1. Prove that \(\{a^n ba^m ba^{m+n} : n, m \geq 1 \} \) is not regular.

Solution: Suppose this language were regular. Then, by the conditions of the pumping theorem, there would be some constant \(k \) for this language. Consider then the string \(a^k ba^k ba^{2k} \). Now there should be a decomposition \(w = xyz \) guaranteed by the pumping theorem. There are several cases for the decomposition, each of which leads to a contradiction. First, because each string in \(L \) contains exactly two bs, it cannot be the case that \(y \) contains any instances of \(b \), because then \(xy^n = xz \) would have too few bs and would thus not be in \(L \). Thus \(y \) contains only as. Let \(|y| = p \). If \(y \) falls before the first \(b \), then \(xy^2z = a^k + pba^kba^{2k} \), and \(2k + p \neq 2k \) unless \(p = 0 \), which is ruled out by \(y \neq \epsilon \). Similarly, if \(y \) falls between the bs, \(xy^2z = a^k ba^{k+p}ba^{2k} \), and \(2k + p \neq 2k \). Finally, if \(y \) falls after the last \(b \), then \(xy^2z = a^k ba^k a^{2k+p} \), and once again \(2k \neq 2k + p \). This exhausts all the possibilities for the decomposition, so the contradiction is forced, and \(L \) is not regular.

2. Prove that \(\{ww^R : w \in \{a, b\}^*\} \) is not regular.

Solution: Assume \(L \) is regular, and let \(k \) be the constant whose existence the pumping theorem guarantees. Choose string \(a^k ba^k \). Clearly this string is of length at least \(k \), and so the strong version of the Pumping Theorem must hold. If \(|xy| \leq k \), then \(y = a^i \), where \(i > 0 \). But then \(xy^iz = a^k + (n-1)i bba^k \), which is clearly asymmetric for any \(n \neq 1 \). The theorem fails, and thus the assumption that \(L \) is regular is wrong.

3. If \(L \) is regular, then is \(\{xy : x \in L \text{ and } y \notin L \} \) regular or not? Explain your answer in one or two sentences.

Solution: True. This language is equivalent to \(L \overline{L} \). Since \(L \) is regular, so is its complement \(\overline{L} \), and thus their concatenation is the concatenation of two regular languages and is itself regular.

4. Prove that \(\{a^{k^2} : k = 0, 1, 2, \ldots \} \) is regular or not regular.

Solution: Assume that \(L = \{a^{k^2} : k = 0, 1, 2, \ldots \} \) is regular. The using \(N \) as provided by the Pumping Theorem, we choose the string \(w = a^2(n+1)^2 \in L \) of length \((n+1)^2 \geq n \). If it is represented as \(xyz \) with \(|xy| \leq n \), then \(y = a^i \) for some \(0 < i \leq n \). Thus \(a^{(n+1)^2-i} \) must be in \(L \). Now note that \(n^2 \), the square closes to \((n+1)^2 \) is smaller than \((n+1)^2 - i : (n+1)^2 = n^2 + 2n + 1 \) and \(i \leq n \); therefore \((n+1)^2 - i \geq n^2 + n + 1 > n^2 \). Thus the assumption that \(L \) is regular is wrong.

5. Prove that \(\{ww : w \in \{a, b\}^*\} \) is regular or not regular.

Solution: Assume that \(L \) is regular, and let \(k \) be the constant from the Pumping Theorem. Choose the string \(a^k ba^k b \). This string has length \(2k + 2 \), which is definitely at least \(k \). If \(|xy| \leq k \), then \(y = a^i \) for some \(i > 0 \). Thus \(xy^2z = a^{k+i}ba^k b \), which is clearly asymmetric. Thus the assumption that \(L \) is regular must be wrong.