Solutions for CSE303 Homework 5

1. Construct nondeterministic pushdown automata (npda) that accept the following regular languages. Note: Observe that all the languages are regular languages, so the solutions are essentially NFA’s (or npda’s with inactive stack). For all the languages, \(f \) is the final state.

(a) \(L_1 = L(\text{aaa}^*b) \)

Solution: The npda \(M = (K, \Sigma, \Gamma, \Delta, s, F) \), where \(K = \{ q_0, q_1, q_2, f \} \), \(\Sigma = \{ a, b \} \), \(F = \{ f \} \), and \(\Delta \) as the set of following rules accepts \(L_1 \).

\[
((q_0, a, c), (q_1, c)) \\
((q_1, a, c), (q_2, c)) \\
((q_2, a, c), (q_2, c)) \\
((q_2, b, c), (f, c))
\]

(b) \(L_2 = L(abb^*aba^*) \)

Solution: The npda \(M = (K, \Sigma, \Gamma, \Delta, s, F) \), where \(K = \{ r_0, r_1, r_2, r_3, f \} \), \(\Sigma = \{ a, b \} \), \(F = \{ f \} \), and \(\Delta \) as the set of following rules accepts \(L_2 \).

\[
((r_0, a, c), (r_1, e)) \\
((r_1, b, c), (r_2, e)) \\
((r_2, b, c), (r_2, e)) \\
((r_2, a, c), (r_3, e)) \\
((r_3, b, c), (f, e)) \\
((f, a, c), (f, e))
\]

(c) the union of \(L_1 \) and \(L_2 \)

Solution: The npda \(M = (K, \Sigma, \Gamma, \Delta, s, F) \), where \(K = \{ q_0, q_1, q_2, r_0, r_1, r_2, r_3, f \} \), \(\Sigma = \{ a, b \} \), \(F = \{ f \} \), and \(\Delta \) as the set of following rules accepts \(L_1 \cup L_2 \).

\[
((s, e, e), (q_0, e)) \\
((s, e, e), (r_0, e))
\]

where \(q_0 \) and \(r_0 \) are as defined above.

2. Construct npda’s that accept the following languages on \(\Sigma = \{ a, b, c \} \).

(a) \(L = \{ a^n b^{2n} : n \geq 0 \} \)

Solution: The npda \(M = (K, \Sigma, \Gamma, \Delta, s, F) \), where \(K = \{ s, f \} \), \(\Sigma = \{ a, b \} \), \(F = \{ f \} \), and \(\Delta \) as the set of following rules accepts \(L \).

\[
((s, c, e), (f, e)) \\
((s, a, c), (s, aa)) \\
((s, b, a), (f, e)) \\
((f, b, a), (f, e))
\]

(b) \(L = \{ a^n b^m c^{2n+m} : n \geq 0, m \geq 0 \} \)

Solution: The npda \(M = (K, \Sigma, \Gamma, \Delta, s, F) \), where \(K = \{ s_0, s_1, f \} \), \(\Sigma = \{ a, b \} \), \(F = \{ s_1 \} \), and \(\Delta \) as the set of following rules accepts \(L \).

\[
((s_0, c, e), (f, e)) \\
((s_0, a, c), (s_0, a)) \\
((s_0, c, a), (f, e)) \\
((s_0, b, e), (s_1, b)) \\
((s_1, b, e), (s_1, b)) \\
((s_1, c, b), (f, e)) \\
((f, c, b), (f, e)) \\
((f, c, a), (f, e))
\]
3. Find an npda on $\Sigma = \{a, b, c\}$ that accepts the language $L = \{w_1cw_2 : w_1, w_2 \in \{a, b\}^*, w_1 \neq w_2^R\}$

Solution: Idea: Observe that if $w_1 = w_2^R$, then the npda should not accept the input. But $w_1 = w_2^R$ is equivalent to $w_1^R = w_2$. Hence, we first, push w_1 onto stack, then while matching w_2, if a mismatch is found (then $w_1^R \neq w_2$), consume all the input and empty the stack then go to final state; otherwise (then $w_1^R = w_2$ which means $w_1 = w_2^R$), the input is not accepted. Thus the npda $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where $K = \{s_0, s_1, d, f\}$, $\Sigma = \{a, b\}$, $F = \{f\}$, and Δ as the set of following rules accepts L.

\[
\begin{align*}
(s_0, a, e, (s_0, a)) \\
(s_0, b, e, (s_0, b)) \\
(s_1, a, a, (s_1, c)) \\
(s_1, b, b, (s_1, c)) \\
(d, e, a, (d, e)) \\
(d, e, b, (d, e)) \\
(d, a, c, (d, e)) \\
(d, b, c, (d, e)) \\
(d, e, c, (f, e))
\end{align*}
\]

4. Construct an npda corresponding to the grammar

\[
S \rightarrow aABB \mid aAA,
A \rightarrow aBB \mid a,
B \rightarrow bBB \mid A
\]

Solution: The npda $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where $K = \{s_0, s_1\}$, $\Sigma = \{a, b\}$, $F = \{s_1\}$, and Δ as the set of following rules implements the grammar above.

\[
\begin{align*}
(s_0, c, e, (s_1, S)) \\
(s_1, a, S, (s_1, ABB)) \\
(s_1, a, S, (s_1, AA)) \\
(s_1, a, A, (s_1, BB)) \\
(s_1, a, A, (s_1, c)) \\
(s_1, b, B, (s_1, BB)) \\
(s_1, a, B, (s_1, BB)) \\
(s_1, a, B, (s_1, S))
\end{align*}
\]

Another solution:

\[
\begin{align*}
(s_0, c, e, (s_1, S)) \\
(s_1, e, S, (s_1, aABB)) \\
(s_1, c, S, (s_1, aAA)) \\
(s_1, c, A, (s_1, aBB)) \\
(s_1, e, B, (s_1, BB)) \\
(s_1, e, B, (s_1, A)) \\
(s_1, a, a, (s_1, c)) \\
(s_1, b, b, (s_1, c))
\end{align*}
\]

5. Show that the language $L = \{ww : w \in \{a, b\}^*\}$ is not context-free.

Solution: Consider the string $a^mb^ma^mb^m$. Now, let v and y contain only the first a’s and let $v = a^p$ and $y = a^q$. Then consider $uxz = a^kb^ma^mb^m$, $k < m$, which is not in L. For other choices of v and y, we can make similar arguments (since each symbol occurs exactly m times). Thus, L is not context-free.
6. Show that the language \(L = \{a^n : n \geq 0\} \) is not context-free.

Solution: In this case, this is same as showing that \(L \) is not regular (since the language consists entirely of alphabet over single symbol). Let \(w = uxyz \) such that \(w = \epsilon \). Then we need to show that \(w = xz'z, \) for \(i = 0, 1, 2, \ldots \). Let \(w = a^n \). Let \(|y| = k \leq m \). Then \(xz \) has length \(m! - k \). This string is in \(L \) only if there exists a \(j \) such that \(m! - k = j! \). But this is impossible, since for \(m > 2 \) and \(k \leq m \), we have \(m! - k > (m - 1)! \). Therefore \(L \) is not context-free (or regular, either).

7. Construct Turing machines that will accept the following languages on \(\{a, b\} \).

(a) \(L = \{w : |w| \text{ is even}\} \)

Solution: Here we keep checking off two input symbols and if ultimately we encounter end of input in the start state, we accept the input.

The Turing machine \(M = (K, \Sigma, \delta, s, H) \), where \(K = \{q_0, q_1, h\} \), \(\Sigma = \{a, b, \texttt{⊔}, \texttt{⊥}\} \), \(s = q_0 \), \(H = \{h\} \) and \(\delta \) as follows accepts \(L \).

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\sigma)</th>
<th>(\delta(q, \sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(a)</td>
<td>((q_1, \rightarrow))</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(b)</td>
<td>((q_1, \rightarrow))</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(a)</td>
<td>((q_0, \rightarrow))</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(b)</td>
<td>((q_0, \rightarrow))</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(\texttt{⊔})</td>
<td>((h, \texttt{⊥}))</td>
</tr>
</tbody>
</table>

(b) \(L = \{w : n_a(w) = n_b(w)\} \)

where \(n_a(w) \) is number of \(a \)'s in \(w \) and \(n_b(w) \) is number of \(b \)'s in \(w \).

Solution: First find leftmost \(a \) or \(b \). If \(a \) (or \(b \)) is found, then replace it with \(x \) and find a matching \(b \) (or \(a \)), replace it with \(x \) and then go back to the left end of the tape (so as to find next leftmost \(a \) or \(b \)). Repeat.

The Turing machine \(M = (K, \Sigma, \delta, s, H) \), where \(K = \{q_0, q_1, q_2, q_3, h\} \), \(\Sigma = \{a, b, \texttt{⊔}, \texttt{⊥}\} \), \(s = q_0 \), \(H = \{h\} \) and \(\delta \) as given below accepts \(L \).

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\sigma)</th>
<th>(\delta(q, \sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(x)</td>
<td>((q_0, \rightarrow))</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(a)</td>
<td>((q_1, x))</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(b)</td>
<td>((q_2, x))</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(x)</td>
<td>((q_1, \rightarrow))</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(a)</td>
<td>((q_1, \rightarrow))</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(b)</td>
<td>((q_3, x))</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(x)</td>
<td>((q_2, \rightarrow))</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(a)</td>
<td>((q_3, x))</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(b)</td>
<td>((q_3, \rightarrow))</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(x)</td>
<td>((q_3, \leftarrow))</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(a)</td>
<td>((q_3, \leftarrow))</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(b)</td>
<td>((q_3, \leftarrow))</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(\texttt{⊔})</td>
<td>((q_0, \rightarrow))</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(\texttt{⊥})</td>
<td>((h, \texttt{⊥}))</td>
</tr>
</tbody>
</table>