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SUMMARY

The Chinese Postman Problem has many applications, including robot exploration, and
analysing interactive system and web site usability. This paper reviews the wide range
of applications of the problem and presents complete, executable code to solve it for the
case of directed multigraphs. A variation called the ‘open Chinese Postman Problem’ is
also introduced and solved. Although optimisations are possible, no substantially better
algorithms are likely.
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1. Introduction

Finding the shortest route for a travelling salesman, who wishes to visit every city, is a well
known problem. Less well known is the Chinese postman who wishes to travel along every road
to deliver letters. The Chinese Postman Problem (CPP) is interesting because it has many
applications, is a simply-stated problem, but for which there is no simple algorithm. There
are many variations to the CPP, most notably whether the roads are one-way (this is the
Directed CPP or DPP) and whether the postman has to return back to where they started
(closed or open CPP). This paper is concerned specifically with the directed CPP, and provides
algorithms for both closed and open solutions.

Although many pseudo-code descriptions of the CPP exist (e.g., [10]), no executable
algorithm for it is available [17]. A typical reference says, “The details of the algorithm are
too complicated to give here” [3].

This paper provides and explains executable Java to solve the problem, and hence makes the
algorithm and its application accessible to a wide audience. The code is given in its entirety
in this paper (it was extracted automatically from the original source code [21]), and is also
available from the web site http://www.uclic.ucl.ac.uk/harold/cpp, which provides code
in both Java and Mathematica.

The aim of this paper is to motivate and exhibit a clear working algorithm rather than
a commercial or especially efficient algorithm. However, our implementation of the CPP is
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Figure 1. Taking each arc to be of equal weight, one optimal closed Chinese Postman Tour of this
graph is 0, 1, 3, 0, 1, 2, 3, 0, 2, 3, 0, traversing 10 arcs. A least cost open tour is 1, 3, 0, 1, 2, 3, 0, 2, which

traverses only 7 arcs.

elegant and interesting: the preliminary phase combines checking (to confirm it is given a valid
problem) with initialising a data structure, which is then exploited in different ways in the
subsequent phases of the implementation; we also use a single shortest paths routine for three
different purposes.

2. Applications and variations of the Chinese Postman Problem

A postman delivering letters in a village may wish to know a circuit that traverses each street
(in the appropriate direction if one-way streets), starting and returning to their office. This
is a graph theoretic problem: roads are directed edges (arcs), and road junctions are vertices.
The postman requires a Chinese Postman Tour, which we abbreviate CPT [9]. The postman
probably wants a shortest tour, with few repeated street visits. The cost of a CPT is defined
as the total arc weight, summed along the circuit (e.g., the total distance walked). An optimal
CPT is a CPT of minimal cost. If some weights are negative an optimal CPT may not be
defined: if there is any circuit with an overall negative weight, the postman could arbitrarily
repeat it and get a total cost lower and lower without bound.

Conventional applications of the CPP are concerned with routing more generally than
postmen, as in routing snow ploughs or planning street maintenance. Figure 1 shows a simple,
isolated village, with four intersections and six one-way streets. The least cost CPT in this
example requires travelling down streets ten times; some streets are used more than once, but
this is not always the case, and the optimal solution obviously depends on the relative costs
of using each arc.
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Imagine trying to understand your mobile phone. Pressing buttons takes the phone to new
states, and corresponds to travelling down one-way streets. After some considerable work,
one might obtain a map of how the phone works. The question then is, is this map correct?
Unfortunately, the map may be complex and difficult to test systematically. Given the map, a
CPT will provide a systematic test sequence that will exercise each transition in every state.
The optimal CPT will give the shortest test sequence possible; you could then step through
the CPT ‘instructions’ and note any unexpected behaviour of the mobile. The length of the
optimal CPT is therefore a measure of a machine’s complexity [18].

As a concrete example, the Nokia 2110 mobile phone has a menu subsystem of 88 menu-items
and 273 actions [12]; the optimal CPT of this takes 515 button presses, plus 79 presses (done
at appropriate points) to check presses that do nothing. (Some states have fewer options than
there are buttons; each unused button in a state corresponds to a self-loop in the graph.) In
comparison, the shortest trip that visits each vertex at least once (a solution to the TSP), for
instance to check that each menu-item function corresponds correctly to its name, is only 98
button presses. Thus it is much easier to check the functionality than check the user interface.
It is clear that usability tests involving real users — even for such a “simple” device —
are unlikely to be exhaustive, even if users make no mistakes. Indeed the Nokia 2110’s user
interface is quirky, perhaps a corroboration of the difficulty of performing effective user tests
(cf. Figure 8 in [20]).

Web sites notoriously have broken links; but possibly worse is a link that takes the user
to the wrong page. A web author should check every link of a site for correctness, certainly
if it provides medical or legal information. Since links are often descriptive, and require an
understanding of their purpose, they must be checked manually to see whether they link to
appropriate pages. However, on following a link, the human checker is now on another page.
An optimal CPT gives a route around a web site (or other multimedia resource) that exercises
every link, with minimal effort.

For well designed web sites, it is not necessary to check every link explicitly. The web site
for Benjamin Franklin’s House [11] had 66 pages and 1191 links at the time of writing. Its
optimal CPT of 2248 steps is excessive for a human to follow unaided; without following a
CPT users would do even more work and be unable to guarantee thorough checking. Ideally
authoring systems should provide mechanisms to help check sites (for instance, so that the
human checker can take a break and not lose track of where they were), in conjunction with
using an optimal CPT algorithm to minimise workload. In fact, the Benjamin Franklin site
was generated by compiling 78 pages (12 being design templates) needing only 201 explicit
links (most being checked by the compiler itself). The CPT of this specification site had 241
steps, including the links the compiler can check itself [19]. The tenfold improvement makes
checking the site manageable for a human.

To find the map of a mobile phone, video recorder or a web site in the first place is not
easy if it has to be done by reverse engineering. This problem is equivalent to the mobile robot
exploration problem, where a robot has to explore (by physically moving around in) a network
when it does not know, to start with, what the network is. The robot has to explore every arc
and vertex of the network (obeying any one-way restrictions), and it has to do so travelling a
minimum distance. For a network of m arcs, an algorithm has been found that takes at most
mφO(log φ) steps [2], where φ is the deficiency of the graph, a term we define below. We will see
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that the algorithm for the CPT also determines the deficiency. Deficiency is a measure of the
ease of use of a system: it relates to how hard a device is to fully understand without benefit
of a map, or how hard a network (e.g., a building or interactive device) is to learn.

There are important variations to the CPP. The problem may be closed, with the postman
starting and returning to their office; in the open problem, the postman need not return. In
the real world, where postmen or vehicles traverse a network of roads, this may not seem
very useful because they will eventually need to return home; however, in testing once every
transition has been tested it may not be necessary to return the device to its initial conditions.
This is certainly true for testing web sites: once a user has tested a site, they can simply walk
away and they do not have to return the browser to the home page. The optimal test sequence
for a web site is therefore an open CPT.

If the open tour of an interactive device is much shorter than a closed tour, this suggests a
possible design fault because it indicates that a tester is (and users in general are) better off
walking away from a device than switching it off (or otherwise returning it to its initial state).

Orloff [13] originally introduced the idea of the General Routing Problem: to visit some
edges and some vertices in a graph — if all edges are to be visited, the problem is the CPP;
if some edges are to be visited, the problem is the rural CPP; if all vertices are to be visited
the problem is the TSP. Further, there may be one or more postmen, with one or more offices,
and each postman may be capacitated (e.g., in the total edge cost they can bear).

The selecting CPP (also known as the rural CPP) is a variation where the postman must
visit certain roads but not necessarily all of them [15]. In machine test terms, the selecting
CPP arises, for instance, if we wish to find the shortest test sequence that tests each button
on a machine at least once but not necessarily to test all state transitions [5, 16]. The selecting
CPP can be used to solve the incremental CPP, where an impatient postman sets off before
finding the optimal CPT solution. The selecting CPP can also be used for solving the problem of
checking a web site where some links have been mechanically constructed (e.g., from templates
and are therefore known to be correct) but where others, the ones to be checked, were created
by hand.

The graph may be undirected, directed or mixed. Computationally, the undirected and
directed cases are polynomial, whereas the mixed is NP-hard [14]. This paper considers
the directed case on multidigraphs (graphs with parallel arcs): this case arises naturally in
analysing the World Wide Web and finite state machines.

3. Definitions and outline of the algorithm

Discussion of graph-theoretic terms may be found in standard graph theory references: any of
[1, 3, 6] cover everything required here.

In this paper we will consider graphs as collections of arcs 〈label , i, j, c〉, where label is an
identifier for an arc from vertex i to j, and c the cost associated with it. This suits the problem
of checking web sites: a vertex is a page, an arc is a link, the label of the arc could be hot text
or a URL, and the weight represents a cost, perhaps estimated in seconds, of the user checking
the link. One might give different costs to within-page links than to links to other pages,
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frames, images, and so on. The goal is to determine a list of labels that, in order, constitute
an optimal CPT.

The number of arcs going into a vertex v is the in-degree written d−(v), and the number of
arcs pointing out of a vertex v is the out-degree written d+(v). Let δ be the difference between
the in and out degrees: δ(v) = d+(v) − d−(v). If δ(v) = 0, we say the vertex v is balanced.

An Eulerian graph is one that has a circuit traversing each arc exactly once, and which
returns to the start vertex. A standard theorem is that a graph has a Euler circuit if and
only if every vertex is balanced. Finding an Euler circuit has standard algorithms, and certain
classes of Eulerian graph have trivial solutions, notably randomly Eulerian graphs [4]. An
Euler circuit of a graph is an optimal CPT, since each arc is traversed exactly once. If a graph
is not Eulerian, then more work must be done to find a CPT.

Let D+ be the set of unbalanced vertices with an excess of out-going arcs, and D− the set
of unbalanced vertices with an excess of in-going arcs. More formally:

D+ = {v | δ(v) > 0}
D− = {v | δ(v) < 0}

In the example graph, we have D+ = {0, 1} and D− = {2, 3}, and the δ for each vertex
happens to be either +1 or −1. Thus the CPT will have to walk extra paths to ‘join up’ the
unbalanced vertices in D− and D+. For an optimal CPT, the specific choice of extra paths
taken between D− and D+ will be chosen to have least total cost.

It is useful to have some notation. Let i ❀ j denote a least cost path from vertex i to j, and
let cij be its cost. If there are multiple arcs between vertices, the least cost path will obviously
take the cheapest arc of those available.

For the example graph, there are two ways to choose the set of extra paths. If one path is
2 ❀ 0, then the other path is 3 ❀ 1; the alternative is to use the paths 2 ❀ 1 and 3 ❀ 0.
These choices have equal cost (c21 + c30 = 3 + 1, c20 + c31 = 2 + 2), and either can be used for
an optimal CPT. We can now imagine the original graph augmented with the two new paths:
all vertices will be balanced and the result is an Eulerian graph, and its Eulerian circuit, which
will be an optimal CPT of the original, can be obtained by a standard algorithm.

In the example, two new paths are required; in general k extra paths are required, where
k =

∑
v∈D+ δ(v). The first of these k paths might go to any of the (at most) k vertices in D+,

the second can to any of the remaining k− 1, and the third to any of the remaining k− 2, and
so on. In the worst case there are k! choices, and clearly it would be an inefficient algorithm
that examined all the choices and picked the least cost; instead more efficient approaches can
be used.

In general a CPT may take some of the D− ❀ D+ paths more than once. Let fij be the
number of times the path i ❀ j must be taken — specifically, how many times the path
must be added to the graph to make it Eulerian. We are now in a position to express the
optimal CPT problem formally: finding the optimal tour amounts to finding how to minimise
its excess cost, φ =

∑
cijfij , which is the additional cost of traversing the chosen additional

paths between the unbalanced vertices. The total cost of the optimal CPT will be φ plus the
total of each arc weight, since every arc has to be traversed at least once in any case. (If each
arc weight is 1, φ is the least number of arcs that need to be added to make the graph Eulerian;
this is the deficiency of the graph, as required for the robot exploration problem in §2.)
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Original graph G (as list of arcs) (0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 0)
Vertex δs δ(0) = 1, δ(1) = 1, δ(2) = −1, δ(3) = −1

D− {2, 3}
D+ {0, 1}

Variables f20, f21, f30, f31

φ 2f20 + 3f21 + f30 + 2f31

Constraints f20 + f30 = 1, f21 + f31 = 1,
f20 + f21 = 1, f30 + f31 = 1

Integer solution minimising φ f20 = 0, f21 = 1, f30 = 1, f31 = 0
Extra paths to adjoin fij × i ❀ j = {2 ❀ 1, 3 ❀ 0}

Adjoined to make Eulerian graph (0, 1), (0, 2), (1, 3), (1, 2), (2, 3), (3, 0), (2, 1), (3, 0)
Euler circuit 2, 1, 3, 0, 2, 3, 0, 1, 2

Least cost path for arcs not in G 2 ❀ 1 	→ 2, 3, 0, 1
. . . splice in to make CPT of G 2, 3, 0, 1, 3, 0, 2, 3, 0, 1, 2

Figure 2. Sample data solving the CPT for the graph from Figure 1.

The algorithm can now be sketched mathematically:

determine : δ, D−, D+, c from the graph

find f to minimise :
∑

cijfij

subject to :




fij integer
fij ≥ 0∑

j∈D+ fij = −δ(i)∑
i∈D− fij = δ(j)

construct : Eulerian circuit, by using least cost paths i ❀ j,
each path repeated fij > 0 times

The code we give below (§4 onwards) also includes error checking. Figure 2 summarises the
calculations relevant for the example graph.

4. Java code for the closed CPP

An optimal CPT for the simple graph of Figure 1 can be found using the code developed in
this paper:

CPP G = new CPP(4); // create a graph of four vertices

// add the arcs for the example graph
G.addArc("a", 0, 1, 1).addArc("b", 0, 2, 1).addArc("c", 1, 2, 1)
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.addArc("d", 1, 3, 1).addArc("e", 2, 3, 1).addArc("f", 3, 0, 1);

G.solve(); // find the CPT
G.printCPT(0); // print it, starting from vertex 0
System.out.println("Cost = "+G.cost());

Here is the output:

Take arc b from 0 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Cost = 10.0

4.1. Class outline

The CPT algorithm is defined in a Java class CPP, but our procedural style of programming
can be translated to languages such as C or Pascal directly.

After creating a new graph and defining its arcs (including their labels and weights), the
main phases of the algorithm are called in sequence using the method solve, shown below,
after which calling printCPT(startVertex) will print an optimal CPT starting from any
vertex.

import java.io.*;
import java.util.*;

public class CPP
{ int N; // number of vertices

int delta[]; // deltas of vertices
int neg[], pos[]; // unbalanced vertices
int arcs[][]; // adjacency matrix, counts arcs between vertices
Vector label[][]; // vectors of labels of arcs (for each vertex pair)
int f[][]; // repeated arcs in CPT
float c[][]; // costs of cheapest arcs or paths
String cheapestLabel[][]; // labels of cheapest arcs
boolean defined[][]; // whether path cost is defined between vertices
int path[][]; // spanning tree of the graph
float basicCost; // total cost of traversing each arc once

void solve()
{ leastCostPaths();

checkValid();
findUnbalanced();
findFeasible();
while( improvements() );

}
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...
// Other declarations are described below
...

}
We use a simple adjacency matrix represention of graphs: arcs counts the number of parallel

arcs between each pair of vertices, along with subsidiary structures, such as vertex deltas that
are needed for the algorithm. To avoid the complexity of changing the size of vectors and
matrices dynamically, a CPP graph is instantiated with a fixed size:

// allocate array memory, and instantiate graph object
CPP(int vertices)
{ if( (N = vertices) <= 0 ) throw new Error("Graph is empty");

delta = new int[N];
defined = new boolean[N][N];
label = new Vector[N][N];
c = new float[N][N];
f = new int[N][N];
arcs = new int[N][N];
cheapestLabel = new String[N][N];
path = new int[N][N];
basicCost = 0;

}
Initialisation in Java sets booleans to false and integers to zero: all elements of delta,

arcs, neg and pos are zero. Hence when a graph is first created it has N vertices and no arcs.
Graphs then are constructed by adding arcs. Some complexity in the code arises from keeping
track of multiple labels for parallel arcs; otherwise we only need to know for any pair of vertices
the number of arcs and the cheapest cost.

CPP addArc(String lab, int u, int v, float cost)
{ if( !defined[u][v] ) label[u][v] = new Vector();

label[u][v].addElement(lab);
basicCost += cost;
if( !defined[u][v] || c[u][v] > cost )
{ c[u][v] = cost;

cheapestLabel[u][v] = lab;
defined[u][v] = true;
path[u][v] = v;

}
arcs[u][v]++;
delta[u]++;
delta[v]--;
return this;

}
The final line, return this, allows addArc calls to be strung together conveniently.

4.2. Find shortest paths and costs

The Floyd-Warshall algorithm [17] can efficiently find and record shortest paths at the same
time as establishing the costs, c, by building a matrix P (called path in the Java) such that
the first arc of the least cost path u ❀ v from vertex u to vertex v is (u, Puv). Subsequent arcs
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along the path are found similarly; if (u, Puv) is an arc to vertex w �= v then (u, Pwv) is the
next arc to take towards v, and so on.

Since the matrix P defines paths from every vertex to any vertex v, it also defines spanning
trees {(u, Puv) : u �= v}, each one rooted at a different vertex v. We will use this fact later.

The standard algorithm is modified to terminate if any negative cycle is found: because it
terminates before possibly finding further cycles through the same vertex, the cycle is correctly
defined by recording a single value in path — this fact is used in §4.5.

void leastCostPaths()
{ for( int k = 0; k < N; k++ )

for( int i = 0; i < N; i++ )
if( defined[i][k] )

for( int j = 0; j < N; j++ )
if( defined[k][j]

&& (!defined[i][j] || c[i][j] > c[i][k]+c[k][j]) )
{ path[i][j] = path[i][k];

c[i][j] = c[i][k]+c[k][j];
defined[i][j] = true;
if( i == j && c[i][j] < 0 ) return; // stop on negative cycle

}
}

4.3. Check valid

Checking that a graph is strongly connected with no negative weight cycles is established by
inspecting the shortest path costs. If some element of c is undefined, the graph is not connected.
For any vertex i, cii is the cost of a least cost cycle including that vertex; so a graph with
negative weight cycles will have cii < 0 for some i.

void checkValid()
{ for( int i = 0; i < N; i++ )

{ for( int j = 0; j < N; j++ )
if( !defined[i][j] ) throw new Error("Graph is not strongly connected");

if( c[i][i] < 0 ) throw new Error("Graph has a negative cycle");
}

}

4.4. Find unbalanced vertex sets

The vectors neg and pos represent the sets D− and D+, and they are built straight forwardly
by examining delta, the δ of each vertex.

void findUnbalanced()
{ int nn = 0, np = 0; // number of vertices of negative/positive delta

for( int i = 0; i < N; i++ )
if( delta[i] < 0 ) nn++;
else if( delta[i] > 0 ) np++;

neg = new int[nn];
pos = new int[np];
nn = np = 0;
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for( int i = 0; i < N; i++ ) // initialise sets
if( delta[i] < 0 ) neg[nn++] = i;
else if( delta[i] > 0 ) pos[np++] = i;

}

4.5. Solve the optimisation problem

The optimisation problem may be solved in various ways. Care must be taken if a general
purpose linear programming method is used: the example problem has a solution f20 = f21 =
f30 = f31 = 1/2 where φ has the optimal value of 4 and the constraints are still satisfied
but the fij are not integral. This is a problem we must avoid, since non-integral f are not
acceptable: a valid CPT solution requires f be integral. Matching is one approach, and can
be done efficiently in polynomial time, though no simple algorithm is available — Knuth’s C
code [8] implements the Hungarian algorithm and runs to about 9 book pages, 16 including
comments. Other approaches are also long and tedious to program, though some code is freely
available on the Internet. The min-cost max-flow algorithm is available in source form [17];
the Ford-Fulkerson algorithm is discussed in [1, 6].

Cycle canceling [7] can reuse the shortest path results already found, and we use it because
it is concise. Cycle canceling starts with an approximate solution, then iteratively improves
it. Here, the greedy method is used to establish an initial feasible solution: when the method
terminates, the variable f satisfies the constraints but φ may not yet be optimal.

void findFeasible()
{ // delete next 3 lines to be faster, but non-reentrant

int delta[] = new int[N];
for( int i = 0; i < N; i++ )

delta[i] = this.delta[i];

for( int u = 0; u < neg.length; u++ )
{ int i = neg[u];

for( int v = 0; v < pos.length; v++ )
{ int j = pos[v];

f[i][j] = -delta[i] < delta[j]? -delta[i]: delta[j];
delta[i] += f[i][j];
delta[j] -= f[i][j];

}
}

}
Notice how the class variable delta is copied to a local variable. As used in this paper, there

is no requirement for any code to be reentrant, but it is nevertheless good practice! The few
lines that make the copy can be deleted if performance is at a premium. (Or Java’s efficient
System.arraycopy can be used.)

Cycle canceling uses a residual graph, and ‘cancels’ negative cycles in it. The improvements
method returns true into the while loop of the solve method so it will be invoked repeatedly
while improvements are possible. The loop terminates when no further improvements are
possible.

boolean improvements()
{ CPP residual = new CPP(N);

for( int u = 0; u < neg.length; u++ )
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{ int i = neg[u];
for( int v = 0; v < pos.length; v++ )
{ int j = pos[v];

residual.addArc(null, i, j, c[i][j]);
if( f[i][j] != 0 ) residual.addArc(null, j, i, -c[i][j]);

}
}
residual.leastCostPaths(); // find a negative cycle
for( int i = 0; i < N; i++ )

if( residual.c[i][i] < 0 ) // cancel the cycle (if any)
{ int k = 0, u, v;

boolean kunset = true;
u = i; do // find k to cancel
{ v = residual.path[u][i];

if( residual.c[u][v] < 0 && (kunset || k > f[v][u]) )
{ k = f[v][u];

kunset = false;
}

} while( (u = v) != i );
u = i; do // cancel k along the cycle
{ v = residual.path[u][i];

if( residual.c[u][v] < 0 ) f[v][u] -= k;
else f[u][v] += k;

} while( (u = v) != i );
return true; // have another go

}
return false; // no improvements found

}

4.6. Cost

The cost of an optimal CPT is obtained straight forwardly:

float cost()
{ return basicCost+phi();
}

float phi()
{ float phi = 0;

for( int i = 0; i < N; i++ )
for( int j = 0; j < N; j++ )

phi += c[i][j]*f[i][j];
return phi;

}

4.7. Print the optimal CPT

We now have an optimal assignment to f , and can use this to implicitly construct a Eulerian
graph. The optimal CPT is a Euler circuit of this graph.

An algorithm for following Euler circuits uses a spanning tree: to follow a circuit, take any
arc from a vertex, but use the spanning tree arc last [6]. The matrix path found in §4.2 defines
a spanning tree.

When at any vertex i on the tour, if fij > 0, follow the shortest path i ❀ j. Since f counts
how many times paths should be followed, decrement fij as each path is followed. Otherwise
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take an arc other than an the arc in the spanning tree, if possible, else use the last arc (called
a bridge) from the spanning tree. Since we allow graphs to have parallel arcs (with different
labels), as each arc is traversed, the arc count is decremented so that on the next traversal a
different arc label will be used.

Calling printCPT requires prior initialisation with the solve method. Note that printCPT
makes a local copy of arcs and f so that the original graph data is not erased as its CPT
is printed. The method terminates when it visits a vertex where the bridge has already been
used; this can only happen when the path completes the circuit on returning to the start vertex
(this need not be the first time the circuit returns to the start vertex).

static final int NONE = -1; // anything < 0

int findPath(int from, int f[][]) // find a path between unbalanced vertices
{ for( int i = 0; i < N; i++ )

if( f[from][i] > 0 ) return i;
return NONE;

}

void printCPT(int startVertex)
{ int v = startVertex;

// delete next 7 lines to be faster, but non-reentrant
int arcs[][] = new int[N][N];
int f[][] = new int[N][N];
for( int i = 0; i < N; i++ )

for( int j = 0; j < N; j++ )
{ arcs[i][j] = this.arcs[i][j];

f[i][j] = this.f[i][j];
}

while( true )
{ int u = v;

if( (v = findPath(u, f)) != NONE )
{ f[u][v]--; // remove path

for( int p; u != v; u = p ) // break down path into its arcs
{ p = path[u][v];

System.out.println("Take arc "+cheapestLabel[u][p]
+" from "+u+" to "+p);

}
}
else
{ int bridgeVertex = path[u][startVertex];

if( arcs[u][bridgeVertex] == 0 )
break; // finished if bridge already used

v = bridgeVertex;
for( int i = 0; i < N; i++ ) // find an unused arc, using bridge last

if( i != bridgeVertex && arcs[u][i] > 0 )
{ v = i;

break;
}

arcs[u][v]--; // decrement count of parallel arcs
System.out.println("Take arc "+label[u][v].elementAt(arcs[u][v])

+" from "+u+" to "+v); // use each arc label in turn
}

}
}
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5. Java code for the open CPP

The CPP asks for a closed tour that brings the postman back to their start. In many
applications, it is not necessary to return; for instance, in a testing application, once every arc
has been tested, the device can be left in any state. It is not necessary for test purposes to
return the device to its initial state (although this might only be a final ‘switch off’ transition).

Imagine that the optimal open solution starts at vertex u and finishes at v. The open solution
can be obtained from a closed solution, found by introducing a new ‘virtual’ arc (v, u), provided
the cost associated with this arc is so high that it is used only once in the closed tour (if the
cost was low, the virtual arc might be used more than once to ‘cheat’). If we assume u is given,
to find the optimal open tour, simply solve the closed problem for each possible choice of v
and choose any least cost solution.

We can do better. If the graph is Eulerian, then the optimal open CPT will anyway be a
Euler circuit, which is closed. Hence to solve the open problem on a Eulerian graph no virtual
arc is required: we just solve the closed problem and its solution will be the optimal solution
to the open problem. Otherwise the vertices to consider for v need only be selected from D−.
The proof of this is easy: consider a choice of v not in D−. This will be some vertex either
balanced or with an excess of out arcs; with the addition of the virtual arc, it will have an
excess of out arcs in either case. A CPT must necessarily use some in arcs to this vertex more
than once. Choose any of those in arcs and move v to the initial vertex of that arc. We now
have a lower cost tour (provided the arc cost was positive). The argument can be repeated
until v is in the set D−.

The set D− is necessarily smaller than the set of all vertices, and typically smaller than half
its size, so considering choices of v only from D− represents a useful optimisation. Furthermore,
if a least cost open tour is required without assuming a given u, a similar argument can be
used to show u can be chosen from D+.

The code for solving the open CPP shown below uses these ideas, with two provisos. First,
the data structure for representing graphs does not make moving arcs convenient, and it is
easier to reconstruct graphs for each possible location of v — in this case by storing calls
to addArc so the graph can be reconstructed by iterating through a saved collection of arcs.
Secondly, as the closed algorithm can put the virtual arc anywhere in a tour (which means
the solution needs reorganising to end at the virtual arc), it is convenient to split the virtual
arc with a virtual vertex w and start the tour there — this ensures that solutions always start
and finish with a virtual arc, which is therefore easy to discard. If the graph is Eulerian, we
still add the two virtual arcs, so the output is consistent whether or not the graph is Eulerian.

class OpenCPP
{ class Arc

{ String lab; int u, v; float cost;
Arc(String lab, int u, int v, float cost)
{ this.lab = lab;

this.u = u;
this.v = v;
this.cost = cost;

}
}
Vector arcs = new Vector();
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int N;

OpenCPP(int vertices)
{ N = vertices;
}

OpenCPP addArc(String lab, int u, int v, float cost)
{ if( cost < 0 ) throw new Error("Graph has negative costs");

arcs.addElement(new Arc(lab, u, v, cost));
return this;

}

float printCPT(int startVertex)
{ CPP bestGraph = null, g;

float bestCost = 0, cost;
int i = 0;
do
{ g = new CPP(N+1);

for( int j = 0; j < arcs.size(); j++ )
{ Arc it = (Arc) arcs.elementAt(j);

g.addArc(it.lab, it.u, it.v, it.cost);
}
cost = g.basicCost;
g.findUnbalanced(); // initialise g.neg on original graph
g.addArc("'virtual start'", N, startVertex, cost);
g.addArc("'virtual end'",

// graph is Eulerian if neg.length=0
g.neg.length == 0? startVertex: g.neg[i], N, cost);

g.solve();
if( bestGraph == null || bestCost > g.cost() )
{ bestCost = g.cost();

bestGraph = g;
}

} while( ++i < g.neg.length );
System.out.println("Open CPT from "+startVertex+" (ignore virtual arcs)");
bestGraph.printCPT(N);
return cost+bestGraph.phi();

}

}
For example, a least cost open tour of the example problem is 1, 3, 0, 1, 2, 3, 0, 2 — which

traverses only 7 arcs rather than the minimum of 10 required for a closed tour.
Different data structures for representing graphs could make moving the vertex v and the

arc (v, w) more efficient. We did not use this approach because the clarity of the closed code
was more important than its efficiency in supporting the open case.

6. The difficulty of the algorithm

It is certainly possible to solve the problem more efficiently than has been done here. The code
repeatedly relies on linear searches. The shortest paths algorithm found all shortest paths, but
only the shortest paths between D+ and D− are used — although as a side effect of finding
all shortest paths we also found spanning trees, one of which was later used to construct the
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Figure 3. Example construction of a graph corresponding to the linear programming formulation of a
CPP, where |D−| = 3 and |D+| = 2. Thicker lines represent multiple parallel arcs; the thin lines single

arcs (for all vertices, the in-degrees and out-degrees are equal).

Euler circuit efficiently. The cycle canceling algorithm is not sophisticated, but it exploited the
existing data structure built when finding shortest paths.

However, there are no significantly better algorithms available. The CPP certainly requires
shortest paths, and it certainly requires a solution to the integer linear programming problem.
However the form of linear programming problem can be reduced to a graph whose optimal
CPT represents its solution. The CPP is as hard as the best methods of solving this form of
linear program: hence no significantly faster algorithm can be found for the CPP than can be
found for this form of linear programming.

Figure 3 shows such a construction. In general: construct a graph with vertices
{b, u1, . . . , un, v1, . . . , vp} where n = |D−| and p = |D+|. Add all np arcs (ui, vj) with
weights cij ; for each vertex ui add p parallel arcs (b, ui) from b; for each vertex vj add n
parallel arcs (vj , b) to b. Vertices ui should have balance −δ(i): add this number of arcs (b, ui);
similarly add δ(j) arcs (vj , b). To ensure the shortest paths ui ❀ vj are the arcs (ui, vj), no
indirect path of the form (ui, v

′, b, u′, vj) can have a cost less than cij : therefore assign arcs
into and from b weights max(cij).

7. Conclusions

The Chinese Postman Problem for directed graphs has many interesting and useful
applications, and can be solved by an interesting combination of standard algorithms, yet
it does not get the wide recognition it deserves. This paper reviewed the applications, and
provided a complete Java solution for the problem.
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On the one hand, it is disappointing not to find a short algorithm; on the other hand,
the Chinese Postman Problem is all the more interesting for being a simple problem with a
complex solution. It provides a nice case-study in integrating algorithms.
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