
CSE 548 Homework Assignment 5 Solutions/Hints

1 (Textbook 22.2-7)
Claim. In a breadth-first search of an undirected graph, the following properties hold:

• There are no back edges and no forward edges.

• For each tree edge {u, v}, we have d[v] = d[u] + 1.

• For each cross edge {u, v}, we have d[v] = d[u] or d[v] = d[u] + 1.

Now, we run the breadth-first search on the graph and label all vertices uwith an even d[u] as babyfaces
and all vertices v with odd d[v] as ”heels”. If there is an edge between two nodes of the same label,
then we answer NO; otherwise, we answer YES. Note that if the graph is not bipartite, then there must
be an edge between two babyfaces vertices or an edge between two ”heels” vertices. So, our algorithm
will report NO correctly.

Conversely, if the algorithm outputs NO, then G must have an edge {u, v} with both d[u] and d[v]
even or both odd. However, by the above claim, the only possible such cases happen when {u, v} is a
cross edge with d[u] = d[v]. So, the graph G contains a simple cycle of odd length: Let t be the lowest
common ancestor of both u and v. Then, the path from t to u using tree edges, plus the edge {u, v},
plus the path from v to t following the reversed tree edges, form a cycle of odd length (because the
distance from t to u and the distance from t to v are equal). It follows that G is not bipartite.

2 (Textbook 22.3-13, modified)
Suppose we perform a DFS on the graph G starting with vertex u. If there is a forward or cross edge
(v, w) in the DFS tree rooted at u (i.e., both v and w are descendants of u), then G has two paths from
u to w: one uses the tree edges, the other uses tree edges from u to v followed by the forward or cross
edge (v, w).

Conversely, assume G is not singly connected so that there are two paths from some node u to
another node w. Then, we claim that if we perform a DFS on G starting with u, then the DFS tree with
root u must contain a forward edge or a cross edge. To see this, we observe first that w must be in the
DFS tree rooted at u, since w is reachable from u. Then, there must be a path π : u→ w that contains
at least one non-tree edge. Let the first non-tree edge in π be (x, y). Since this is the first non-tree edge
in π, π must contain a subpath π1 : u→ x that consists of only tree edges. Therefore, (x, y) cannot be
a back edge. (Suppose (x, y) were a back edge. Then, y would be an ancestor of x and would be in π1,
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and π would visit y twice and not a simple path.) It follows that (x, y) must be either a forward edge
or a cross edge.

In addition, we observe that a forward or cross edge (x, y) can be recognized by checking that y
is BLACK when the edge (x, y) is examined in line 4 of the procedure DFS-VISIT (see page 604 of
the textbook). The observation suggests a O(|V | · |E|) algorithm to determine whether G is singly
connected:

a. For each u ∈ V , run DFS-VISIT(u). (Note that, for each u, we only run DFS- VISIT(u), and
when its finished, we do not check whether there are still white vertices in G. That is, we only
visit all nodes in the DFS tree rooted at u. We do not visit other trees.)

b. During the execution of DFS-VISIT(u), we add a line between line 7 and line 8:
else if color[v]=BLACK then return NO .

c. If we finish all DFS-VISIT(u) without returning NO, then return YES.

3 (Textbook 22.4-3, modified)

An undirected graph is acyclic (i.e., a forest) if and only if a DFS yields no back edges.

• If there is a back edge, there is a cycle.

• If there is no back edge, then by Theorem 22.10, there are only tree edges. Hence, the graph is
acyclic.

Thus, we can run DFS: if we find a back edge, there is a cycle.

• Time: O(V ). If we ever see |V | distinct edges, we must have seen a back edge because (by
Theorem B.2 on p.1174) in an acyclic (undirected) forest, |E| ≤ |V | − 1.

4 (Textbook 22-3 Euler tour)

a It is clear that if there is an Euler cycle, then each time the cycle passes through a vertex u, it adds
one in-degree and one out-degree to u. So, u must have the same in-degree as the out-degree.

Conversely, if a graph G has the property that each vertex u has the same in-degree as the out-
degree, then we can create an Euler tour as follows: Starting from an arbitrary vertex, travel along
edges so that each edge is used at most once, until it returns to the starting vertex. This can always
be done because each vetex has the same number of in-edges and out-edges, and so the traveling route
would not stop at any node other than the initial vertex. Now, this traveling creates a cycleC0. Consider
the graph G1, which is the graph G with the edge in C0 removed (denoted by G\C0), we note that G1

has the property that each vertex has the same in-degree as the out-degree. In addition, each connected
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component of G1 must contain at least one vertex in C0 (otherwise, this component would have been a
separate component in the original graph G). Now, for each connected component of G1, recursively
find an Euler tour of it. Merge all these tours with cycle C0, they become an Euler tour of G.

b The following pseudocode takes a connected, directed graph G with all vertices of equal positive
in-degree and out-degree and returns an Euler circuit C of G.

EULER-CIRCUIT(G)
Choose a vertex v ∈ V (G)
Construct a cycle C in G with v as one vertex
while length(C) < |E(G)| do

Choose a vertex w on C of positive degree in G\C
Construct a cycle C1 in G\C through w
Merge C1 to C at w to obtain a longer cycle C2

let C ← C2

end
return C
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