CSE 548: Analysis of Algorithms

Lecture 2
(Divide-and-Conquer Algorithms: Integer Multiplication)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2012
The strategy is to break large power alliances into smaller ones that are easier to manage (or subdue).

This is a combination of political, military and economic strategy of gaining and maintaining power.

Unsurprisingly, this is also a very powerful problem solving strategy in computer science.

A Latin Phrase

“*Divide et impera*”

(meaning: “divide and rule” or “divide and conquer”)

— Philip II, king of Macedon (382-336 BC), describing his policy toward the Greek city-states

(some say the Roman emperor Julius Caesar, 100-44 BC, is the source of this phrase)
Divide-and-Conquer

1. **Divide:** divide the original problem into smaller subproblems that are easier are to solve

2. **Conquer:** solve the smaller subproblems (perhaps recursively)

3. **Merge:** combine the solutions to the smaller subproblems to obtain a solution for the original problem
Integer Multiplication
Multiplying Two n-bit Numbers

\[
x = \begin{array}{c|c}
\frac{n}{2}\text{ bits} & \frac{n}{2}\text{ bits} \\
\hline
x_L & x_R \\
\end{array} = 2^{n/2}x_L + x_R
\]

\[
y = \begin{array}{c|c}
\frac{n}{2}\text{ bits} \\
\hline
y_L & y_R \\
\end{array} = 2^{n/2}y_L + y_R
\]

\[
xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R
\]

So $\# \frac{n}{2}$-bit products: 4

- $\#$ bit shifts (by n or $\frac{n}{2}$ bits): 2
- $\#$ additions (at most $2n$ bits long): 3

We can compute the $\frac{n}{2}$-bit products recursively.

Let $T(n)$ be the overall running time for n-bit inputs. Then

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
4T\left(\frac{n}{2}\right) + O(n) & \text{otherwise.}
\end{cases} = O(n^2) \ \ (\text{how? derive})
\]
Multiplying Two n-bit Numbers Faster
(Karatsuba’s Algorithm)

$$x = \begin{array}{c|c}
\frac{n}{2} \text{ bits} & \frac{n}{2} \text{ bits} \\
\hline
x_L & x_R \\
\end{array} = 2^{n/2}x_L + x_R$$

$$y = \begin{array}{c|c}
\frac{n}{2} \text{ bits} & \frac{n}{2} \text{ bits} \\
\hline
y_L & y_R \\
\end{array} = 2^{n/2}y_L + y_R$$

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R)$$

$$= 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R$$

$$= 2^n x_L y_L + 2^{n/2} ((x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R) + x_R y_R$$

So $\frac{n}{2}$ or $\left(\frac{n}{2} + 1\right)$-bit products: 3

Then the overall running time for n-bit inputs:

$$T(n) = \begin{cases}
\Theta(1) & \text{ if } n = 1, \\
3T\left(\frac{n}{2}\right) + O(n) & \text{ otherwise.}
\end{cases}$$

$$= O(n^{\log_2 3}) = O(n^{1.59}) \text{ (how? derive)}$$
Algorithms for Multiplying Two n-bit Numbers

<table>
<thead>
<tr>
<th>Inventor</th>
<th>Year</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>—</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>Anatolii Karatsuba</td>
<td>1960</td>
<td>$\Theta(n^{\log_2 3})$</td>
</tr>
<tr>
<td>Andrei Toom & Stephen Cook</td>
<td>1963 – 66</td>
<td>$\Theta(n2^{\sqrt{2\log_2 n}\log n})$</td>
</tr>
<tr>
<td>Arnold Schönhage & Volker Strassen (Fast Fourier Transform)</td>
<td>1971</td>
<td>$\Theta(n \log n \log \log n)$</td>
</tr>
<tr>
<td>Martin Fürer (Fast Fourier Transform)</td>
<td>2005</td>
<td>$n \log n 2^{O(\log^* n)}$</td>
</tr>
</tbody>
</table>

Lower bound: $\Omega(n)$ (why?)