
Figure 4. Eight frames from alonger sequence tracking flexing of fingers and hand rotation. Sideways
illumination causes significant deviations from classical optical flow constraint during rotation. The
generalized optical flow constraint with shading allows for accurate tracking. First and third row:
Original data. Second and fourth row: The accuracy of the tracking is demonstrated by projecting
the medial axes of each model finger (white lines) on the tracked data. The full sequence can be seen
in movie clip file htt p: // www. cs. sunysb. edu/ ” samar as/ hand/ t r k_si de. npg.



