Query Processing: The Basics

Chapter 10

External Sorting

- Sorting is used in implementing many relational operations
- Problem:
 - Relations are typically large, do not fit in main memory
 - So cannot use traditional in-memory sorting algorithms
- Approach used:
 - Combine in-memory sorting with clever techniques aimed at minimizing I/O
 - I/O costs dominate => cost of sorting algorithm is measured in the number of page transfers

External Sorting (cont’d)

- External sorting has two main components:
 - Computation involved in sorting records in buffers in main memory
 - I/O necessary to move records between mass store and main memory

Simple Sort Algorithm

- \(M \) = number of main memory page buffers
- \(F \) = number of pages in file to be sorted
- Typical algorithm has two phases:
 - Partial sort phase: sort \(M \) pages at a time; create \(F/M \) sorted runs on mass store, cost = \(2F \)

Example: \(M = 2, F = 7 \)

Simple Sort Algorithm

- **Merge Phase**: merge all runs into a single run using \(M-1 \) buffers for input and 1 output buffer

 - Merge step: divide runs into groups of size \(M-1 \) and merge each group into a run; cost = \(2F \)

 each step reduces number of runs by a factor of \(M-1 \)

Merge: An Example
Simple Sort Algorithm

- Cost of merge phase:
 - \(\frac{(F/M)/(M-1)^k} \) runs after \(k \) merge steps
 - \(\lceil \log_{M-1}(F/M) \rceil \) merge steps needed to merge an initial set of \(F/M \) sorted runs
 - \(\text{cost} = \lceil 2F \log_{M-1}(F/M) \rceil \approx 2F(\log_{M-1}F - 1) \)
- Total cost = cost of partial sort phase + cost of merge phase \(\approx 2F \log_{M-1}F \)

Duplicate Elimination

- A major step in computing projection, union, and difference relational operators
- Algorithm:
 - Sort
 - At the last stage of the merge step eliminate duplicates on the fly
 - No additional cost (with respect to sorting) in terms of I/O

Duplicate elimination During Merge

Sort-Based Projection

- Algorithm:
 - Sort rows of relation at cost of \(2F \log_{M-1}F \)
 - Eliminate unwanted columns in partial sort phase (no additional cost)
 - Eliminate duplicates on completion of last merge step (no additional cost)
- Cost: the cost of sorting

Hash-Based Projection

- **Phase 1**:
 - Input rows
 - Project out columns
 - Hash remaining columns using a hash function with range \(1 \ldots M-1 \) creating \(M-1 \) buckets on disk
 - Cost = \(2F \)
- **Phase 2**:
 - Sort each bucket to eliminate duplicates
 - Cost (assuming a bucket fits in \(M-1 \) buffer pages) = \(2F \)
- Total cost = \(4F \)

Computing Selection \(\sigma_{(attr \ op \ value)} \)

- No index on \(attr \):
 - If rows are not sorted on \(attr \):
 - Scan all data pages to find rows satisfying selection condition
 - Cost = \(F \)
 - If rows are sorted on \(attr \) and \(op \) is \(=, >, < \) then:
 - Use binary search (at \(\log_2 F \)) to locate first data page containing row in which \((attr \ text{ } value) \)
 - Scan further to get all rows satisfying \((attr \ text{ } value) \)
 - Cost = \(\log_2 F + \) (cost of scan)
Computing Selection $\sigma_{(\text{attr op value})}$

- **Clustered** B^+ tree index on attr (for "$=$" or range search):
 - Locate first index entry corresponding to a row in which $(\text{attr} = \text{value})$. Cost = depth of tree.
 - Rows satisfying condition packed in sequence in successive data pages; scan those pages.
 - Cost: number of pages occupied by qualifying rows.

- **Unclustered** B^+ tree index on attr (for "$=$" or range search):
 - Locate first index entry corresponding to a row in which $(\text{attr} = \text{value})$.
 - Cost = depth of tree.
 - Index entries with pointers to rows satisfying condition are packed in sequence in successive index pages.
 - Cost: number of rows that satisfy selection condition.

Unclustered B^+ Tree Index

- **Hash index** on attr (for equality search):
 - Hash on value. Cost = 1.2
 - 1.2 typical average cost of hashing (> 1 due to possible overflow chains).
 - Finds the (unique) bucket containing all index entries satisfying selection condition.
 - Clustered index - all qualifying rows packed in the bucket (a few pages)
 - Unclustered index - sort row Ids in the index entries to identify data pages with qualifying rows.
 - Each page containing at least one such row must be fetched once.
 - Cost: min(number of qualifying rows in bucket, number of pages in file).

Access Path

- **Access path** is the notion that denotes algorithm + data structure used to locate rows satisfying some condition.
- **Examples**:
 - File scan: can be used for any condition.
 - Hash: equality search; all search key attributes of hash index are specified in condition.
 - B^+ tree: equality or range search; a prefix of the search key attributes are specified in condition.
 - B^+ tree supports a variety of access paths.
 - Binary search: Relation sorted on a sequence of attributes and some prefix of that sequence is specified in condition.
Access Paths Supported by B^+ tree

- **Example**: Given a B^+ tree whose search key is the sequence of attributes a_2, a_1, a_3, a_4
 - Access path for search $\sigma_{a_2=3 \land a_1 > 5 \land a_3 = 'x'}(R)$: find first entry having $a_2=3$ and scan leaves from there until entry having $a_2 > 3$ or $a_3 \neq 'x'$. Select satisfying entries
 - Access path for search $\sigma_{a_2=3 \land a_3 > 'x'}(R)$: locate first entry having $a_2 = 3$ and scan leaves until entry having $a_2 > 3$. Select satisfying entries
 - Access path for search $\sigma_{a_1 > 5 \land a_3 = 'x'}(R)$: Scan of R

Choosing an Access Path

- **Selectivity** of an access path = number of pages retrieved using that path
- If several access paths support a query, DBMS chooses the one with **lowest** selectivity
- Size of domain of attribute is an indicator of the selectivity of search conditions that involve that attribute

Example: $\sigma_{\text{CrsCode}=\text{CS305} \land \text{Grade}=\text{B}}(\text{Transcript})$
- a B^+ tree with search key CrsCode has lower selectivity than a B^+ tree with search key Grade

Computing Joins

- The cost of joining two relations makes the choice of a join algorithm crucial
- Simple **block-nested loops** join algorithm for computing $r \bowtie_s A=B$

  ```plaintext
  foreach page $p_r$ in $r$ do
      foreach page $p_s$ in $s$ do
          output $p_r \bowtie_s A=B p_s$
  ```

Block-Nested Loops Join

- If β_r and β_s are the number of pages in r and s, the cost of algorithm is
 \[
 \beta_r + \beta_s + \beta_r \cdot \beta_s + \text{cost of outputting final result}
 \]

 - If r and s have 10^3 pages each, cost is $10^3 + 10^3 \cdot 10^3$
 - Choose smaller relation for the outer loop:
 - If $\beta_r < \beta_s$ then $\beta_r + \beta_r \cdot \beta_s < \beta_s + \beta_s \cdot \beta_s$

 Cost can be reduced to
 \[
 \beta_r + (\beta_s/(M-2)) \cdot \beta_s + \text{cost of outputting final result}
 \]

 by using M buffer pages instead of 1.

Block-Nested Loop Illustrated
Index-Nested Loop Join $r \bowtie_{A=\beta} s$

- Use an index on s with search key B (instead of scanning s) to find rows of s that match t_r
 - Cost $= \beta_s + \tau_s \cdot \alpha + \text{cost of outputting final result}$
- Effective if number of rows of s that match tuples in r is small (i.e., α is small) and index is clustered

```
foreach tuple $t_r$ in $r$ do {
  use index to find all tuples $t_s$ in $s$ satisfying $t_r.A = t_s.B$
  output $(t_r, t_s)$
}
```

Sort-Merge Join $r \bowtie_{A=\beta} s$

```
sort $r$ on $A$;
sort $s$ on $B$;
while $\text{!eof}(r)$ and $\text{!eof}(s)$ do {
  Scan $r$ and $s$ concurrently until $t_r.A = t_s.B = c$;
  Output $\sigma_{A=c}(r) \bowtie_{A=c, B=c} (s)$
}
```

Join During Merge Illustrated

Cost of Sort-Merge Join

- Cost of sorting assuming M buffers:
 $$2 \beta_r \log_M \beta_r + 2 \beta_s \log_M \beta_s$$
- Cost of merging:
 - Scanning $\sigma_{A=c}(r)$ and $\sigma_{B=c}(s)$ can be combined with the last step of sorting of r and s --- costs nothing
 - Cost of $\sigma_{A=c}(r) \bowtie_{A=c, B=c} (s)$ depends on whether $\sigma_{A=c}(r)$ can fit in the buffer
 - If yes, this step costs 0
 - In no, each $\sigma_{A=c}(r) \bowtie_{A=c, B=c} (s)$ is computed using block-nested join, so the cost is the cost of the join. (Think why indexed methods or sort-merge are inapplicable to Cartesian product.)
- Cost of outputting the final result depends on the size of the result

Hash-Join $r \bowtie_{A=\beta} s$

- Step 1: Hash r on A and s on B into the same set of buckets
- Step 2: Since matching tuples must be in same bucket, read each bucket in turn and output the result of the join
- Cost: $3 (\beta_r + \beta_s) + \text{cost of outputting final result}$
 - assuming each bucket fits in memory

Hash Join

Cost of Hash Join

- Cost of hashing:
 $$2 \beta_r \log_M \beta_r + 2 \beta_s \log_M \beta_s$$
- Cost of matching:
 - Scanning $\sigma_{A=c}(r)$ and $\sigma_{B=c}(s)$ can be combined with the last step of sorting of r and s --- costs nothing
 - Cost of $\sigma_{A=c}(r) \bowtie_{A=c, B=c} (s)$ depends on whether $\sigma_{A=c}(r)$ can fit in the buffer
 - If yes, this step costs 0
 - In no, each $\sigma_{A=c}(r) \bowtie_{A=c, B=c} (s)$ is computed using block-nested join, so the cost is the cost of the join. (Think why indexed methods or sort-merge are inapplicable to Cartesian product.)
- Cost of outputting the final result depends on the size of the result
Star Joins

- $r \bowtie_{cond_1} r_1 \bowtie_{cond_2} \cdots \bowtie_{cond_n} r_n$
 - Each $cond_i$ involves only the attributes of r_i and r

Computing Star Joins

- **Use join index** (Chapter 11)
 - Scan r and the join index \{<r,r_1,\ldots,r_n>\} (which is a set of tuples of rids) in one scan
 - Retrieve matching tuples in r_1,\ldots,r_n
 - Output result

Choosing Indices

- DBMSs may allow user to specify
 - Type (hash, B+ tree) and search key of index
 - Whether or not it should be clustered
- Using information about the frequency and type of queries and size of tables, designer can use cost estimates to choose appropriate indices
- Several commercial systems have tools that suggest indices
 - Simplifies job, but index suggestions must be verified

Computing Star Joins

- **Use bitmap indices** (Chapter 11)
 - Use one bitmapped join index, J_i, per each partial join $r \bowtie_{cond_i} r_i$
 - Recall: J_i is a set of <v, bitmap>, where v is an rid of a tuple in r_i and bitmap has 1 in k-th position iff k-th tuple of r_i joins with the tuple pointed to by v
 1. Scan J_i and logically OR all bitmaps. We get all rids in r that join with r_i
 2. Now logically AND the resulting bitmaps for J_1, \ldots, J_n
 3. Result: a subset of r, which contains all tuples that can possibly be in the star join
 - **Rationale**: only a few such tuples survive, so can use indexed loops

Choosing Indices – Example

- If a frequently executed query that involves selection or a join and has a large result set, use a clustered B+ tree index
 - **Example**: Retrieve all rows of Transcript for StudId
- If a frequently executed query is an equality search and has a small result set, an unclustered hash index is best
 - Since only one clustered index on a table is possible, choosing unclustered allows a different index to be clustered
 - **Example**: Retrieve all rows of Transcript for (StudId, CrsCode)