CSE 548: Analysis of Algorithms

Lectures 8 & 9
(Linear Recurrences with Constant Coefficients)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2012
A linear homogeneous recurrence relation of degree \(k \) with constant coefficients is a recurrence relation of the form:

\[
a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k},
\]

where \(c_1, c_2, \ldots, c_k \) are real constants, and \(c_k \neq 0 \).

For constant \(r \), \(a_n = r^n \) is a solution of the recurrence relation iff:

\[
r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}
\]

\[
\Rightarrow r^k - c_1 r^{k-1} - c_2 r^{k-2} - \cdots - c_{k-1} r - c_k = 0
\]

The equation above is called the characteristic equation of the recurrence, and its roots are called characteristic roots.
Linear Homogeneous Recurrence

Recurrence: \(a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}, \)

Characteristic Equation: \(r^k - c_1 r^{k-1} - \cdots - c_{k-1} r - c_k = 0 \)

If the characteristic equation has \(k \) distinct roots \(r_1, r_2, \ldots, r_k \), then a sequence \(\{a_n\} \) is a solution of the recurrence relation iff

\[
a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \cdots + \alpha_k r_k^n \quad \text{for integers } n \geq 0,
\]

where \(\alpha_1, \alpha_2, \ldots, \alpha_k \) are constants.
Linear Homogeneous Recurrence

Recurrence: \(a_n = c_1 a_{n-1} + c_2 a_{n-2} \)

Characteristic Equation: \(r^2 - c_1 r - c_2 = 0 \)

\[a_n = \alpha_1 r_1^n + \alpha_2 r_2^n \Rightarrow \{a_n\} \text{ is a solution to the recurrence:} \]

\[r_1^2 = c_1 r_1 + c_2 \quad \text{and} \quad r_2^2 = c_1 r_2 + c_2 \]

\[c_1 a_{n-1} + c_2 a_{n-2} = c_1 (\alpha_1 r_1^{n-1} + \alpha_2 r_2^{n-1}) + c_2 (\alpha_1 r_1^{n-2} + \alpha_2 r_2^{n-2}) \]

\[= \alpha_1 r_1^{n-2} (c_1 r_1 + c_2) + \alpha_2 r_2^{n-2} (c_1 r_2 + c_2) \]

\[= \alpha_1 r_1^{n-2} r_1^2 + \alpha_2 r_2^{n-2} r_2^2 \]

\[= \alpha_1 r_1^n + \alpha_2 r_2^n \]

\[= a_n \]
Linear Homogeneous Recurrence

Recurrence: \(a_n = c_1 a_{n-1} + c_2 a_{n-2} \)

Characteristic Equation: \(r^2 - c_1 r - c_2 = 0 \)

\(\{a_n\} \) is a solution to the recurrence \(\Rightarrow a_n = \alpha_1 r_1^n + \alpha_2 r_2^n \):

Assume initial conditions: \(a_0 = C_0 \) and \(a_1 = C_1 \)

\[
\begin{align*}
a_0 &= C_0 = \alpha_1 + \alpha_2 \\
a_1 &= C_1 = \alpha_1 r_1 + \alpha_2 r_2
\end{align*}
\]

Solving: \(\alpha_1 = \frac{c_1 - c_0 r_2}{r_1 - r_2} \) and \(\alpha_2 = \frac{c_0 r_1 - c_1}{r_1 - r_2} \)

Since the initial conditions uniquely determine the sequence, it follows that \(a_n = \alpha_1 r_1^n + \alpha_2 r_2^n \).
Linear Homogeneous Recurrence

Recurrence for Fibonacci numbers:

\[f_n = \begin{cases}
0 & \text{if } n = 0, \\
1 & \text{if } n = 1, \\
(f_{n-1} + f_{n-2}) & \text{otherwise}.
\end{cases} \]

Characteristic equation: \(r^2 - r - 1 = 0 \)

Characteristic roots: \(r_1 = \frac{1+\sqrt{5}}{2} \) and \(r_2 = \frac{1-\sqrt{5}}{2} \)

Then for constants \(\alpha_1 \) and \(\alpha_2 \): \(f_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2} \right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2} \right)^n \)

Initial conditions: \(f_0 = \alpha_1 + \alpha_2 = 0 \)

\[f_1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1-\sqrt{5}}{2} \right) = 1 \]

Constants: \(\alpha_1 = \frac{1}{\sqrt{5}} \) and \(\alpha_2 = -\frac{1}{\sqrt{5}} \)

Solution: \(f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n \)
Linear Homogeneous Recurrence

Recurrence: \(a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} \),

Characteristic Equation: \(r^k - c_1 r^{k-1} - \cdots - c_{k-1} r - c_k = 0 \)

If the characteristic equation has \(t \) distinct roots \(r_1, r_2, \ldots, r_t \) with multiplicities \(m_1, m_2, \ldots, m_t \), respectively, so that all \(m_i \)'s are positive and \(\sum_{1 \leq i \leq t} m_i = k \), then a sequence \(\{a_n\} \) is a solution of the recurrence relation iff

\[
a_n = (\alpha_{1,0} + \alpha_{1,1} n + \cdots + \alpha_{1,m_1-1} n^{m_1-1})r_1^n + (\alpha_{2,0} + \alpha_{2,1} n + \cdots + \alpha_{2,m_2-1} n^{m_2-1})r_2^n + \cdots + (\alpha_{t,0} + \alpha_{t,1} n + \cdots + \alpha_{t,m_t-1} n^{m_t-1})r_t^n
\]

for integers \(n \geq 0 \), where \(\alpha_{i,j} \) are constants for \(1 \leq i \leq t \) and \(0 \leq j \leq m_i - 1 \).
Linear Homogeneous Recurrence

\[a_n = \begin{cases}
1 & \text{if } n = 0, \\
6 & \text{if } n = 1, \\
6a_{n-1} - 9a_{n-2} & \text{otherwise.}
\end{cases} \]

Characteristic equation: \(r^2 - 6r + 9 = 0 \)

Characteristic root: \(r = 3 \)

Then for constants \(\alpha_1 \) and \(\alpha_2 \): \(a_n = \alpha_1 3^n + \alpha_2 n3^n \)

Initial conditions: \(a_0 = \alpha_1 = 1 \)
\[a_1 = 3\alpha_1 + 3\alpha_2 = 6 \]

Constants: \(\alpha_1 = 1 \) and \(\alpha_2 = 1 \)

Solution: \(a_n = 3^n(n + 1) \)
Linear Homogeneous Recurrence

\[a_n = \begin{cases}
2 & \text{if } n = 0, \\
7 & \text{if } n = 1, \\
a_{n-1} + 2a_{n-2} & \text{otherwise.}
\end{cases} \]

\[= 3 \cdot 2^n - (-1)^n \]

\[a_n = \begin{cases}
2 & \text{if } n = 0, \\
5 & \text{if } n = 1, \\
15 & \text{if } n = 2, \\
6a_{n-1} - 11a_{n-2} + 6a_{n-3} & \text{otherwise.}
\end{cases} \]

\[= 1 - 2^n + 2 \cdot 3^n \]

\[a_n = \begin{cases}
1 & \text{if } n = 0, \\
-2 & \text{if } n = 1, \\
-1 & \text{if } n = 2, \\
-3a_{n-1} - 3a_{n-2} - a_{n-3} & \text{otherwise.}
\end{cases} \]

\[= (1 + 3n - 2n^2)(-1)^n \]
A linear nonhomogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n),$$

where c_1, c_2, \ldots, c_k are real constants, $c_k \neq 0$, and $F(n)$ is a function not identically zero depending only on n.

The recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

is called the associated homogeneous recurrence relation.
Linear Nonhomogeneous Recurrence

Recurrence: \(a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n), \)

Suppose \(\{a_n^{(p)}\} \) is a particular solution of the recurrence above, and \(\{a_n^{(h)}\} \) is a solution of the associated homogeneous recurrence.

Then every solution of the given nonhomogeneous recurrence is of the form \(\{a_n^{(p)} + a_n^{(h)}\} \).
Linear Nonhomogeneous Recurrence

Recurrence: \(a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n), \)

Suppose \(F(n) = (b_t n^t + b_{t-1} n^{t-1} + \cdots + b_1 n + b_0) s^n, \)

where \(b_0, b_1, \ldots, b_t \) and \(s \) are real numbers.

If \(s \) is not a solution of the characteristic equation of the associated homogeneous recurrence, then there is an \(a_n^{(p)} \) of the form:

\[
(p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n.
\]

If \(s \) is a solution of the characteristic equation and its multiplicity is \(m \), then there is an \(a_n^{(p)} \) of the form:

\[
n^m (p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n.
\]
Linear Nonhomogeneous Recurrence

\[a_n = \begin{cases}
3 & \text{if } n = 1, \\
3a_{n-1} + 2n & \text{otherwise.}
\end{cases} \]

Associated homogeneous equation: \(a_n = 3a_{n-1} \)

Homogeneous solution: \(a_n^{(h)} = \alpha 3^n \)

Particular solution of nonhomogeneous recurrence: \(a_n^{(p)} = p_1 n + p_0 \)

Then \(p_1 n + p_0 = 3(p_1 (n - 1) + p_0) + 2n \)

\[\Rightarrow (2 + 2p_1)n + (2p_0 - 3p_1) = 0 \Rightarrow p_1 = -1, p_0 = -\frac{3}{2} \]

Solution: \(a_n = a_n^{(p)} + a_n^{(h)} = -n - \frac{3}{2} + \alpha \cdot 3^n \)

\[a_1 = 3 \Rightarrow \alpha = \frac{11}{6} \]

Hence \(a_n = -n - \frac{3}{2} + \frac{11}{6} \cdot 3^n \)