CSE 548: Analysis of Algorithms

Lecture 5
(Divide-and-Conquer Algorithms: Polynomial Multiplication (Continued))

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2015
Faster Polynomial Multiplication? (in Coefficient Form)

\[A(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} \]
\[B(x) = b_0 + b_1 x + \cdots + b_{n-1} x^{n-1} \]
\[C(x) = c_0 + c_1 x + \cdots + c_{2n-1} x^{2n-1} \]

ordinary multiplication

Time \(\Theta(n^2) \)

\[A(\omega_{2n}^0), B(\omega_{2n}^0) \]
\[A(\omega_{2n}^1), B(\omega_{2n}^1) \]
\[\vdots \]
\[A(\omega_{2n}^{2n-1}), B(\omega_{2n}^{2n-1}) \]

pointwise multiplication

Time \(\Theta(n) \)

\[C(\omega_{2n}^0) \]
\[C(\omega_{2n}^1) \]
\[\vdots \]
\[C(\omega_{2n}^{2n-1}) \]

forward FFT

Time \(\Theta(n \log n) \)

interpolation

Time?
Point-Value Form ⇒ Coefficient Form

Given:

\[
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_n & (\omega_n)^2 & \cdots & (\omega_n)^{n-1} \\
1 & \omega_n^2 & (\omega_n^2)^2 & \cdots & (\omega_n^2)^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{n-1} & (\omega_n^{n-1})^2 & \cdots & (\omega_n^{n-1})^{n-1}
\end{bmatrix}
\]

\[V(\omega_n)\]

\text{Vandermonde Matrix}

\[
\begin{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{n-1}
\end{bmatrix} \\
\bar{a}
\end{bmatrix}
=
\begin{bmatrix}
\begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_{n-1}
\end{bmatrix} \\
\bar{y}
\end{bmatrix}
\]

\[\Rightarrow V(\omega_n) \cdot \bar{a} = \bar{y}\]

We want to solve: \[\bar{a} = [V(\omega_n)]^{-1} \cdot \bar{y}\]

It turns out that: \[V(\omega_n)]^{-1} = \frac{1}{n} V\left(\frac{1}{\omega_n}\right)\]

That means \([V(\omega_n)]^{-1}\) looks almost similar to \(V(\omega_n)\)!
Show that: \[[V(\omega_n)]^{-1} = \frac{1}{n} V \left(\frac{1}{\omega_n} \right) \]

Let \(U(\omega_n) = \frac{1}{n} V \left(\frac{1}{\omega_n} \right) \)

We want to show that \(U(\omega_n)V(\omega_n) = I_n \),
where \(I_n \) is the \(n \times n \) identity matrix.

Observe that for \(0 \leq j, k \leq n - 1 \), the \((j, k)^{th}\) entries are:
\[[V(\omega_n)]_{jk} = \omega_n^{jk} \quad \text{and} \quad [U(\omega_n)]_{jk} = \frac{1}{n} \omega_n^{-jk} \]

Then entry \((p, q)\) of \(U(\omega_n)V(\omega_n) \),
\[[U(\omega_n)V(\omega_n)]_{pq} = \sum_{k=0}^{n-1} [U(\omega_n)]_{pk} [V(\omega_n)]_{kq} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^{k(q-p)} \]
Point-Value Form \Rightarrow Coefficient Form

\[[U(\omega_n)V(\omega_n)]_{pq} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^k(q-p) \]

CASE \(p = q \):

\[[U(\omega_n)V(\omega_n)]_{pq} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^0 = \frac{1}{n} \sum_{k=0}^{n-1} 1 = \frac{1}{n} \times n = 1 \]

CASE \(p \neq q \):

\[[U(\omega_n)V(\omega_n)]_{pq} = \frac{1}{n} \sum_{k=0}^{n-1} (\omega_n^{q-p})^k = \frac{1}{n} \times \frac{(\omega_n^{q-p})^n - 1}{\omega_n^{q-p} - 1} \]

\[= \frac{1}{n} \times \frac{(\omega_n^{q-p} - 1)}{\omega_n^{q-p} - 1} = \frac{1}{n} \times \frac{(1)^{q-p} - 1}{\omega_n^{q-p} - 1} = 0 \]

Hence \(U(\omega_n)V(\omega_n) = I_n \)
We need to compute the following matrix-vector product:

\[
\begin{bmatrix}
 a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{n-1}
\end{bmatrix}
\begin{bmatrix}
 1 & 1 & 1 & \cdots & 1 \\
 1 & \frac{1}{\omega_n} & \left(\frac{1}{\omega_n}\right)^2 & \cdots & \left(\frac{1}{\omega_n}\right)^{n-1} \\
 1 & \frac{1}{\omega_n^2} & \left(\frac{1}{\omega_n^2}\right)^2 & \cdots & \left(\frac{1}{\omega_n^2}\right)^{n-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \frac{1}{\omega_n^{n-1}} & \left(\frac{1}{\omega_n^{n-1}}\right)^2 & \cdots & \left(\frac{1}{\omega_n^{n-1}}\right)^{n-1}
\end{bmatrix}
\begin{bmatrix}
 y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_{n-1}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{n-1}
\end{bmatrix}
= \frac{1}{n} \times \begin{bmatrix}
 1 & 1 & 1 & \cdots & 1 \\
 1 & \frac{1}{\omega_n} & \left(\frac{1}{\omega_n}\right)^2 & \cdots & \left(\frac{1}{\omega_n}\right)^{n-1} \\
 1 & \frac{1}{\omega_n^2} & \left(\frac{1}{\omega_n^2}\right)^2 & \cdots & \left(\frac{1}{\omega_n^2}\right)^{n-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \frac{1}{\omega_n^{n-1}} & \left(\frac{1}{\omega_n^{n-1}}\right)^2 & \cdots & \left(\frac{1}{\omega_n^{n-1}}\right)^{n-1}
\end{bmatrix}^{-1}
\]

This inverse problem is almost similar to the forward problem, and can be solved in \(\Theta(n \log n)\) time using the same algorithm as the forward FFT with only minor modifications!
Two polynomials of degree bound \(n \) given in the coefficient form can be multiplied in \(\Theta(n \log n) \) time!
Some Applications of Fourier Transform and FFT

- Signal processing
- Image processing
- Noise reduction
- Data compression
- Solving partial differential equation
- Multiplication of large integers
- Polynomial multiplication
- Molecular docking
Any periodic signal can be represented as a sum of a series of sinusoidal (sine & cosine) waves. [1807]
Spatial (Time) Domain \iff Frequency Domain

Source: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith
Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔ Frequency Domain

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Let $s(t)$ be a signal specified in the time domain.

The strength of $s(t)$ at frequency f is given by:

$$S(f) = \int_{-\infty}^{\infty} s(t) \cdot e^{-2\pi if t} \, dt$$

Evaluating this integral for all values of f gives the frequency domain function.

Now $s(t)$ can be retrieved by summing up the signal strengths at all possible frequencies:

$$s(t) = \int_{-\infty}^{\infty} S(f) \cdot e^{2\pi if t} \, df$$
Why do the Transforms Work?

Let’s try to get a little intuition behind why the transforms work. We will look at a very simple example.

Suppose: \(s(t) = \cos(2\pi h \cdot t) \)

\[
\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2\pi ift} \, dt = \begin{cases}
1 + \frac{\sin(4\pi fT)}{4\pi fT}, & \text{if } f = h, \\
\frac{\sin(2\pi (h-f)T)}{2\pi (h-f)T} + \frac{\sin(2\pi (h+f)T)}{2\pi (h+f)T}, & \text{otherwise.}
\end{cases}
\]

\[
\Rightarrow \lim_{T \to \infty} \left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2\pi ift} \, dt \right) = \begin{cases}
1, & \text{if } f = h, \\
0, & \text{otherwise.}
\end{cases}
\]

So, the transform can detect if \(f = h \)!
Noise Reduction

Data Compression

− Discrete Cosine Transforms (DCT) are used for lossy data compression (e.g., MP3, JPEG, MPEG)

− DCT is a Fourier-related transform similar to DFT (Discrete Fourier Transform) but uses only real data (uses cosine waves only instead of both cosine and sine waves)

− Forward DCT transforms data from spatial to frequency domain

− Each frequency component is represented using a fewer number of bits (i.e., truncated / quantized)

− Low amplitude high frequency components are also removed

− Inverse DCT then transforms the data back to spatial domain

− The resulting image compresses better
Data Compression

Transformation to frequency domain using cosine transforms work in the same way as the Fourier transform.

Suppose: $s(t) = \cos(2\pi h \cdot t)$

$$\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos(2\pi f t) \, dt = \begin{cases} 1 + \frac{\sin(4\pi f T)}{4\pi f T}, & \text{if } f = h, \\ \frac{\sin(2\pi (h - f) T)}{2\pi (h - f) T} + \frac{\sin(2\pi (h + f) T)}{2\pi (h + f) T}, & \text{otherwise.} \end{cases}$$

$$\Rightarrow \lim_{T \to \infty} \left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos(2\pi f t) \, dt \right) = \begin{cases} 1, & \text{if } f = h, \\ 0, & \text{otherwise.} \end{cases}$$

So, this transform can also detect if $f = h$.
Protein-Protein Docking

- Knowledge of complexes is used in
 - Drug design
 - Studying molecular assemblies
 - Structure function analysis
 - Protein interactions

- **Protein-Protein Docking**: Given two proteins, find the best relative transformation and conformations to obtain a stable complex.

- Docking is a hard problem
 - Search space is huge (6D for rigid proteins)
 - Protein flexibility adds to the difficulty
To maximize skin-skin overlaps and minimize core-core overlaps
- assign positive real weights to skin atoms
- assign positive imaginary weights to core atoms

Let A' denote molecule A with the pseudo skin atoms.

For $P \in \{A', B\}$ with M_P atoms, affinity function:

$$f_P(x) = \sum_{k=1}^{M_P} w_k \cdot g_k(x)$$

Here $g_k(x)$ is a Gaussian representation of atom k, and w_k its weight.
Let A' denote molecule A with the pseudo skin atoms.

For $P \in \{A', B\}$ with M_P atoms, affinity function:

$$f_P(x) = \sum_{k=1}^{M_P} w_k \cdot g_k(x)$$

For rotation r and translation t of molecule B (i.e., $B_{t,r}$),

the interaction score, $F_{A,B}(t, r) = \int_x f_{A'}(x) f_{B_{t,r}}(x) \, dx$
For rotation \(r \) and translation \(t \) of molecule \(B \) (i.e., \(B_{t,r} \)),

the interaction score, \(F_{A,B}(t, r) = \int_x f_A'(x)f_{B_{t,r}}(x) \, dx \)

\[
\text{Re} \left(F_{A,B}(t, r) \right) = \text{skin-skin overlap score} - \text{core-core overlap score}
\]

\[
\text{Im} \left(F_{A,B}(t, r) \right) = \text{skin-core overlap score}
\]
Docking: Rotational & Translational Search
Forward Translational Search using FFT

\[\forall z \in \Omega = [-n, n]^3, \quad h(z) = \int_{x \in \Omega} f_{A'}(x)f_{B'}(z - x)dx \]