CSE 613: Parallel Programming

Lecture 4
(Scheduling and Work Stealing)

(inspiration for some slides comes from lectures given by Charles Leiserson)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2012
A runtime/online scheduler maps tasks to processing elements dynamically at runtime. The map is called a schedule.

An offline scheduler prepares the schedule prior to the actual execution of the program.
A strand / task is called *ready* provided all its parents (if any) have already been executed.

- executed task
- ready to be executed
- not yet ready

A *greedy scheduler* tries to perform as much work as possible at every step.
A Centralized Greedy Scheduler

Let $p =$ number of cores

At every step:

- if $\geq p$ tasks are ready:
 execute any p of them
 (complete step)

- if $< p$ tasks are ready:
 execute all of them
 (incomplete step)
Let $p = \text{number of cores}$

At every step:
- if $\geq p$ tasks are ready:
 execute any p of them
 (complete step)
- if $< p$ tasks are ready:
 execute all of them
 (incomplete step)
A Centralized Greedy Scheduler

Let $p = \text{number of cores}$

At every step:

- if $\geq p$ tasks are ready:
 execute any p of them
 (complete step)

- if $< p$ tasks are ready:
 execute all of them
 (incomplete step)
A Centralized Greedy Scheduler

Let $p =$ number of cores

At every step:

- if $\geq p$ tasks are ready:
 execute any p of them
 (complete step)

- if $< p$ tasks are ready:
 execute all of them
 (incomplete step)

$p = 3$
A Centralized Greedy Scheduler

Let $p =$ number of cores

At every step:

- if $\geq p$ tasks are ready:
 execute any p of them
 (complete step)

- if $< p$ tasks are ready:
 execute all of them
 (incomplete step)
A Centralized Greedy Scheduler

Let $p =$ number of cores

At every step:

- if $\geq p$ tasks are ready:
 execute any p of them
 (complete step)

- if $< p$ tasks are ready:
 execute all of them
 (incomplete step)
A Centralized Greedy Scheduler

Let $p =$ number of cores

At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $< p$ tasks are ready: execute all of them (incomplete step)
A Centralized Greedy Scheduler

Let $p =$ number of cores

At every step:

- if $\geq p$ tasks are ready:
 execute any p of them
 (complete step)

- if $< p$ tasks are ready:
 execute all of them
 (incomplete step)
Let p = number of cores

At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $< p$ tasks are ready: execute all of them (incomplete step)
A Centralized Greedy Scheduler

Let $p =$ number of cores

At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $< p$ tasks are ready: execute all of them (incomplete step)
Let \(p \) = number of cores

At every step:

- if \(\geq p \) tasks are ready:

 execute any \(p \) of them

 (complete step)

- if \(< p \) tasks are ready:

 execute all of them

 (incomplete step)
A Centralized Greedy Scheduler

Let \(p \) = number of cores

At every step:

- if \(\geq p \) tasks are ready:
 execute any \(p \) of them
 (complete step)

- if \(< p \) tasks are ready:
 execute all of them
 (incomplete step)
Let $p =$ number of cores

At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $< p$ tasks are ready: execute all of them (incomplete step)
Greed Scheduling Theorem

Theorem [Graham’68, Brent’74]:
For any greedy scheduler,
\[T_p \leq \frac{T_1}{p} + T_\infty \]

Proof:
\[T_p = \# \text{complete steps} + \# \text{incomplete steps} \]

- Each complete step performs \(p \) work:
 \[\# \text{complete steps} \leq \frac{T_1}{p} \]

- Each incomplete step reduces the span by 1:
 \[\# \text{incomplete steps} \leq T_\infty \]
Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler $T_p \leq 2T_p^*$, where T_p^* is the running time due to optimal scheduling on p processing elements.

Proof:

Work law: $T_p^* \geq \frac{T_1}{p}$

Span law: $T_p^* \geq T_\infty$

∴ From Graham-Brent Theorem:

$$T_p \leq \frac{T_1}{p} + T_\infty \leq T_p^* + T_p^* = 2T_p^*$$
Corollary 2: Any greedy scheduler achieves \(S_p \approx p \) (i.e., nearly linear speedup) provided \(\frac{T_1}{T_\infty} \gg p \).

Proof:

Given, \(\frac{T_1}{T_\infty} \gg p \Rightarrow \frac{T_1}{p} \gg T_\infty \)

\[\therefore \text{From Graham-Brent Theorem:} \]

\[T_p \leq \frac{T_1}{p} + T_\infty \approx \frac{T_1}{p} \]

\[\Rightarrow \frac{T_1}{T_p} \approx p \Rightarrow S_p \approx p \]
Work-Sharing and Work-Stealing Schedulers

Work-Sharing

– Whenever a processor generates new tasks it tries to distribute some of them to underutilized processors
– Easy to implement through centralized (global) task pool
– The centralized task pool creates scalability problems
– Distributed implementation is also possible (but see below)

Work-Stealing

– Whenever a processor runs out of tasks it tries to steal tasks from other processors
– Distributed implementation
– Scalable
– Fewer task migrations compared to work-sharing (why?)
Cilk++’s Work-Stealing Scheduler

- A randomized distributed scheduler
- Time bounds
 - Provably: $T_p = \frac{T_1}{p} + O(T_\infty)$ (expected time)
 - Empirically: $T_p \approx \frac{T_1}{p} + T_\infty$
- Space bound: $\leq p \times$ serial space bound
- Has provably good cache performance
Cilk++’s Work-Stealing Scheduler

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it steals one from the top of the dqueue of a random core
Cilk++’s Work-Stealing Scheduler

- Each core maintains a *work dqueue* of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core
Cilk++’s Work-Stealing Scheduler

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it steals one from the top of the dqueue of a random core
Cilk++’s Work-Stealing Scheduler

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it steals one from the top of the dqueue of a random core
Cilk++’s Work-Stealing Scheduler

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it steals one from the top of the dqueue of a random core
Cilk++’s Work-Stealing Scheduler

- Each core maintains a *work dqueue* of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core
Cilk++’s Work-Stealing Scheduler

- Each core maintains a *work dqueue* of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core
Space Usage of Cilk++’s Scheduler
(Problem with Linear Stacks)

– C/C++ uses a *linear* (contiguous) *stack* to store function activation records (i.e., stack frames)

– When a function is called
 o The caller pushes the return address onto the stack
 o The callee allocates its local variables in the stack space

– The callee’s stack frame lies directly above the caller’s one

– But linear stacks do not work well for parallel programs (why?)
Space Usage of Cilk++’s Scheduler (Cactus Stack)

- Cilk++ uses a *cactus stack*
 - A heap allocated tree of stack frames
 - Not necessarily contiguous
- A cactus stack supports several views of the stack in parallel
Space Usage of Cilk++’s Scheduler

Theorem: Let S_1 be the stack space required by a serial execution of a Cilk++ program. Then the stack space used when run on p processing elements is, $S_p \leq pS_1$.

Proof:

- At any given time step, the spawn subtree can have at most p leaves
- For each such leaf, the stack space used by it and all its ancestors is at most S_1