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We study the problem of finding lowest common ancestors (LCA) in trees and directed acyclic graphs (DAGs). Specifically, we
extend the LCA problem to DAGs and study the LCA variants that arise in this general setting. We begin with a clear exposition
of Berkman and Vishkin’s simple optimal algorithm for LCA in trees. The ideas presented are not novel theoretical contributions,
but they lay the foundation for our work on LCA problems in DAGs. We present an algorithm that finds all-pairs-representative
LCA in DAGs in Õ(n2.688) operations, provide a transitive-closure lower bound for the all-pairs-representative-LCA problem,
and develop an LCA-existence algorithm that preprocesses the DAG in transitive-closure time. We also present a suboptimal but
practical O(n3) algorithm for all-pairs-representative LCA in DAGs that uses ideas from the optimal algorithms in trees and DAGs.
Our results reveal a close relationship between the LCA, all-pairs-shortest-path, and transitive-closure problems.

We conclude the paper with a short experimental study of LCA algorithms in trees and DAGs. Our experiments and source
code demonstrate the elegance of the preprocessing-query algorithms for LCA in trees. We show that for most trees the suboptimal
Θ(n log n)-preprocessing Θ(1)-query algorithm should be preferred, and demonstrate that our proposed O(n3) algorithm for all-
pairs-representative LCA in DAGs performs well in both low and high density DAGs.

Keywords: Lowest Common Ancestor (LCA), Directed Cyclic Graph (DAG), Range Minimum Query (RMQ), Shortest Path,
Cartesian Tree.

1. INTRODUCTION

One of the fundamental algorithmic problems on trees is how to find the lowest common ancestor (LCA) of a given
pair of nodes. The LCA of nodes u and v in a tree is the ancestor of u and v that is located farthest from the root.
The LCA problem is stated as follows: Given a rooted tree T , how can T be preprocessed to answer LCA queries
quickly for any pair of nodes? The LCA problem has been studied intensively both because it is inherently beautiful
and because fast algorithms for the LCA problem can be used to solve other algorithmic problems.

In this paper we introduce a natural extension of the LCA problem to directed cyclic graphs (DAGs), and we study
the LCA variants that arise. Many combinatorial problems that require finding nearest common ancestors cannot
be solved using the tree-LCA algorithm because the ancestor queries apply to more complicated directed structures.
Nykänen and Ukkonen [23] give a linear-time preprocessing, constant-time-query algorithm for the LCA in arbitrarily
directed trees. They ask whether it is possible to preprocess a DAG in o(n3) to support Θ(k)-time set-LCA queries,
where a set-LCA query returns all k lowest common ancestors of the given pair. In compiler design, the idea of
preprocessing the object-inheritance taxonomy for fast LCA queries was introduced by Ait-Kaci, Boyer, Lincoln, and
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Nasr [1]. They consider the problem of LCA on lattices and lower semi-lattices (where a node pair has a unique
LCA), which are used to represent inheritance graphs. Ducournau, Habib, Huchard, and Spinrad [11,17] consider the
problem of finding modular coverings in inheritance graphs (the LCA can be used to find a maximum covering). Their
objective is to decompose lower semi-lattices into modules that can be queried faster.

We develop algorithms for efficiently answering lowest-common-ancestor queries in DAGs. An LCA w of nodes
u and v in a DAG is an ancestor of both u and v where w has no descendants that are also ancestors of both u and
v. We present an o(n3) all-pairs algorithm for answering representative lowest-common-ancestor queries on DAGs
in constant time. Our algorithm is also the first o(n3) preprocessing algorithm for constant time LCA queries in
lower semi-lattices. It is an open question whether our approach can be extended to answer the more general set-LCA
question posed by Nykänen and Ukkonen.

Lowest-common-ancestor queries in general DAGs appear in a variety of applications, including the following:

• Object Inheritance in Programming Languages – Object-oriented programming languages such as C++ and Java
provide object inheritance, whose structure is analyzed in various stages of compilation and execution. Objects
are instances of classes organized in a partial order, and their inheritance depends on the temporal order in which
the objects are defined. The idea of formalizing object inheritance in lattice-theoretic terms has been proposed
by [1, 12, 13, 16, 18, 21, 24] and others. The LCA operation is central to such object inheritance formalizations
because it is the natural method to resolve object dependence.

• Lattice Operations for Complex Systems – Algorithms on lattices are used to model the dynamic and static
behavior of complex systems arising in distributed computing [8, 20, 22]. LCA queries arise in computing the
covering of maximal ideal lattices.

1.1. Results

We show how to preprocess the DAG to answer queries in constant time about whether nodes x and y have a
common ancestor. We improve on the naïve O(n3) algorithm and present an Õ(nω) algorithm, where ω ≈ 2.376 is
the exponent of the fastest known matrix-multiplication algorithm of Coppersmith and Winograd [10].7

We give an algorithm that solves the all-pair representative-LCA problem for DAGs in Õ(n
ω+3

2 ) ≈ Õ(n2.688) time
by establishing a relationship between the LCA and the all-pairs-shortest-path problem. The best known preprocessing
algorithm for lower semi-lattices runs in O(n3) operations for O(log2 n) queries [1]. Lower semi-lattices have a
unique LCA for each node pair, and our all-pair representative-LCA algorithm is the first to find all-pairs LCAs in
lower semi-lattices in o(n3). We also show a complementary lower bound for the all-pairs LCA in DAGs by giving a
reduction from the transitive-closure problem.

We show a chain of reductions between the all-pairs-LCA problem, the all-pairs-shortest-pathproblem, the transitive-
closure problem, and variants of these problems. Specifically, we reduce the all-pairs-representative-LCA problem to
the all-pairs-shortest-pathproblem, the transitive-closure problem to the all-pairs-representative-LCA problem, and the
all-pairs-common-ancestor-existence problem to the transitive-closure problem. This relationship is given in Figure 1.

We present a simple optimal LCA algorithm for trees, which is just a sequentialization of the more complicated
PRAM algorithm of Berkman and Vishkin [4]. We present the algorithm to provide a clear exposition, and note that
the algorithm was known to Berkman and Vishkin. In an appendix we present an experimental study, comparing the
algorithm with a naïve algorithm and an efficient but asymptotically suboptimal algorithm. Through this presentation,
we lay to rest the folk belief that LCA is too complicated to teach and implement.

We introduce an easily implementable LCA algorithm for DAGs. Like the tree-LCA algorithms, this algorithm
answers LCA queries by answering RMQ queries. We compare this new algorithm to an intelligent straightfor-
ward algorithm and to an algorithm based on the transitive closure. The straightforward algorithm outperforms the

7We say that f(n) = Õ(g(n)) if ∃c such that f(n) = O(g(n) logc n), and f(n) = Θ̃(g(n)) if ∃c such that f(n) = Θ(g(n) logc n).
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FIG. 1 Reduction chain of problems investigated in this paper. Arrows are in the reduction direction.

transitive-closure-based algorithm for sparse DAGs, whereas the transitive-closure-based algorithm outperforms the
straightforward algorithm for dense DAGs. Our algorithm does not guarantee better asymptotic behavior, however it
impressively outperforms the other two on all our test instances. Thus, the tools for optimal LCA in trees seem useful
for constructing good LCA algorithms for DAGs.

1.2. Organization

The paper is organized as follows. In Section 2 we present Berkman and Vishkin’s simple tree-LCA algorithm [4].
In Section 3 we define the lowest common ancestors in DAGs. In Section 4 we present an efficient algorithm to
determine common-ancestor existence. Then we present an o(n3) algorithm and a near-matching lower bound for the
all-pairs-LCA problem. Finally, in Appendix A we present experimental comparisons of several LCA algorithms for
trees and DAGs.

2. LCA IN TREES

The first study of the LCA problem was done by Tarjan [26], who consider both the off-line and online setting for
the LCA problem in trees. Harel and Tarjan gave important upper and lower bounds for the LCA problem [19]. In 1984
Gabow, Bentley, and Tarjan [14] showed that the LCA problem was linearly equivalent to the (one-dimensional) Range
Minimum Query problem, which will be further discussed in this section. Gabow, Bentley, and Tarjan were concerned
with multidimensional range searching, and did not present an optimal solution to the LCA problem but their work
provides the basis for much of this section. In 1988 Schieber and Vishkin [25] introduced an LCA algorithm with
optimal asymptotic bounds. Berkman and Vishkin present a PRAM algorithm that uses Θ(n) operations to preprocess
the tree for answering queries in O(α(n)) time [4]. The main technical difficulty of their work is in achieving the
parallel bounds, and the sequential LCA algorithm presented in this section was known to them but omitted from their
manuscript. An optimal dynamic algorithm was given by Cole and Hariharan [9]. Other LCA algorithms on trees can
be found in [5,27,28].

The folk wisdom of algorithm designers holds that the LCA problem still has no implementable optimal solution.
Thus, according to hearsay, it is better to have a solution to a problem that does not rely on LCA precomputation if
possible. We argue that this folk wisdom is wrong. Stripped of its PRAM complications, Berkman and Vishkin’s
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FIG. 2 The common ancestors of nodes x and y are marked in boldface. The LCA(x, y) is the common ancestor of x

and y that is farthest away from the root.

sequential algorithm, which we present here, is not only a simplified LCA algorithm, but a simple LCA algorithm.
The key to the algorithm lies in the work of Gabow, Bentley and Tarjan [14]. The Range Minimum Query problem

turns out to have a cute solution using standard ideas such as table lookups (see e.g., [15]). This was the approach
of Berkman and Vishkin [4] in their PRAM algorithm, and their optimal sequential LCA algorithm is an elegant and
direct application of these ideas.

2.1. Algorithms for LCA in Trees

We begin by defining the Lowest Common Ancestor (LCA) Problem in trees formally; see Figure 2.

PROBLEM 2.1. The Lowest Common Ancestor (LCA) problem:

Structure to Preprocess: A rooted tree T having n nodes.

Query: For nodes u and v of tree T , query LCAT (u, v) returns the lowest common ancestor of u and v in T , that is,
it returns the node farthest from the root that is an ancestor of both u and v. (When the context is clear, we drop
the subscript T on the LCA.)

The Range Minimum Query (RMQ) Problem, which seems quite different from the LCA problem, is, in fact,
intimately linked.

PROBLEM 2.2. The Range Minimum Query (RMQ) problem:

Structure to Preprocess: A length n array A of numbers.

Query: For indices i and j between 1 and n, query RMQA(i, j) returns the index of the smallest element in the
subarray A[i . . . j]. (When the context is clear, we drop the subscript A on the RMQ.)

In order to simplify the description of algorithms that have both preprocessing and query complexity, we introduce
the following notation. If an algorithm has preprocessing time f(n) and query time g(n), we will say that the algorithm
has complexity 〈f(n), g(n)〉.

Solutions to the LCA problem are derived from solutions to the RMQ problem. Thus, before proceeding, we
present the reduction from the LCA problem in trees to the RMQ problem, as given by Gabow, Bentley, and Tar-
jan [14]. The following simple lemma establishes this reduction.

4



LEMMA 2.3. If there is an 〈f(n), g(n)〉-time solution for RMQ, then there is an 〈f(2n − 1) + O(n), g(2n − 1) + O(1)〉-
time solution for LCA.

As we will see, the Θ(n) term in the preprocessing comes from the time needed to create the soon-to-be-presented
length 2n − 1 array, and the Θ(1) term in the query comes from the time needed to convert the RMQ answer on this
array to an LCA answer in the tree.

Proof. Let T be the input tree. The reduction relies on one key observation:

OBSERVATION 2.1. The LCA of nodes u and v is the shallowest node encountered between the visits to u and to
v during a depth first search traversal of T .

Therefore, the reduction proceeds as follows.

1. Let array E[1, . . . , 2n− 1] store the nodes traversed in an Euler Tour of the tree T .8 That is, E[i] is the label of
the ith node traversed in the Euler tour of T .

2. Let the level of a node be its distance from the root. Compute the Level Array L[1, . . . , 2n − 1], where L[i] is
the level of node E[i] of the Euler Tour.

3. Let the representative of a node in an Euler tour be the index of first occurrence of the node in the tour9; formally,
the representative of i is min{j : E[j] = i}. Compute the Representative Array R[1, . . . , n], where R[i] is the
representative of node i.

Each of these three steps takes Θ(n) time, yielding Θ(n) total time. To compute LCAT (x, y), we note the follow-
ing:

• The nodes in the Euler Tour between the first visits to u and to v are E[R[u], . . ., R[v]] (or E[R[v], . . . , R[u]]).

• The shallowest node in this subtour is at index RMQL(R[u], R[v]), since L[i] stores the level of the node at E[i],
and the RMQ will thus report the position of the node with minimum level. (Recall Observation 2.1.)

• The node at this position is E[RMQL(R[u], R[v])], which is thus the output of LCAT (u, v).

Thus, we can complete our reduction by preprocessing Level Array L for RMQ. As promised, L is an array of size
2n − 1, and building it takes time Θ(n). Thus, the total preprocessing is f(2n − 1) + Θ(n). To calculate the query
time observe that an LCA query in this reduction uses one RMQ query in L and three array references at Θ(1) time
each. The query thus takes time g(2n − 1) + Θ(1), and we have completed the proof of the reduction. ut

From now on, we focus only on RMQ solutions. We consider solutions to the general RMQ problem as well as to
an important restricted case suggested by the array L. In array L from the above reduction adjacent elements differ
by +1 or −1. We obtain this ±1 restriction because, for any two adjacent elements in an Euler tour, one is always
the parent of the other, and so their levels differ by exactly one. Thus, we consider the ±1-RMQ problem as a special
case.

2.2. A Naïve Solution for RMQ

RMQ has a solution with complexity 〈Θ(n2), Θ(1)〉: build a table storing answers to all of the n2 possible queries.
To achieve Θ(n2) preprocessing rather than the O(n3) naïve preprocessing, apply a trivial dynamic program. Answer-
ing an RMQ query now requires just one array lookup.

8The Euler Tour of T is the sequence of nodes we obtain if we write down the label of each node each time it is traversed during a DFS. The
array of the Euler tour has length 2n − 1 because we start at the root and subsequently output a node each time we traverse an edge. We traverse
each of the n − 1 edges twice, once in each direction.

9In fact, any occurrence of i will suffice to make the algorithm work, but we consider the first occurrence for the sake of concreteness.
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2.3. A Faster RMQ Algorithm

We will improve the 〈Θ(n2), Θ(1)〉-time brute-force table algorithm for (general) RMQ. The idea is to precompute
each query whose length is a power of two. That is, for every i between 1 and n and every j between 1 and log n, we
find the minimum element in the block starting at i and having length 2j , that is, we compute M [i, j] = min{A[k] :

k = i . . . i + 2j − 1}. Table M therefore has size Θ(n log n), and we fill it in time Θ(n logn) by using dynamic
programming. Specifically, we find the minimum in a block of size 2j by comparing the two minima of its two
constituent blocks of size 2j−1. More formally, M [i, j] = M [i, j − 1] if A[M [i, j − 1]] ≤ A[M [i + 2j−1 − 1, j − 1]]

and M [i, j] = M [i + 2j−1 − 1, j − 1] otherwise.
How do we use these blocks to compute an arbitrary RMQ(i, j)? We select two overlapping blocks that entirely

cover the subrange: let 2k be the size of the largest block that fits into the range from i to j, that is let k = dlog(j −
i + 1)e. Then RMQ(i, j) can be computed by comparing the minima of the following two blocks: i to i + 2k − 1

(M (i, k)) and j − 2k + 1 to j (M (j − 2k + 1, k)). These values have already been computed, so we can find the RMQ
in constant time.

This gives the Sparse Table (ST) algorithm for RMQ, with complexity 〈Θ(n log n), Θ(1)〉. The table is indexed
using a 〈distance, array index〉 tuple. Notice that the total computation to answer an RMQ query involves two sub-
tractions, two 2-dimensional array references, a minimum and a truncated-log operation. The truncated-log operation
does not require a table lookup in most modern processors, and can be seen as finding the most significant bit of a
word. Notice that we must have at least one array indexing operation in our algorithm, since Harel and Tarjan [19]
showed that a pointer-algorithm LCA computation has a lower bound of Ω(log log n) operations.

Below, we will use the ST algorithm to build an even faster algorithm for the ±1RMQ problem.

2.4. A 〈Θ(n), Θ(1)〉-Time Algorithm for ±1RMQ

Suppose we have an array A with the ±1 restriction. We will use a table-lookup technique to precompute answers
on small subarrays, thus removing the log factor from the preprocessing. To this end, partition A into blocks of size
log n

2
. (Without loss of generality assume log n is even). Define an array A′[1, . . . , 2n/ logn], where A′[i] is the

minimum element in the ith block of A. Define an equal size array B, where B[i] is a position in the ith block in
which value A′[i] occurs. Recall that RMQ queries return the position of the minimum and that the LCA to RMQ
reduction uses the position of the minimum, rather than the minimum itself. Thus, we will use array B to keep track
of where the minima in A′ came from.

The ST algorithm runs on array A′ in time 〈Θ(n), Θ(1)〉. Having preprocessed A′ for RMQ, consider how we
answer any query RMQ(i, j) in A. The indices i and j might be in the same block, so we have to preprocess each block
to answer RMQ queries. If i < j are in different blocks, then we can answer the query RMQ(i, j) as follows. First
compute the values:

1. The minimum from i forward to the end of its block.

2. The minimum of all the blocks in between between i’s block and j’s block.

3. The minimum from the beginning of j’s block to j.

The query will return the position of the minimum of the three values computed. The second minimum is found in
constant time by an RMQ on A′, which has been preprocessed using the ST algorithm. But, we need to know how to
answer range minimum queries inside blocks to compute the first and third minima, and thus to finish off the algorithm.
Thus, the in-block queries are needed whether i and j are in the same block or not. (If i and j are not in the same
block prefix minima and suffix minima suffice).

Therefore, we focus now only on in-block RMQs. If we simply performed RMQ preprocessing on each block, we
would spend too much time in preprocessing. If two block were identical, then we could share their preprocessing.
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However, it is too much to hope for that blocks would be so repeated. The following observation establishes a much
stronger shared-preprocessing property.

OBSERVATION 2.2. If two arrays X[1, . . . , k] and Y [1, . . . , k] differ by some fixed value at each position, that is,
there is a c such that X[i] = Y [i] + c for every i, then all RMQ answers will be the same for X and Y . In this case,
we can use the same preprocessing for both arrays.

Thus, we can normalize a block by subtracting its initial offset from every element. We now use the ±1 property
to show that there are few kinds of normalized blocks.

LEMMA 2.4. There are Θ(
√

n) kinds of normalized blocks.

Proof. Adjacent elements in normalized blocks differ by +1 or −1. Thus, normalized blocks are specified by a
±1 vector of length (1/2 · log n) − 1. There are 2(1/2·logn)−1 = Θ(

√
n) such vectors. ut

We are now basically done. We create Θ(
√

n) tables, one for each possible normalized block. In each table, we
put all ( log n

2
)2 = Θ(log2 n) answers to all in-block queries. This gives a total of Θ(

√
n log2 n) total preprocessing of

normalized block tables, and Θ(1) query time. Finally, compute, for each block in A, which normalized block table it
should use for its RMQ queries. Thus, each in-block RMQ query takes a single normalized-block table lookup.

Overall, the total space and preprocessing used for normalized block tables and A′ tables is Θ(n) and the total
query time is Θ(1).

2.5. Wrapping Up

We started out by showing a reduction from the LCA problem to the RMQ problem, but with the key observation
that the reduction actually leads to a ±1RMQ problem.

We gave a trivial 〈Θ(n2), Θ(1)〉-time table-lookup algorithm for RMQ, and show how to sparsify the table to get
a 〈Θ(n log n), Θ(1)〉-time table-lookup algorithm. We used this latter algorithm on a smaller summary array A′ and
needed only to process small blocks to finish the algorithm. Finally, we notice that most of these blocks are the same,
from the point of view of the RMQ problem, by using the ±1 assumption given by the original reduction.

2.6. A Fast Algorithm for RMQ

We have a 〈Θ(n), Θ(1)〉 ±1RMQ. Gabow and Tarjan [15] show that the general RMQ can be solved in the same
complexity. They do this by reducing the RMQ problem to the LCA problem! Thus, to solve a general RMQ problem,
one would convert it to an LCA problem and then back to a ±1RMQ problem.

The following lemma and proof from [15] establishes the reduction from RMQ to LCA.

LEMMA 2.5. If there is a 〈Θ(n), Θ(1)〉 solution for LCA, then there is a 〈Θ(n), Θ(1)〉 solution for RMQ.

We will show that the Θ(n) term in the preprocessing comes from the time needed to build the Cartesian Tree of A

and the Θ(1) term in the query comes from the time needed to convert the LCA answer on this tree to an RMQ answer
on A.

Proof. Let A[1, . . . , n] be the input array.
The Cartesian Tree of an array is defined as follows. The root of a Cartesian Tree is the minimum element of

the array, and the root is labeled with the position of this minimum. Removing the root element splits the array into
two pieces. The left and right children of the root are the recursively constructed Cartesian trees of the left and right
subarrays, respectively.

A Cartesian Tree can be built in linear time as follows. Suppose Ci is the Cartesian tree of A[1, . . . , i]. To build
Ci+1, we notice that node i + 1 will be at the end of the rightmost path of Ci+1, so we climb up the rightmost path
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FIG. 3 The common ancestors of nodes x and y appear shaded. The set SLCA(x, y) is composed of all common
ancestors of x and y with no common ancestor descendants. The lowest common ancestors of x and y (appear lightly
shaded) are exactly the elements of SLCA(x, y).

of Ci until finding the position where i + 1 belongs. Each comparison either adds an element to the rightmost path
or removes one, and each node can only join the rightmost path and leave it once. Thus the total time to build Cn is
Θ(n).

The reduction is as follows.

• Let C be the Cartesian Tree of A. Recall that we associate with each node in C the corresponding to A[i] with
the index i.

CLAIM 2.1. RMQA(i, j) = LCAC(i, j).

Proof: Consider the lowest common ancestor, k, of i and j in the Cartesian Tree C . In the recursive description
of a Cartesian tree, k is the first node that separates i and j. Thus, in the array A, element A[k] is between elements
A[i] and A[j]. Furthermore, A[k] must be the smallest such element in the subarray A[i, . . . , j] since otherwise, there
would be a smaller element k′ in A[i, . . . , j] that would be an ancestor of k in C , and i and j would already have been
separated by k′.

More concisely, since k is the first element to split i and j, it is between them because it splits them, and it is
minimal because it is the first element to do so. Thus it is the RMQ.

We see that we can complete our reduction by preprocessing the Cartesian Tree C for LCA. Tree C takes time
Θ(n) to build, and because C is an n node tree, LCA preprocessing takes Θ(n) time, for a total of Θ(n) time. The
query then takes Θ(1), and we have completed the proof of the reduction. ut

3. DEFINITIONS FOR LCA IN DAGS

We now present two equivalent definitions for the LCA in DAGs; see Figure 3. For the special case where the
DAG is a tree, we obtain the standard tree-LCA definition.

DEFINITION 3.1. Let G = (V, E) be a DAG, and let x, y ∈ V . Let Gx,y be the subgraph of G induced by the set
of all common ancestors of x and y. Define SLCA(x, y) to be the set of out-degree 0 nodes (leafs) in Gx,y. The lowest
common ancestors of x and y are the elements of SLCA(x, y).

Observe that there may be as many as |V | − 2 distinct lowest common ancestors of a given pair of nodes in DAGs,
whereas the LCA in trees is unique.
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FIG. 4 Doubling the DAG by reflecting through the sources. The original graph has bold edges.

We introduce some terminology. A maximum element in a partially ordered set is an element m such that no
member of the set is greater than m. The transitive closure Gtr = (V, Etr) of a DAG G = (V, E) is a graph such
that (i, j) ∈ Etr if and only if there is a path from i to j in G. The transitive closure of any DAG G forms a partially
ordered set.

Ait-Kaci, Boyer, Lincoln, and Nasr [1] describe the LCA is in terms of partially ordered sets.

DEFINITION 3.2. For any DAG G = (V, E), we define the partially ordered set S = (V,�) as follows: element
i � j if and only if i = j or (i, j) is in the transitive closure Gtr of G. Let SLCA(x, y) be the set of the maximum
elements of the common ancestor set {z|z � x ∧ z � y} ⊆ V . The lowest common ancestors of x and y are the
elements of SLCA(x, y).

We answer LCA queries by returning a representative element from SLCA(x, y). Typically, we find the represen-
tative LCA that is closest to x and y in the DAG. This closest element is useful in applications such as genealogy. In
many common applications such as algorithms on semi-lattices, the set LCA consists of a single element.

We identify the representative element by defining the depth of a node x. Note that the following depth definition
applies to both positive weighted and unweighted edges.

DEFINITION 3.3. The depth of node x in a DAG, depth(x), is the length of the longest path from a source to x.

Based on node depth, we find an LCA using the following lemma:

LEMMA 3.1. The node of greatest depth in a DAG that is an ancestor of both x and y is a lowest common ancestor
of x and y.

4. FINDING ALL-PAIRS LCA IN DAGS

We first give an algorithm for the all-pairs-common-ancestor-existence problem in DAGs. Then we give an al-
gorithm for the all-pairs-representative-LCA problem. We conclude the section by showing that the all-pairs-LCA
problem is transitive-closure hard.

In our algorithms we compute the answers to all (n choose 2) queries in the preprocessing stage. Then we answer
queries by performing table lookups. We show how to build the binary common-ancestor-existence matrix in Õ(nω)

operations and the representative-LCA matrix in Õ(n
ω+3

2 ) operations. The fastest known matrix-multiplication algo-
rithm to date runs in O(nω) where, ω ≈ 2.376 [10]. Thus, our all-pairs-common-ancestor-existence algorithm runs in
time Õ(n2.376), and our all-pairs-representative-LCA algorithm runs in time Õ(n2.688).

4.1. The Common-Ancestor-Existence Algorithm

Pairs of nodes in a DAG may not have any common ancestors, in contrast to pairs of nodes in a tree. Here we show
how to determine whether two nodes share common ancestors. In the representative-LCA computation, we can then
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assume that LCA existence has been verified.
The preprocessing step consists of a transitive-closure computation on a graph F , which is constructed from G as

follows: Reverse the edges in G to form the DAG G′. Combine these two graphs by merging the sinks of G′ with the
sources of G. We call the resulting graph F ; see Figure 4. Every vertex v′ in F − G is a reflection of some v in G.
The nodes x and y have a common ancestor if and only if (x′, y) is in the transitive closure of F .

Thus, we obtain the following theorem:

THEOREM 4.1. The ancestor-existence matrix can be computed in transitive-closure time.

4.2. The All-Pairs LCA Algorithm

We solve the LCA problem by exploiting the close relationship between the LCA and all-pairs-shortest-path prob-
lems. By computing shortest paths, we can isolate a sublinear number of potential LCA nodes, from which we choose
the node of greatest depth, which by Lemma 3.1 is an LCA.

In trees, the depth of LCA(x, y) and the distance between the nodes dist(x, y) are related as follows:

dist(x, y) = depth(x) + depth(y) − 2 depth(LCA(x, y)). (1)

This relationship holds in trees because of the following two properties:

PROPERTY 1. The order x � y implies that depth(x) ≤ depth(y).

PROPERTY 2. For x � y, the length of the shortest path from x to y is depth(y) − depth(x).

We define an ancestral path from x to y in G as a path that is composed of the shortest path from x up to some
common ancestor z concatenated with the shortest path from z down to y. The path from x to z goes against the
directions of the edges, and the path from z to y goes along the direction of the edges.

We construct a weighted DAG L, which reduces the representative-LCA problem to the shortest-path problem.
The DAG L is constructed in two stages. First we add weights to G so that Properties 1 and 2 hold in G and so that no
two nodes have the same depth. We use the weighted DAG G to construct weighted DAG L so that the ancestral paths
in G are exactly the paths in L. Finding the length of the shortest path in L determines the depth of the representative
LCA. Since no two nodes have the same depth, knowing the depth of the representative LCA uniquely determines the
representative LCA.

We assign edge weights in G as follows. We begin by calculating node depths in the unweighted version of G

according to Definition 3.3; thus Property 1 is satisfied. Then we find a linear extension as follows: We sort all the
nodes in the (unweighted) graph G by their depth, arbitrarily breaking ties. Each node’s order in this linear extension
will be its new depth. Then we assign weights to all edges in G according to Property 2 to achieve the desired node
depth. Specifically, given (u, v) ∈ E we set weight(v) = depth(v) − depth(u). This weight assignment guarantees
that Properties 1 and 2 hold and that no two nodes have the same depth.

Next we show that the farthest common ancestor from the root is an LCA. We do so by defining the set SLCAh(x, y)

and proving that it is a subset of SLCA(x, y). Note that in our construction SLCAh(x, y) contains a single element.

DEFINITION 4.1. Let SLCAh(x, y) be the set of common ancestors of x and y that have greatest depth. An
LCAh(x, y) is an element of SLCAh(x, y).

LEMMA 4.1. The set of common ancestors of greatest depth is a subset of the set of lowest common ancestors.
That is, SLCAh(x, y) ⊆ SLCA(x, y).

Now we construct the weighted DAG L from the weighted DAG G. Let G′ = (V ′, E′) be the graph constructed
from G by reversing all edges in G. We combine G and G′ by adding a zero-weight edge (v′, v) for all v′ ∈ G′ and
v ∈ G. The resulting graph is L; see Figure 5. This construction ensures that the ancestral paths in G are maintained
in L. We show in the following lemma that the shortest path from x′ to y goes through the LCAh(x, y):
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FIG. 5 The original DAG G is on the left. On the right we show L constructed from G.

LEMMA 4.2. The shortest path from node x′ to node y in graph L goes through the LCAh(x, y).

Proof. We assume that x and y have a common ancestor in G and therefore that such a path exists in L. If x is a
descendant of y, the length of the shortest path from x′ to y (it goes through y′) is depth(x) − depth(y). Then y is
the only LCA(x, y) and the lemma holds. Otherwise, any path from x′ to y must go through some common ancestor z

and be of the form x′, . . . , z′, z, . . . , y, which is of length depth(x) + depth(y) − 2depth(z). The shortest path then,
passes through the common ancestor of greatest depth which is the LCAh(x, y). ut

We use the all-pair approximate shortest path algorithm given by Zwick [29] to approximate the depth of the
representative LCA. We choose this approximation algorithm because no õ(n3) exact all-pairs shortest path algorithm
is known for DAGs with large weights, and L may have edge weights as large as n−1. Zwick’s algorithm approximates
the shortest path to within 1 + ε using Õ(nω

ε log W
ε ) operations, where W is an upper bound for the weight of the

greatest edge. Given the approximate shortest path we deduce the approximate depth of the LCA using Equation 1.
Once we know the approximate depth of the LCA, we sift through the candidates to find the LCA itself. Since

depths are unique and the shortest path can have length at most 2n−2, there are Θ(εn) LCA candidates of consecutive
depths. In order to sift through the candidates we precompute the transitive closure of L to determine ancestry relation
in constant time. We choose the LCA candidate of greatest depth that is a common ancestor.

We optimize the value for ε. Since there are Θ(n2) pairs, and each pair requires examining Θ(εn) nodes to find
the common ancestor of greatest depth, we expend Θ(εn3) work to find the LCAs after we are given the all-pairs-
approximate-shortest-path matrix. Computing all-pairs-approximate-shortest path requires Õ(nω

ε
log W

ε
) operations.

Modulo logarithmic terms, we optimize for ε by equating terms and setting ε = n
ω−3

2 . Given this value for ε, our
algorithm runs in time Õ(n

ω+3

2 ). We obtain the following theorem:

THEOREM 4.2. An all-pairs-LCA matrix for a DAG G can be found in Õ(n
ω+3

2 ) time.

Proof. Observe that the L has no edge weights greater than n since n is the depth of the deepest node in the graph.
We set ε = n

ω−3

2 , which leads to a running time of Õ(n
ω+3

2 ) for the approximate-shortest-path computation. The
greatest possible distance error is n

ω−1

2 . Thus the algorithm identifies 2n
ω−1

2 possible LCAh candidates for every
pair. We perform a transitive-closure operation (using fast matrix multiplication) to allow for fast access to a node’s
ancestors. We find A(x) ∩ S and A(y) ∩ S in O(n

ω−1

2 ) operations, and we identify the node of maximum depth in
O(n

ω−1

2 ) operations as well. Thus we use O(n
ω−1

2 ) operations per pair, and the total running time of the algorithm is
Õ(n

ω+3

2 ). ut

4.3. A Simpler Ancestor-List-Based All-Pairs LCA algorithm

In this section we give an O(n3) algorithm for the all-pairs-representative LCA. This algorithm is easily imple-
mentable, is efficient on low and high density DAGs, and performs well in our experiments. In contrast, the subcubic
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algorithm from Section 4.2 uses the fast matrix-multiplication algorithm of Coppersmith and Winograd [10] and is
considered impractical. Simpler algorithms that are easier to implement have inconsistent performance over DAG
density ranges. We present an experimental study of the O(n3) algorithm in Section A.2. The algorithm proceeds as
follows.

First add a node v to the DAG G, and add directed edges from v to all sources in G. The addition of v guarantees
that every two nodes have an LCA. If v is reported as a representative LCA for nodes x and y then x and y have no
common ancestors in G.

Preprocess G by partitioning the set of edges into two sets: S1 is the set of edges of a spanning tree T of G, and S2

is composed of the remaining edges, which make up the DAG D = (V, S2). Label the vertices of T by depth, breaking
ties arbitrarily. The same labels are used for D. Create a list Lv for each vertex v, which contains the ancestors of v in
D, including v itself. Proceed from vertex 0 until vertex n − 1. Sort the lists according to the first appearance of their
nodes in an Euler tour of T .

LEMMA 4.3. The list-constructionstage of the ancestor-list-based LCA algorithm is completed in Θ((n−1)Σx∈V |Lx|) ∈
O(n3) operations.

We compute pairwise LCA in DAG G by performing queries in the tree T . Let LCAT stand for an LCA com-
putation on the tree T , and let LCAG stand for an LCA computation on the DAG G. We arrive at the following
lemma:

LEMMA 4.4. For nodes x, y ∈ G, a greatest depth node in the set {LCAT (u, v) : u ∈ Lx, v ∈ Ly} is an
LCAG(x, y).

LCAG(x, y) can be computed by making all pairwise LCAT queries between Lx and Ly , and choosing the LCAT

of greatest depth. Each query uses O(n2) LCAT operations, and the all-pairs computation is in O(n4). Next we show
how to prune out unnecessary LCA queries in T , and compute LCAG using O(n) constant time LCAT queries. This
query speed up leads to an O(n3) all-pairs computation. Lemma 2.3 establishes the equivalence between LCAT (u, v)

and A(RMQ(E(u), E(v))), where A[1, . . . , 2n − 1] in an array representation of the Euler tour of T , and E(v) is the
index of the first occurrence of node v in A. An LCAG(x, y) is a maximum-depth LCAT (u, v), where u ∈ Lx and
v ∈ Ly . The depth of LCAT (x, y) is greater or equal to the depth of LCAT (z, t) if [x, y] is a subrange of [z, t] in A.
Therefore LCAT (z, t) can not be a new node of greatest depth in the pairwise LCA set, and the query LCAT (z, t) can
be pruned out. Let L be the result of an order-preserving merge of Lx and Ly . To find LCAG(x, y) select the greatest
depth node from {LCAT (`i, `i+1) : `i ∈ Lx, `i+1 ∈ Ly or `i ∈ Ly, `i+1 ∈ Lx}.

LEMMA 4.5. A query LCAG(x, y) is completed in O(|Lx| + |Ly|) operations.

Proof. Let A[1, . . . , 2n − 1] be an array representation of the Euler tour of T and E(v) the index of the first
occurrence of node v in A. For nodes x, y ∈ G, consider the two ancestor lists Lx = x1, . . . , xq and Ly = y1, . . . , yt.
According to Lemma 4.4 LCAG(x, y) is the node of greatest depth in {LCAT (u, v) : u ∈ Lx, v ∈ Ly}, and according
to Lemma 2.3 LCAT (u, v) = A[RMQ(E(u), E(v))]. We observe that A[RMQ(E(u), E(v))] ≥ A[RMQ(E(u), E(`))]

if E(u) < E(v) < E(`). Without loss of generality let E(xi) < E(yj) then LCAT (xi, yj) is the node of greatest
depth in {LCAT (xi, v) : v ∈ yj , . . . yt}. Let L = `1, . . . , `q be a merged list of Lx and Ly according to the first
occurrence in the Euler tour of T . Then LCAG(x, y) is the node of greatest depth in {LCAT (`i, `i+1) : `i ∈ Lx, `i+1 ∈
Ly or `i ∈ Ly , `i+1 ∈ Lx}. ut

THEOREM 4.3. All-pairs-representative LCA is computed in O((n − 1)Σx∈V |Lx|) operations.
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4.4. A Lower Bound for All-Pair LCA

We show that the all-pairs-LCA problem in DAGs is as hard as transitive closure by reducing transitive closure
in directed graphs to the all-pairs-LCA problem in DAGs. Begin by reducing transitive closure in directed graphs
to transitive closure in DAGs, then reduce transitive closure in DAGs to the all-pairs-LCA problem in DAGs. The
following lemma is a attributed to folklore, and its proof is omitted.

LEMMA 4.6. Transitive Closure in DAGs is as hard as Transitive Closure in directed graphs.

We next prove that the set of lowest common ancestors SLCA(x, y) contains x and only x if and only if x is an ancestor
of y:

LEMMA 4.7. SLCA(x, y) = {x} if and only if x � y.

Proof. Clearly x � y implies x ∈ SLCA(x, y). The proof that x is the only element in SLCA(x, y) follows by
contradiction. Assume q 6= x is an element of SLCA(x, y). By the definition of SLCA(x, y), q � x and q � y. But,
q ≺ x and is not a maximum element of {z|z � x ∨ z � y}. Therefore q can not be in SLCA(x, y). The only-if
direction is trivial. ut

Finally, we obtain the desired theorem:

THEOREM 4.4. All-pairs LCA in DAGs is transitive closure hard.

Proof. Computing transitive closure of a directed graph reduces to computing transitive closure of a DAG by
Lemma 4.6. The elements of the transitive-closure matrix TC of a DAG can be described in the following way.
TCij = 1 if i is an ancestor of j, and TCij = 0 otherwise. By Lemma 4.7, i is an ancestor of j if and only if
i = LCA(i, j). Then TCij = 1 if and only if i = LCA(i, j) and TCij = 0 otherwise. ut
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APPENDIX A: EXPERIMENTAL RESULTS FOR LCA IN TREES AND DAGS

We implemented a range of LCA algorithms for trees and DAGs. In this appendix we present a study of the perfor-
mance of these algorithms on various input data. Our goal is to demonstrate ease of implementation10 and investigate
the practicality of the algorithms. For trees, we pinpoint the threshold single-child probability (skewness) when the
query times of our algorithms are shorter than the query time of the naïve algorithm. For DAGs, we demonstrate that
the ancestor-list-based all-pairs LCA algorithm given in Section 4 performs well on both low and high edge-density
random DAGs.

The experiments are conducted on an Ultra-SPARC machine with 2 250MHZ CPUs, 1MB off-chip L2 cache and
2 GB memory running SunOS 5.6, and a 300MHZ Pentium-II with 256KB L2 cache and 384 MB memory running
Red-Hat Linux 6.2. Studying the performance of these space-intensive algorithms on two different architectures helps
us reach conclusions that are less system specific.

10Implementations are available at http://www.cs.pdx.edu/∼ps/code/soda01 (titled “All-Pairs Lowest Common Ancestors in Trees and Directed
Acyclic Graphs”) and http://www.cs.pdx.edu/∼ps/code/zack (titled “LCA Wizard”).
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A.1. Experiments on Trees

We tested three tree LCA algorithms: (1) a simple cache-optimized algorithm that uses no preprocessing, (2) the
Θ(n log n) preprocessing time and Θ(1) query time algorithm, and (3) the Θ(n) preprocessing time and Θ(1) query
time algorithm. We refer to these algorithms as naïve, Θ(n logn), and Θ(n) algorithms respectively.

Test Data Generation. To test the LCA algorithms we generated random binary trees, where each internal node
in the tree has a single child with probability α. Thus, we use α as a knob that controls the depth and density of the
tree. The nodes are stored in depth-first order to reduce the number of cache misses per query in the naïve algorithm.
We report average query time for random queries performed on randomly generated trees of given depth.

Results. We compared the performance of the three algorithms on well balanced and skewed binary trees. The
naïve LCA algorithm is best for small balanced trees. For larger trees of any kind, the Θ(n log n) algorithm has the
best query time. However, the preprocessing time for the Θ(n logn) algorithm may dwarf the query time when the
number of queries is small. The expected query time of the Θ(n) algorithm is less than that of the naïve algorithm
only when the tree is very skewed. For binary trees of less than one million nodes, the query time of Θ(n) algorithm
is faster (on our ultra SPARC machine) than that of the naïve algorithm only when the probability of a single child
is greater than 0.93, implying that the expected tree depth is roughly 14 log2 n. The gap in query time performance
increases inversely with the probability of a second offspring.

Figures 6 and 7 show the query time for all three algorithms with various values of α and tree sizes. The query
performance of the naïve algorithm depends on the tree’s depth, which is a function of both α and N . The query
performance of the Θ(n log n) and the Θ(n) algorithms depends only on the number of table lookups performed.
The choice of the appropriate tree-LCA algorithm depends on the number of nodes in the tree, the number of queries
expected, and the depth of the tree constructed. Figures 6 and 7 also show the preprocessing time for the Θ(n) and the
Θ(n log n) algorithms for various trees sizes. Note that the preprocessing time does not depend on α.

There is a performance gap between the query time of the Θ(n) and the Θ(n log n) algorithms, despite the fact
that both queries do nothing more than a constant number of array lookups. This gap is because the Θ(n) algorithm
query is composed of up to three queries of the Θ(n log n) algorithm.

A.2. Experiments on DAGs

We evaluate our ancestor-list-based all-pairs-representative LCA algorithm on both sparse and dense graphs. We
compare its performance to that of the following two algorithms:

• Naïve – The naïve algorithm simply walks up the DAG to find the ancestors of the queried nodes, from which it
chooses a node of greatest depth. In the preprocessing stage, we traverse the DAG in breadth-first manner and
assign depth to every node. This depth assignment requires Θ(n + m) operations. We expect this algorithm to
perform well on sparse graphs, and especially well on star trees, where the LCA is found after at most 2 parent
lookups and one comparison.

• Matrix-Multiplication Transitive-Closure-Based LCA – This algorithm computes the transitive closure of the
DAG using matrix multiplication in the preprocessing stage to answer queries efficiently. To find the common
ancestors of a given pair of nodes x and y, a binary AND on the rows x and y of the transitive-closure matrix is
performed. The representative LCA is chosen by selecting a deepest common ancestor. This algorithm prepro-
cesses the DAG using log n matrix multiplications, and answers queries in Θ(n) time. We use the PhiPac [6, 7]
package for fast matrix multiplication. We expect this algorithm to perform well on dense graphs.
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FIG. 6 Query time comparison (milliseconds) for skewed binary trees of different depths (expressed by the number of
nodes in millions), on an Ultra-SPARC. The knob α controls the single-child probability (skewness) when generating
the tree.
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density is varied by randomly adding edges to a star tree.

0

75

150

225

300

375

0 0.5 1 1.5 2 2.5

Star Trees

0
150
300
450
600
750
900

1050

0 0.5 1 1.5 2 2.5

With N Extra Edges

0

300

600

900

1200

1500

1800

0 0.3 0.6 0.9 1.2

With N logN Extra Edges

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

With N2 Extra Edges

Nave
TC

RMQ

FIG. 9 All-pairs-LCA time (seconds) as a dependent on the number of nodes (expressed in thousands) for various
DAG densities by the naïve, transitive closure, and ancestor-list-based LCA algorithms on a Pentium-II. DAG density
is varied by randomly adding edges to a star tree.

Test Data Generation. We generated random DAGs of increasing density to test the efficiency of the three algo-
rithms. A DAG is constructed by first generating a star and then adding extra edges between randomly chosen nodes.
This method allows us to control the density of the DAG. Star trees are chosen as a starting point for the construction
because they are the best-case instances for the naïve algorithm.

Results. We tested the three algorithms, naïve LCA, transitive-closure-based LCA and ancestor-list-based LCA,
on the following DAG types: (1) star shaped DAGs, (2) star shaped DAGs augmented with n random edges, (3) star
shaped DAGs augmented with n lg n random edges, and (4) complete DAGs. The results for all-pairs LCA are given
in Figures 8 and 9. Although the ancestor-list-based LCA is not asymptotically better than the transitive-closure-based
LCA, our experimental results suggest that it outperforms the other two algorithms.

The transitive-closure algorithm performs Θ(n) operations per query, independently of the density of the DAG.
The naïve algorithm performs better than the transitive-closure algorithm in sparse DAGs, but its performance reduces
dramatically in dense DAGs. The naïve algorithm traverses O(n2) edges per query, making the total running time for
all-pairs LCA O(n4). The ancestor-list-based algorithm outperformed the naïve algorithm even on star trees, which
are the best-case instances for the naïve algorithm; it outperformed the transitive-closure-based LCA algorithm on
dense graphs, which are best-case instances for the transitive-closure-based LCA algorithm. Our experiments suggest
that the ancestor-list-based algorithm has good performance for DAGs of all densities; it has optimal performance for
trees and is the best for dense DAGs.
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